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Preface

The primary focus of this book is to present the basic
physics of reservoir engineering using the simplest and
most straightforward of mathematical techniques. It is only
through having a complete understanding of physics of
reservoir engineering that the engineer can hope to solve
complex reservoir problems in a practical manner. The book
is arranged so that it can be used as a textbook for senior
and graduate students or as a reference book for practicing
engineers.

Chapter 1 describes the theory and practice of well test-
ing and pressure analysis techniques, which is probably one
of the most important subjects in reservoir engineering.

Chapter 2 discusses various water-influx models along with
detailed descriptions of the computational steps involved in
applying these models. Chapter 3 presents the mathemati-
cal treatment of unconventional gas reservoirs that include
abnormally-pressured reservoirs, coalbed methane, tight
gas, gas hydrates, and shallow gas reservoirs. Chapter 4
covers the basic principle oil recovery mechanisms and the
various forms of the material balance equation. Chapter 5
focuses on illustrating the practical application of the MBE
in predicting the oil reservoir performance under different
scenarios of driving mechanisms. Fundamentals of oil field
economics are discussed in Chapter 6.

Tarek Ahmed and Paul D. McKinney
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1/2  WELL TESTING ANALYSIS

1.1 Primary Reservoir Characteristics

Flow in porous media is a very complex phenomenon and
cannot be described as explicitly as flow through pipes or
conduits. It is rather easy to measure the length and diam-
eter of a pipe and compute its flow capacity as a function of
pressure; however, in porous media flow is different in that
there are no clear-cut flow paths which lend themselves to
measurement.

The analysis of fluid flow in porous media has evolved
throughout the years along two fronts: the experimental and
the analytical. Physicists, engineers, hydrologists, and the
like have examined experimentally the behavior of various
fluids as they flow through porous media ranging from sand
packs to fused Pyrex glass. On the basis of their analyses,
they have attempted to formulate laws and correlations that
can then be utilized to make analytical predictions for similar
systems.

The main objective of this chapter is to present the math-
ematical relationships that are designed to describe the flow
behavior of the reservoir fluids. The mathematical forms of
these relationships will vary depending upon the characteris-
tics of the reservoir. These primary reservoir characteristics
that must be considered include:

o types of fluids in the reservoir;

o flow regimes;

® reservoir geometry;

e number of flowing fluids in the reservoir.

1.1.1 Types of fluids

The isothermal compressibility coefficient is essentially the
controlling factor in identifying the type of the reservoir fluid.
In general, reservoir fluids are classified into three groups:

(1) incompressible fluids;
(2) slightly compressible fluids;
(3) compressible fluids.

The isothermal compressibility coefficient ¢ is described
mathematically by the following two equivalent expressions:

In terms of fluid volume:

—19V
= —— 1.1.1
c= % [ |
In terms of fluid density:
e Lo [1.1.2]
p dp
where

V= fluid volume

p= fluid density

p = pressure, psi~!

¢ = isothermal compressibility coefficient, W1

Incompressible fluids
An incompressible fluid is defined as the fluid whose volume
or density does not change with pressure. That is

14 ad

20 and Lo

ap ap
Incompressible fluids do not exist; however, this behavior
may be assumed in some cases to simplify the derivation
and the final form of many flow equations.

Slightly compressible fluids

These “slightly” compressible fluids exhibit small changes
involume, or density, with changes in pressure. Knowing the
volume V¢ of a slightly compressible liquid at a reference
(initial) pressure pr.f, the changes in the volumetric behavior

of this fluid as a function of pressure p can be mathematically
described by integrating Equation 1.1.1, to give:

g Vv
—c dp = f -
‘éref £ v

ref
v
exp [¢(pret — )] = 7o

ref

V= Vref exp [e (pref - P)] [113]

where:

p = pressure, psia
V = volume at pressure p, ft*
pret = initial (reference) pressure, psia
Vet = fluid volume at initial (reference) pressure, psia

The exponential ¥ may be represented by a series expan-
sion as:

f_1 x2 %P x"
Because the exponent x (which represents the term
¢ (pref — p)) is very small, the e* term can be approximated
by truncating Equation 1.1.4 to:

[1.1.4]

=1+« [1.1.5]
Combining Equation 1.1.5 with 1.1.3 gives:
V= Vref[l + C(pref *P)] [116]

A similar derivation is applied to-Equation 1.1.2, to give:

p= pref[l - c(prEf - ﬁ)] [1.1.7]

where:

V = volume at pressure p

o = density at pressure p
Veet = volume at initial (reference) pressure pre
pref = density at initial (reference) pressure pr.s

It should be pointed out that crude oil and water systems fit
into this category.

Compressible fluids
These are fluids that experience large changes in volume as a
function of pressure. All gases are considered compressible
fluids. The truncation of the series expansion as given by
Equation 1.1.5 is not valid in this category and the complete
expansion as given by Equation 1.1.4 is used.

The isothermal compressibility of any compressible fluid
is described by the following expression:

cJ,l(%)
Tp Z\op)y

Figures 1.1 and 1.2 show schematic illustrations of the vol-
ume and density changes as a function of pressure for the
three types of fluids.

[1.1.8]

1.1.2 Flow regimes

There are basically three types of flow regimes that must be
recognized in order to describe the fluid flow behavior and
reservoir pressure distribution as a function of time. These
three flow regimes are:

(1) steady-state flow;
(2) unsteady-state flow;
(3) pseudosteady-state flow.
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Figure 1.2 Fluid density versus pressure for different fluid types.

Steady-state flow

The flow regime is identified as a steady-state flow if the pres-
sure at every location in the reservoir remains constant, i.e.,
does not change with time. Mathematically, this condition is
expressed as:

(5),0
at ),

This equation states that the rate of change of pressure p with
respect to time ¢ at any location 7 is zero. In reservoirs, the
steady-state flow condition can only occur when the reservoir
is completely recharged and supported by strong aquifer or
pressure maintenance operations.

[1.1.9]

Unsteady-state flow

Unsteady-state flow (frequently called transient flow) is
defined as the fluid flowing condition at which the rate of
change of pressure with respect to time at any position in
the reservoir is not zero or constant. This definition suggests
that the pressure derivative with respect to time is essentially

a function of both position ¢ and time ¢, thus:
ap .
(5r)=r

Pseudosteady-state flow

When the pressure at different locations in the reservoir
is declining linearly as a function of time, i.e., at a con-
stant declining rate, the flowing condition is characterized
as pseudosteady-state flow. Mathematically, this definition
states that the rate of change of pressure with respect to
time at every position is constant, or:

(3—17) = constant

[1.1.10]

1.1.11
of [ ]

It should be pointed out that pseudosteady-state flow is com-
monly referred to as semisteady-state flow and quasisteady-
state flow.

Figure 1.3 shows a schematic comparison of the pressure
declines as a function of time of the three flow regimes.
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Figure 1.4 Ideal radial flow into a wellbore.

1.1.3 Reservoir geometry

The shape of a reservoir has a significant effect on its flow
behavior. Most reservoirs have irregular boundaries and
a rigorous mathematical description of their geometry is
often possible only with the use of numerical simulators.
However, for many engineering purposes, the actual flow
geometry may be represented by one of the following flow
geometries:

e radial flow;
o linear flow;
e spherical and hemispherical flow.

Radial flow

In the absence of severe reservoir heterogeneities, flow into
or away from a wellbore will follow radial flow lines a substan-
tial distance from the wellbore. Because fluids move toward
the well from all directions and coverage at the wellbore,
the term radial flow is used to characterize the flow of fluid
into the wellbore. Figure 1.4 shows idealized flow lines and
isopotential lines for a radial flow system.

Linear flow

Linear flow occurs when flow paths are parallel and the fluid
flows in a single direction. In addition, the cross-sectional

TLFeBOOK
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Figure 1.9 Pressure versus distance in a linear flow.

area to flow must be constant. Figure 1.5 shows an ideal-
ized linear flow system. A common application of linear flow
equations is the fluid flow into vertical hydraulic fractures as
illustrated in Figure 1.6.

Spherical and hemispherical flow

Depending upon the type of wellbore completion config-
uration, it is possible to have spherical or hemispherical
flow near the wellbore. A well with a limited perforated
interval could result in spherical flow in the vicinity of the
perforations as illustrated in Figure 1.7. A well which only
partially penetrates the pay zone, as shown in Figure 1.8,
could result in hemispherical flow. The condition could arise
where coning of bottom water is important.

1.1.4 Number of flowing fluids in the reservoir

The mathematical expressions that are used to predict
the volumetric performance and pressure behavior of a
reservoir vary in form and complexity depending upon the
number of mobile fluids in the reservoir. There are generally
three cases of flowing system:

(1) single-phase flow (oil, water, or gas);
(2) two-phase flow (oil-water, oil-gas, or gas—water);
(3) three-phase flow (oil, water, and gas).

The description of fluid flow and subsequent analysis of pres-
sure data becomes more difficult as the number of mobile
fluids increases.

1.2 Fluid Flow Equations

The fluid flow equations that are used to describe the flow
behavior in a reservoir can take many forms depending upon
the combination of variables presented previously (i.e., types
of flow, types of fluids, etc.). By combining the conserva-
tion of mass equation with the transport equation (Darcy’s
equation) and various equations of state, the necessary flow
equations can be developed. Since all flow equations to be
considered depend on Darcy’s law, it is important to consider
this transport relationship first.

1.2.1 Darcy’s law

The fundamental law of fluid motion in porous media is
Darcy’s law. The mathematical expression developed by
Darcy in 1956 states that the velocity of a homogeneous fluid
in a porous medium is proportional to the pressure gradi-
ent, and inversely proportional to the fluid viscosity. For a
horizontal linear system, this relationship is:

_4__kd
-4=—3 [12.1a]

v is the apparent velocity in centimeters per second and is
equal to g/A, where g is the volumetric flow rate in cubic
centimeters per second and A is the total cross-sectional area
of the rock in square centimeters. In other words, A includes
the area of the rock material as well as the area of the pore
channels. The fluid viscosity, u, is expressed in centipoise
units, and the pressure gradient, dp/dx, is in atmospheres
per centimeter, taken in the same direction as » and ¢. The
proportionality constant, k, is the permeability of the rock
expressed in Darcy units.

The negative sign in Equation 1.2.1a is added because the
pressure gradient dp/dx is negative in the direction of flow
as shown in Figure 1.9.

Watermark Now
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Figure 1.10 Pressure gradient in radial flow.

For a horizontal-radial system, the pressure gradient is
positive (see Figure 1.10) and Darcy’s equation can be
expressed in the following generalized radial form:

k[0
v I _ k(O [1.2.1b]
A, w\ar/,
where:
q, = volumetric flow rate at radius 7
A, = cross-sectional area to flow at radius 7
(0p/9dr), = pressure gradient at radius
v = apparent velocity at radius »

The cross-sectional area at radius 7 is essentially the sur-
face area of a cylinder. For a fully penetrated well with a net
thickness of £, the cross-sectional area A, is given by:

A, =2nrh
Darcy’s law applies only when the following conditions exist:

e laminar (viscous) flow;
o steady-state flow;

e incompressible fluids;

e homogeneous formation.

For turbulent flow, which occurs at higher velocities, the
pressure gradient increases at a greater rate than does the
flow rate and a special modification of Darcy’s equation
is needed. When turbulent flow exists, the application of
Darcy’s equation can result in serious errors. Modifications
for turbulent flow will be discussed later in this chapter.

1.2.2 Steady-state flow

As defined previously, steady-state flow represents the condi-
tion that exists when the pressure throughout the reservoir
does not change with time. The applications of steady-state
flow to describe the flow behavior of several types of fluid in
different reservoir geometries are presented below. These
include:

o linear flow of incompressible fluids;

o linear flow of slightly compressible fluids;
o linear flow of compressible fluids;

o radial flow of incompressible fluids;

o radial flow of slightly compressible fluids;

emove Watermark Now
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Figure 1.11 Linear flow model.

o radial flow of compressible fluids;
e multiphase flow.

Linear flow of incompressible fluids

In alinear system, it is assumed that the flow occurs through
a constant cross-sectional area A, where both ends are
entirely open to flow. It is also assumed that no flow crosses
the sides, top, or bottom as shown in Figure 1.11. If an incom-
pressible fluid is flowing across the element dx, then the
fluid velocity v and the flow rate ¢ are constants at all points.
The flow behavior in this system can be expressed by the
differential form of Darcy’s equation, i.e., Equation 1.2.1a.
Separating the variables of Equation 1.2.1a and integrating
over the length of the linear system:

L P
q k. [*2
= | dx=—-— d
A/(; u Jp b

g = kA1 — p2)
=i
Itis desirable to express the above relationship in customary
field units, or:
0.001127kA(p; — po)
g=——""°-—""""
uL

which results in:

[1.2.2]

where:

q = flow rate, bbl/day

k = absolute permeability, md
p = pressure, psia

L= viscosity, cp

L = distance, ft

A= cross-sectional area, ft

Example 1.1 An incompressible fluid flows in a linear
porous media with the following properties:

L = 2000 ft, h=20ft, width = 300 ft
k =100 md, ¢ = 15%, w=2cp
p1 = 2000 psi, p2 = 1990 psi

Calculate:

(a) flow rate in bbl/day;
(b) apparent fluid velocity in ft/day;
(c) actual fluid velocity in ft/day.

Calculate the cross-sectional area A:
A = () (width) = (20) (100) = 6000 ft*

Solution
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(a) Calculate the flow rate from Equation 1.2.2:
_0.001127kA(p1 — p2)
=7

_(0.001127) (100) (6000) (2000 — 1990)
B (2) (2000)

= 1.6905 bbl/day
(b) Calculate the apparent velocity:

g (1.6905)(5.615)
V== 00 = 0.0016 ft/day

(c) Calculate the actual fluid velocity:

q (1.6905) (5.615) _
v= 4= (0.156000) 0.0105 ft/day

The difference in the pressure (p;—ps) in Equation 1.2.2
is not the only driving force in a tilted reservoir. The gravita-
tional force is the other important driving force that must be
accounted for to determine the direction and rate of flow. The
fluid gradient force (gravitational force) is always directed
vertically downward while the force that results from an
applied pressure drop may be in any direction. The force
causing flow would then be the vector sum of these two. In
practice we obtain this result by introducing a new parame-
ter, called “fluid potential,” which has the same dimensions
as pressure, e.g., psi. Its symbol is ®. The fluid potential at
any point in the reservoir is defined as the pressure at that
point less the pressure that would be exerted by a fluid head
extending to an arbitrarily assigned datum level. Letting Az
be the vertical distance from a point 7 in the reservoir to this
datum level:

®i=pi- (144) Az

where p is the density in 1b/ft.

Expressing the fluid density in g/cm® in Equation 1.2.3
gives:
®; =p; — 0:433y Az
where:

[1.2.3]

[1.2.4]

®; = fluid potential at point 1, psi
i = pressure at point 7, psi
Az; = vertical distance from point 7 to the selected
datum level
o = fluid density under reservoir conditions, Ib/ft®
y = fluid density under reservoir conditions, g/cm?;
this is not the fluid specific gravity

The datum is usually selected at the gas—oil contact, oil-
water contact, or the highest point in formation. In using
Equations 1.2.3 or 1.2.4 to calculate the fluid potential ®; at
location i, the vertical distance z; is assigned as a positive
value when the point 7 is below the datum level and as a
negative value when it is above the datum level. That is:

If point 7 is above the datum level:

@i =pi+({g) b4
and equivalently:
®; = p; +0.433y Az;

If point ¢ is below the datum level:
q)z =Pi - (144) Azl

®; = p; —0.433y Az;
Applying the above-generalized concept to Darcy’s equation
(Equation 1.2.2) gives:
0.001127kA (@1 — ®»)
= L

and equivalently:

[1.2.5]

WELL TESTING ANALYSIS _ 1/7

p, = 1990
¢; =p; —0.433 yAz
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Figure 1.12 Example of a tilted layer.

It should be pointed out that the fluid potential drop (®1-®5)
is equal to the pressure drop (p1—p2) only when the flow
system is horizontal.

Example 1.2 Assume that the porous media with the
properties as given in the previous example are tilted with a
dip angle of 5° as shown in Figure 1.12. The incompressible
fluid has a density of 42 Ib/ft*. Resolve Example 1.1 using
this additional information.

Solution

Step 1. For the purpose of illustrating the concept of fluid
potential, select the datum level at half the vertical
distance between the two points, i.e., at 87.15 ft, as
shown in Figure 1.12.

Calculate the fluid potential at point 1 and 2.

Since point 1 is below the datum level, then:

)Az1_2000 ( >(87 15)

Step 2.
Pr=p1- (144

= 1974. 58 psi
Since point 2 is above the datum level, then:

172+( )Az2_1990+( )(87 15)

144

144

= 2015.42 psi

Because ®, > @1, the fluid flows downward from
point 2 to point 1. The difference in the fluid
potential is:

AP = 2015.42 — 1974.58 = 40. 84 psi

Notice that, if we select point 2 for the datum level,
then:

42
$; = 2000 — <144> (174.3) = 1949. 16 psi

144

42 :
@, = 1990 + <m> (0) = 1990 psi

The above calculations indicate that regardless of
the position of the datum level, the flow is downward
from point 2 to 1 with:

A® = 1990 — 1949.16 = 40. 84 psi
Calculate the flow rate:
0.001127kA (@1 — ®»)
- uL

_(0.001127) (100) (6000) (40. 84)
(2) (2000)

Step 3.

= 6.9 bbl/day
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1/8  WELL TESTING ANALYSIS

Step 4. Calculate the velocity:
(6.9) (5.615)
6000

(6.9)(5.615)
(0.15) (6000)

Apparent velocity = = 0.0065 ft/day

Actual velocity = = 0.043 ft/day

Linear flow of slightly compressible fluids
Equation 1.1.6 describes the relationship that exists between
pressure and volume for a slightly compressible fluid, or:

V= Vre[[l + c(pre[ —P)]

This equation can be modified and written in terms of flow
rate as:

q = qref [1 + C(Dret — P)] [126]

where ¢ is the flow rate at some reference pressure
Dref. Substituting the above relationship in Darcy’s equation
gives:

q _ Qref [1+C(pref _p)] _ k dp
1= " =—0. 001127M e

Separating the variables and arranging:

L ™
q”ff dr = —0.001127 % [dip}
0 12 "

A 1+ c(pret — P)
Integrating gives:

|:O. 001127kA] [1 + c(prer — P2) ]
ref = In

1.2.7
/LCL 1+c(pref _pl) [ ]

where:

qref = flow rate at a reference pressure p,f, bbl/day
p1 = upstream pressure, psi
p2 = downstream pressure, psi

k = permeability, md

| = viscosity, cp

¢ = average liquid compressibility, psi—!

Selecting the upstream pressure p; as the reference pressure
bref and substituting in Equation 1.2.7 gives the flow rate at
point 1 as:

[O. 001127kRA
Gi=|—737
nel

Choosing the downstream pressure p, as the reference
pressure and substituting in Equation 1.2.7 gives:

0.001127kA 1
qz_[ L ]ln[1+c<pz—p1)] [1.29]

where ¢q; and ¢, are the flow rates at point 1 and 2,
respectively.

]ln[1+c(ﬁl —p2)] [1.2.8]

Example 1.3 Consider the linear system given in
Example 1.1 and, assuming a slightly compressible liquid,
calculate the flow rate at both ends of the linear system. The
liquid has an average compressibility of 21 x 10~ psi—'.

Solution  Choosing the upstream pressure as the reference
pressure gives:

0.001127kA

="

oL ]ln[1+c(p1 —b2)]

(0.001127) (100) (6000)
- [ (2) (21 x 10-5) (2000) }

x In 1+ 21107 (2000 — 1990)] = 1.689 bbl/day

Choosing the downstream pressure gives

_ |:O. 001127kA] In [ 1 i|
= ueL 1+ cp2 —p1)

(0.001127) (100) (6000)
- { (2) (21 x 10-5) (2000) }

1
1
o [1 + (21 x 10-5) (1990 — 2000)

} = 1.692 bbl/day

The above calculations show that ¢; and g, are not largely
different, which is due to the fact that the liquid is slightly
incompressible and its volume is not a strong function of
pressure.

Linear flow of compressible fluids (gases)
Foraviscous (laminar) gas flow in ahomogeneous linear sys-
tem, the real-gas equation of state can be applied to calculate
the number of gas moles # at the pressure p, temperature T,
and volume V:
n= 4
~ ZRT
At standard conditions, the volume occupied by the above
7 moles is given by:
_ nZsRTx
pSC

Combining the above two expressions and assuming Z,. =
1 gives:

sC

pV ¥ | pSCI/SC

ZT ~ Ts

Equivalently, the above relation can be expressed in terms
of the reservoir condition flow rate g, in bbl/day, and surface
condition flow rate @, in scf/day, as:

p(s' 615q) — pSCQSC

ZT T
Rearranging:
bsc zT Qse _
(7)(5) (5555) = [1.2:101
where:

q = gas flow rate at pressure p in bbl/day
Qs = gas flow rate at standard conditions, scf/day
Z = gas compressibility factor
T, psc = standard temperature and pressure in °R and
psia, respectively.

Dividing both sides of the above equation by the cross-
sectional area A and equating it with that of Darcy’s law, i.e.,
Equation 1.2.1a, gives:

q _ pSC ZT QSC 1 _ Edi
L. (T) (7> (5.615> (Z) ——0.001127

The constant 0.001127 is to convert Darcy’s units to field
units. Separating variables and arranging yields:

L ?;
_ Qb / r=— [ L
0.006328kT.A | Jo 0 Ll

Assuming that the product of Z , is constant over the spec-
ified pressure range between p; and po, and integrating,

gives:
Quctsc T L U £
looosomeral |, =7 Y
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or:
_0.003164TcAk (b} — $3)
T s T(ZpgL

where:

Q<= gas flow rate at standard conditions, scf/day
k = permeability, md

T = temperature, °R
g = gas viscosity, cp

A = cross-sectional area, ft

L = total length of the linear system, ft

Setting ps. = 14.7 psi and Ts. = 520°R in the above expres-
sion gives:

0. 111924AR(p3 — p3)

¢ = TiZn, [1.2.11]

It is essential to notice that those gas properties Z and
are very strong functions of pressure, but they have been
removed from the integral to simplify the final form of the gas
flow equation. The above equation is valid for applications
when the pressure is less than 2000 psi. The gas proper-
ties must be evaluated at the average pressure p as defined
below:

— [ +D5
b=y

Example 1.4 A natural gas with a specific gravity of 0.72
is flowing in linear porous media at 140°F. The upstream
and downstream pressures are 2100 psi and 1894.73 psi,
respectively. The cross-sectional area is constant at 4500 ft?.
The total length is 2500 ft with an absolute permeability of
60 md. Calculate the gas flow rate in scf/day (ps. = 14.7
psia, Ty. = 520°R).

[1.2.12]

Solution

Step 1. Calculate average pressure by using Equation 1.2.12:

_ [21002 + 1804. 732
5= % = 2000 psi

Step 2. Using the specific gravity of the gas, calculate its
pseudo-critical properties by applying the following
equations:

T = 168 + 325y, — 12.5y7
= 168 + 325(0.72) — 12.5(0.72)% = 395.5°R
Ppe = 677+ 15.0y, — 37.5y7

= 677 4 15.0(0.72) — 37.5(0.72)* = 668.4 psia

Step 3. Calculate the pseudo-reduced pressure and

temperature:
2000
Dpr = 6684 =2.99
600
= —— =1.52
PrT395.5 >
Step 4. Determine the Z-factor from a Standing—Katz chart
to give:
Z=0.78

Step 5. Solve for the viscosity of the gas by applying the Lee—
Gonzales-Eakin method and using the following

WELL TESTING ANALYSIS _ 1/9

sequence of calculations:

M, = 28.96y,
= 28.96(0.72) = 20.85
M,

Pe = ZRT

~ (2000)(20.85)
~ (0.78)(10.73) (600)

(9.440.02M) T
T 2094+19M,+ T
[9. 4 +0.02(20.96)] (600) 15

= =119.72
209 + 19(20.96) + 600

= 8.30 Ib/ft*

X=3.5+$+0.01Ma

986
=3.5+ 800 +0.01(20.85) =5.35

Y=24-02X
=2.4-1(0.2)(5.35) =1.33

g = 107K exp [X (pg/62.4)"] = 0.0173 cp

10 (119.72exp | 5.35 (23}
= Rl R W

=0.0173

Step 6. Calculate the gas flow rate by applying Equation
1.2.11:

0. 1119244k(p3 — 13)

sc = TLZ/,Lg
_(0.111924) (4500) (60) (2100% — 1894.73?)
- (600) (2500) (0.78) (0.0173)

= 1224242 scf/day

Radlal flow of incompressible fluids

In a radial flow system, all fluids move toward the producing
well from all directions. However, before flow can take place,
apressure differential must exist. Thus, if a well is to produce
oil, which implies a flow of fluids through the formation to the
wellbore, the pressure in the formation at the wellbore must
be less than the pressure in the formation at some distance
from the well.

The pressure in the formation at the wellbore of a pro-
ducing well is known as the bottom-hole flowing pressure
(flowing BHP, pys).

Consider Figure 1.13 which schematically illustrates the
radial flow of an incompressible fluid toward a vertical well.
The formation is considered to have a uniform thickness %
and a constant permeability k. Because the fluid is incom-
pressible, the flow rate ¢ must be constant at all radii. Due
to the steady-state flowing condition, the pressure profile
around the wellbore is maintained constant with time.

Let pys represent the maintained bottom-hole flowing pres-
sure at the wellbore radius 7, and p. denotes the external
pressure at the external or drainage radius. Darcy’s gener-
alized equation as described by Equation 1.2.1b can be used
to determine the flow rate at any radius 7:

o= 9 _o.001127% &
I

a P [1.2.13]

TLFeBOOK



1/10  WELL TESTING ANALYSIS

dr,

Center
of the Well

A

Pe

|

Y

1oBo In (re/ny)

0.00708 kh (Pe — Pw)

o =

Q

Y

Figure 1.13 Radial flow model.

where:

v = apparent fluid velocity, bbl/day-ft?
q = flow rate at radius 7, bbl/day
k = permeability, md
L = viscosity, cp
0.001127 = conversion factor to express the equation
in field units
A, = cross-sectional area at radius

The minus sign is no longer required for the radial system
shown in Figure 1.13 as the radius increases in the same
direction as the pressure. In other words, as the radius
increases going away from the wellbore the pressure also
increases. At any point in the reservoir the cross-sectional
area across which flow occurs will be the surface area of a
cylinder, which is 2774, or:
q q k dp

v= A= ek = 0. 001127M ar
The flow rate for a crude oil system is customarily expressed
in surface units, i.e., stock-tank barrels (STB), rather than
reservoir units. Using the symbol @, to represent the oil flow
as expressed in STB/day, then:

q= BoQo

where B, is the oil formation volume factor in bbl/STB. The
flow rate in Darcy’s equation can be expressed in STB/day,
to give:

(99
27 rh

=0. 001127i d—p
Mo dr

Integrating this equation between two radii, 7, and 7,, when
the pressures are p; and p,, yields:

20 Q, \dr P k
%) — =0.001127 d
v/r; <2”h) 7 Py <I‘LOBO) ?

[1.2.14]

For an incompressible system in a uniform formation,
Equation 1.2.14 can be simplified to:

Q, (2dr 0.001127k /PZ
|7 B TN d
2mh n T HoBo Py

Performing the integration gives:

Qo — 0.00708kk(p2 — p1)

°7 poBoIn(ra/n)
Frequently the two radii of interest are the wellbore radius
rw and the external or drainage radius 7.. Then:
_ 0.00708kh(pe — pw)
°T moBoIn(re/ry)

[1.2.15]

where:

Q.= oil flow rate, STB/day
pe = external pressure, psi
pwi = bottom-hole flowing pressure, psi

k = permeability, md

W, = oil viscosity, cp

B, = oil formation volume factor, bbl/STB
h = thickness, ft
7. = external or drainage radius, ft
rw= wellbore radius, ft

The external (drainage) radius 7. is usually determined from
the well spacing by equating the area of the well spacing with
that of a circle. That is:

w72 = 435604
or:

43 5604
Ve = p

where A is the well spacing in acres.

In practice, neither the external radius nor the wellbore
radius is generally known with precision. Fortunately, they
enter the equation as alogarithm, so the errorin the equation
will be less than the errors in the radii.

[1.2.16]
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Equation 1.2.15 can be arranged to solve for the pressure
p at any radius 7, to give:

_ QOBOI’LO r
P =bwt + [o. 00708kh} 1“(5)

Example 1.5 An oil well in the Nameless Field is pro-
ducing at a stabilized rate of 600 STB/day at a stabilized
bottom-hole flowing pressure of 1800 psi. Analysis of the
pressure buildup test data indicates that the pay zone is
characterized by a permeability of 120 md and a uniform
thickness of 25 ft. The well drains an area of approximately
40 acres. The following additional data is available:

rw = 0.25ft, A = 40 acres
B, = 1.25bbl/STB,

[1.2.17]

W =2.5¢p

Calculate the pressure profile (distribution) and list the pres-
sure drop across 1 ft intervals from 7, to 1.25 ft, 4 to 5 ft, 19 to
20 ft, 99 to 100 ft, and 744 to 745 ft.

Solution

Step 1. Rearrange Equation 1.2.15 and solve for the pressure
p atradius 7:

_ HoBo®@o L
P = bt + [o. 00708kh] ln(rw)

2.5) (1.25) (600 r
(2.5) (1.25) ( ))}m( )

= 1800 —
* [(o. 00708) (120) (25) | \0.25

— 1800 + 88. 281n(T725>

Step 2. Calculate the pressure at the designated radii:

Substituting 0.617. in Equation 1.2.17 gives:

_ oy (99197 0.617,
p(atr =0.61re) = p = pwi + [0.00708kh} ln< o )

or in terms of flow rate:

0.00708kh(p; — pwr)
= T 1.2.18
s 1t0Bo In(0. 617 /1) [ ]

But since In(0. 617 /7y) = In(7./7y) — 0.5, then:
Q. — 0.00708kh(p; — pwr)

° 7 oBo [In (re/r) = 0.5]

Golan and Whitson (1986) suggested a method for approxi-
mating the drainage area of wells producing from a common
reservoir. These authors assume that the volume drained
by a single well is proportional to its rate of flow. Assuming

constant reservoir properties and a uniform thickness, the
approximate drainage area of a single well A, is:

A, = Ay (@)
qr

where:

[1.2.19]

[1.2.20]

Ay, = drainage area of a well
At = total area of the field
qr = total flow rate of the field
qw= well flow rate

Radlal flow of slightly compressible fluids
Terry and co-authors (1991) used Equation 1.2.6 to express
the dependency of the flow rate on pressure for slightly com-
pressible fluids. If this equation is substituted into the radial
form of Darcy’s law, the following is obtained:

q _ Gref [1+c@ref _p)] k dp

L= =027

1/11

r ({) » (psi) fiZZZfZ " Pressure drop where ¢y is the flow rate at some reference pressure pres.
Separating the variables and assuming a constant com-

pressibility over the entire pressure drop, and integrating

0.25 1800 ibili he enti d di i

1.95 1942 0.25-1.25 1942—1800 = 142 psi over the length of the porous medium:

4 2045 - e dy be d

5 2064 4-5 2064—2045 = 19 psi g efk’z = =0.001127 171’

19 2182 Y w T Dwt + c(ﬁref _p)

20 2186 19-20 2186—2182 =4 psi gives:

99 2328 0.00708kh 1+ (e — bret)

100 2329 99-100 2329-2328 =1 psi Gref = [ : ] In [ < e :|

744 2506.1 peln(re/ry) 1+ c(pwt — Dref)

745 2506.2 744-745 2506.2—2506.1 = 0.1 psi where g is the oil flow rate at a reference pressure pre;.

Figure 1.14 shows the pressure profile as a function of
radius for the calculated data.

Results of the above example reveal that the pressure drop
just around the wellbore (i.e., 142 psi) is 7.5 times greater
than at the 4 to 5 interval, 36 times greater than at 19-20 ft,
and 142 times than that at the 99-100 ft interval. The reason
for this large pressure drop around the wellbore is that the
fluid flows in from a large drainage area of 40 acres.

The external pressure p. used in Equation 1.2.15 cannot be
measured readily, but p. does not deviate substantially from
the initial reservoir pressure if a strong and active aquifer is
present.

Several authors have suggested that the average reser-
voir pressure p,, which often is reported in well test results,
should be used in performing material balance calcula-
tions and flow rate prediction. Craft and Hawkins (1959)
showed that the average pressure is located at about 61%
of the drainage radius 7. for a steady-state flow condition.

Choosing the bottom-hole flow pressure py; as the reference
pressure and expressing the flow rate in STB/day gives:

Qo — [ 0.00708kh
o toBoco In(re/7)
where:

]ln[1+co(pe *pwf)] [1221]

¢, = isothermal compressibility coefficient, psi~?

Q, = oil flow rate, STB/day
k = permeability, md

Example 1.6 The following data is available on a well in
the Red River Field:

e = 2506 psi, Dpwi = 1800 psi
7e = 745 ft, rw = 0.25ft

B, = 1.25bbl/STB, w, =2.5¢cp
k = 0.12 darcy, h =251t

Co = 25 x 107 psi™?

TLFeBOOK



1/12  WELL TESTING ANALYSIS
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Figure 1.14 Pressure profile around the wellbore.

Assuming a slightly compressible fluid, calculate the oil flow
rate. Compare the result with that of an incompressible fluid.

Solution  For a slightly compressible fluid, the oil flow rate
can be calculated by applying Equation 1.2.21:
Qo — 0.00708kh
° [uoBoco In(re/n)
(0.00708) (120) (25)
- [ (2.5) (1.25) (25 x 10-°) In(745/0.25) ]

:|1I1[1 + Co(Pe — Pwi)]

x In [14 (25 % 107) (2506 — 1800)] = 595 STB/day

Assuming an incompressible fluid, the flow rate can be
estimated by applying Darcy’s equation, i.e., Equation 1.2.15:
~0.00708kk(pe — py)
°T poBoln(re/ny)

(0.00708) (120) (25) (2506 — 1800)
(2.5) (1.25) In (745/0.25)

= 600 STB/day

Radial flow of compressible gases

The basic differential form of Darcy’s law for a horizontal
laminar flow is valid for describing the flow of both gas and
liquid systems. For a radial gas flow, Darcy’s equation takes
the form:

0.001127 (27 7h)k dp

dgr = e O [1.2.22]
where:
qqr = gas flow rate at radius », bbl/day
7 = radial distance, ft
h = zone thickness, ft

g = gas viscosity, cp
p = pressure, psi
0.001127 = conversion constant from Darcy units to
field units

The gas flow rate is traditionally expressed in scf/day. Refer-
ring to the gas flow rate at standard (surface) condition as
@y, the gas flow rate g, under wellbore flowing condition
can be converted to that of surface condition by applying the

definition of the gas formation volume factor B, to g, as:

= %
Qg = Bg
where:
_ Dsc ZT
By = 56157 b bbl/scf
or:
pSC ZT _
(W) (7) Qg = dor [1.2.23]
where:

psc = standard pressure, psia
Ts. = standard temperature, °R
Q. = gas flow rate, scf/day
qqr = gas flow rate at radius 7, bbl/day
p = pressure at radius 7, psia
T = reservoir temperature, °R
Z = gas compressibility factor at p and T
Zs. = gas compressibility factor at standard
condition = 1.0

Combining Equations 1.2.22 and 1.2.23 yields:
Dsc ZT Q- 0.001127 (2 7h) k dp
(5. 6157% (7) =T, ar
Assuming that Ty, = 520°R and py. = 14.7 psia:
TQ,\ dr 2p
(W) 5= 0.703 (Mgz> dp

Integrating Equation 1.2.24 from the wellbore conditions
(rw and pyg) to any point in the reservoir (r and p) gives:

" (TQ\dr L)
[ Gae) T =om [ (Gz) o
Imposing Darcy’s law conditions on Equation 1.2.25, i.e.,

steady-state flow, which requires that @, is constant at all
radii, and homogeneous formation, which implies that £ and

h are constant, gives:
TQq 7\ P/ 2p
(G ) =0 [ (i2z)
The term:
73
I, Goe)
pwi \ Hg?

wi

[1.2.24]

[1.2.25]
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Slope = (Qq7/0.703kh)

Yw

In r/ry,

Figure 1.15 Graph of ¥ vs. In(r/r,).

can be expanded to give:

P 21, b 21, Dwt 21,
wz) =] Gz [ ()
/Dwf (MgZ ) ? 0 \HeZ ’ 0 ueZ ?
Replacing the integral in Equation 1.2.24 with the above
expanded form yields:

)=o) [ ()]
—— |In[ — ) =0.703 — |dp— — |d
<kh Tw o \HUgZ ? 0 \HegZ ?
[1.2.26]
The integral |’ f 20/ (ugZ)dp is called the “real-gas pseudo-

potential” or “real-gas pseudopressure” and it is usually
represented by m(p) or 1. Thus:

b 21) )
=y = — | d
mp) =y [0 (ugZ p

Equation 1.2.27 can be written in terms of the real-gas
pseudopressure as:

<@) 1n<1) = 0.703(8 — )

[1.2.27]

kh Tw
or:
B QT I3
Y =Yw+ 0.703%h ln(a> [1.2.28]

Equation 1.2.28 indicates that a graph of  vs. In(r/7y,) yields
a straight line with a slope of @,7/0.703%k and an intercept
value of ¥, as shown in Figure 1.15. The exact flow rate is
then given by:

~0.703kh() — i)

Qg = TG /r) [1.2.29]
In the particular case when » = 7., then:

~0.703kh (Yre — Yw)
Qg = T ThOJr) [1.2.30]
where:

. = real-gas pseudopressure as evaluated from 0 to pe,
psiZ/cp
Y= real-gas pseudopressure as evaluated from 0 to pys,
psi2/cp
k = permeability, md
h = thickness, ft
7. = drainage radius, ft
rw= wellbore radius, ft
Q= gas flow rate, scf/day

Because the gas flow rate is commonly expressed in
Mscf/day, Equation 1.2.30 can be expressed as:

kh(ye — Yw)

= 1422T /) [1.2.31]

Qq

where:
Qg= gas flow rate, Mscf/day

Equation 1.2.31 can be expressed in terms of the average
reservoir pressure p, instead of the initial reservoir pressure
De as:

kh(ye — Yw)

~ 14227 [in(re/r) — 0.5] [1.2.32]

Qg

To calculate the integral in Equation 1.2.31, the values of
2p/14Z are calculated for several values of pressure p. Then
2p/ngZ vs. p is plotted on a Cartesian scale and the area
under the curve is calculated either numerically or graph-
ically, where the area under the curve from p = 0 to any
pressure p represents the value of v corresponding to p.
The following example will illustrate the procedure.

Example 1.7 The PVT data from a gas well in the
Anaconda Gas Field is given below:

P (psi) g (cp) z

0 0.0127 1.000
400 0.01286 0.937
800 0.01390 0.882
1200 0.01530 0.832
1600 0.01680 0.794
2000 0.01840 0.770
2400 0.02010 0.763
2800 0.02170 0.775
3200 0.02340 0.797
3600 0.02500 0.827
4000 0.02660 0.860
4400 0.02831 0.896

The well is producing at a stabilized bottom-hole flowing
pressure of 3600 psi. The wellbore radius is 0.3 ft. The
following additional data is available:

k =65md,
De = 4400 psi,

h=151t,
7e = 1000 ft

T = 600°R

Calculate the gas flow rate in Mscf/day.

Solution

Step 1. Calculate the term 2p/u.Z for each pressure as
shown below:

ps) pgp) Z 2p/ngZ (psia/cp)
0 0.0127  1.000 0

400 0.01286  0.937 66391

800 0.01390  0.882 130508

1200 0.01530  0.832 188537

1600 0.01680  0.794 239894

2000 0.01840  0.770 282326

2400 0.02010  0.763 312983

2800 0.02170  0.775 332986

3200 0.02340  0.797 343167
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Figure 1.16 Real-gas pseudopressure data for Example 1.7 (After Donohue and Erekin, 1982).

ps)  pgp Z 2p/ ngZ (psia/cp)

Step 4. Calculate the flow rate by applying Equation 1.2.30:

3600 0.02500 0.

_ s _ 6 2
827 348247 At py, = 3600 psi: gives ¥, = 816.0 x 10° psi“/cp

iggg gggggg’ 8282 gjg gé}l At pe = 4400 psi: gives . = 1089 x 10° psiZ/cp
Step 2. Plot the term 2p/u,Z versus pressure as shown in Q, = 0.703kh (e — Yrw)
Figure 1.16. g T In(re/7y)
Step 3. Calculate numerically the area under the curve for -
each value of p. These areas correspond to the real- _ (65) (15) (1089 — 816) 10°
gas pseudopressure ¥ at each pressure. These (1422) (600) In(1000/0. 25)
values are tabulated below; notice that 2p/ugZ vs.
p is also plotted in the figure. = 37614 Mscf/day
- > In the approximation of the gas flow rate, the exact gas
p (psi) ¥ (psi”/cp) flow rate as expressed by the different forms of Darcy’s law,
400 13.2 % 105 i.e., Equations 1.2.25 through 1.2.32, can be approximated by
300 52' 0 % 106 moving the term 2/uZ outside the integral as a constant. It
1200 1 li’; IX 106 should be pointed out that the product of Z ., is considered
X 5 constant only under a pressure range of less than 2000 psi.
1600 198.0 % 10 Equation 1.2.31 can be rewritten as:
2000 304.0 x 108
2400 422.0 x 10° 0 — kh /”e 2\, 5
2800 542.4 x 108 &7 1422T In(r/7w) b \MgZ
3200 678.0 x 10° . . . .
3600 816.0 x 10° Removing the term 2/u¢Z and integrating gives:
4000 950.0 x 10° 2o
4400 1089.0 x 10° Qq kh (Pe pr) [1.2.33]

14227 (jgZ) 10 (re/ )
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where:

Q, = gas flow rate, Mscf/day
k = permeability, md

The term (ugZ).y is evaluated at an average pressure p
that is defined by the following expression:

— [P+ 82
P=y"

The above approximation method is called the pressure-
squared method and is limited to flow calculations when the
reservoir pressure is less that 2000 psi. Other approximation
methods are discussed in Chapter 2.

Example 1.8 Using the data given in Example 1.7, re-
solve the gas flow rate by using the pressure-squared
method. Compare with the exact method (i.e., real-gas
pseudopressure solution).

Solution

Step 1. Calculate the arithmetic average pressure:

[4400% + 36002
= w:zxozopsi

Step 2. Determine the gas viscosity and gas compressibility

=

factor at 4020 psi:
11g = 0.0267
Z =0.862
Step 3. Apply Equation 1.2.33:
Q= kh(p? — p2;)
122 (1), I e/ )
(65) (15) [4400% = 36002]
N (1422) (600) (0.0267) (0. 862) In(1000/0. 25)
= 38314 Mscf/day
Step 4. Results show that the pressure-squared method

approximates the exact solution of 37614 with an
absolute error of 1.86%. This error is due to the lim-
ited applicability of the pressure-squared method to
a pressure range of less than 2000 psi.

Horizontal multiple-phase flow

‘When several fluid phases are flowing simultaneously in a
horizontal porous system, the concept of the effective perme-
ability of each phase and the associated physical properties
must be used in Darcy’s equation. For a radial system, the
generalized form of Darcy’s equation can be applied to each
reservoir as follows:

g = 0.001127 (2””’) p, 3
Ho

dr

dw = 0.001127 <2’"h) ky 3
Hw dr

2 vh dp

gg = 0.001127 < o )kg -

where:

ko, kw, kg = effective permeability to oil, water,

and gas, md

viscosity of oil, water, and gas, cp

flow rates for oil, water, and gas, bbl/day
absolute permeability, md

Hos Hws g
9o, qw, 4g

The effective permeability can be expressed in terms of
the relative and absolute permeability as:

ko = krok
kw = kewk
kg = kigh

Using the above concept in Darcy’s equation and expressing
the flow rate in standard conditions yields:

Qu = 0.00708(rhk) < ) 31; [1.2.34]
krw dp

Qu = 0.00708(rhk) (Mw - ) 2 [1.2.35]
_ krg dp

Qg = 0.00708(rhk) (Mg Bg) 2 [1.2.36]

where:

@Q,, Qw = oil and water flow rates, STB/day
B,, By = oil and water formation volume factor,
bbl/STB
Q, = gas flow rate, scf/day
B, = gas formation volume factor, bbl/scf
k = absolute permeability, md

The gas formation volume factor By is expressed by
By =0. 005035? bbl/scf

Performing the regular integration approach on Equations,
1.2.34 through 1.2.36 yields:

Oil phase:
0.00708 (kh) (kro
s 7 (8h) (o) (e — Do) [1.2.37]
woBo In(7e/7y )
Water phase:
0.00708 (kh) (krw -
= (kh) (rw) (B = P [1.2.38]
pwByw In(7e/74)
Gas phase:
kh) k — Yw
Q= M in terms of the real-gas
14227 In(re/7) potential [1.2.39]
kh) kg (9 — P2
Q. = (kh) kg (87 — Pu) in terms of the pressure
1422 (1gZ) y TI(re/7)  squared [1.2.40]
where:

Q, = gas flow rate, Mscf/day
k = absolute permeability, md
T = temperature, °R

In numerous petroleum engineering calculations, it is con-
venient to express the flow rate of any phase as a ratio of
other flowing phases. Two important flow ratios are the
“instantaneous” water—oil ratio (WOR) and the “instanta-
neous” gas—oil ratio (GOR). The generalized form of Darcy’s
equation can be used to determine both flow ratios.

The water—oil ratio is defined as the ratio of the water flow
rate to that of the oil. Both rates are expressed in stock-tank
barrels per day, or:

WOR = &

Q
Dividing Equation 1.2.34 by 1.2.36 gives:

krw \ ( 1oBo
wor= () (125

[1.2.41]
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Figure 1.17 Pressure disturbance as a function of time.

where:
WOR = water—oil ratio, STB/STB

The instantaneous GOR, as expressed in scf/STB, is defined
as the fotal gas flow rate, i.e., free gas and solution gas,

divided by the oil flow rate, or:
GOR = f + €e
Q
or:
@
GOR=R; + —= [1.2.42]
Q
where:
GOR = “instantaneous” gas—oil ratio, scf/STB
R, = gas solubility, scf/STB
Qg = free gas flow rate, scf/day
Q, = oil flow rate, STB/day

Substituting Equations 1.2.34 and 1.2.36 into 1.2.42 yields:

krg ) ( HoBo )

reBg

GOR =R + < [1.2.43]

kl’O
where By is the gas formation volume factor expressed in
bbl/scf.

A complete discussion of the practical applications of the
WOR and GOR is given in the subsequent chapters.

1.2.3 Unsteady-state flow

Consider Figure 1.17(a) which shows a shut-in well that is
centered in a homogeneous circular reservoir of radius 7.
with a uniform pressure p; throughout the reservoir. This ini-
tial reservoir condition represents the zero producing time.

If the well is allowed to flow at a constant flow rate of ¢, a
pressure disturbance will be created at the sand face. The
pressure at the wellbore, i.e., pys, will drop instantaneously
as the well is opened. The pressure disturbance will move
away from the wellbore at a rate that is determined by:

permeability;

porosity;

fluid viscosity;

rock and fluid compressibilities.

Figure 1.17(b) shows that at time ¢, the pressure distur-
bance has moved a distance 7; into the reservoir. Notice
that the pressure disturbance radius is continuously increas-
ing with time. This radius is commonly called the radius of
investigation and referred to as #yy. It is also important to
point out that as long as the radius of investigation has not
reached the reservoir boundary, i.e., 7., the reservoir will be
acting as if it is infinite in size. During this time we say that
the reservoir is infinite acting because the outer drainage
radius 7., can be mathematically infinite, i.e., 7. = oco. A sim-
ilar discussion to the above can be used to describe a well
that is producing at a constant bottom-hole flowing pressure.
Figure 1.17(c) schematically illustrates the propagation of
the radius of investigation with respect to time. At time #,, the
pressure disturbance reaches the boundary, i.e., 7, = 7e.
This causes the pressure behavior to change.

Based on the above discussion, the transient (unsteady-
state) flow is defined as that time period during which the
boundary has no effect on the pressure behavior in the reser-
voir and the reservoir will behave as if it is infinite in size.
Figure 1.17(b) shows that the transient flow period occurs
during the time interval 0 < ¢ < ¢ for the constant flow
rate scenario and during the time period 0 < ¢ < #; for the
constant pyr scenario as depicted by Figure 1.17(c).
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Figure 1.18 lllustration of radial flow.

1.2.4 Basic transient flow equation

Under the steady-state flowing condition, the same quantity
of fluid enters the flow system as leaves it. In the unsteady-
state flow condition, the flow rate into an element of volume
of a porous medium may not be the same as the flow rate
out of that element and, accordingly, the fluid content of the
porous medium changes with time. The other controlling
variables in unsteady-state flow additional to those already
used for steady-state flow, therefore, become:

e timet;
® porosity ¢;
e total compressibility ¢;.

The mathematical formulation of the transient flow equa-
tion is based on combining three independent equa-
tions and a specifying set of boundary and initial con-
ditions that constitute the unsteady-state equation. These
equations and boundary conditions are briefly described
below.

Continuity equation: The continuity equation is essentially
a material balance equation that accounts for every pound
mass of fluid produced, injected, or remaining in the
reservoir.

Transport equation: The continuity equation is combined
with the equation for fluid motion (transport equation) to
describe the fluid flow rate “in” and “out” of the reservoir.
Basically, the transport equation is Darcy’s equation in its
generalized differential form.

Compressibility equation: The fluid compressibility equation
(expressed in terms of density or volume) is used in for-
mulating the unsteady-state equation with the objective of
describing the changes in the fluid volume as a function of
pressure.

Initial and boundary conditions: There are two boundary con-
ditions and one initial condition is required to complete the

formulation and the solution of the transient flow equation.
The two boundary conditions are:

(1) the formation produces at a constant rate into the well-
bore;

(2) there is no flow across the outer boundary and the
reservoir behaves as if it were infinite in size, i.e., 7. = oo.

The initial condition simply states that the reservoir is at a
uniform pressure when production begins, i.e., time = 0.

Consider the flow element shown in Figure 1.18. The ele-
ment has a width of dr and is located at a distance of » from
the center of the well. The porous element has a differen-
tial volume of dV. According to the concept of the material
balance equation, the rate of mass flow into an element minus
the rate of mass flow out of the element during a differen-
tial time At must be equal to the mass rate of accumulation
during that time interval, or:

mass leaving
volume element
during interval A¢

mass entering
volume element | —
during interval At

rate of mass
accumulation
during interval At

[1.2.44]

The individual terms of Equation 1.2.44 are described below:
Mass, entering the volume element during time interval At
Here:

(Mass);, = At[Avplriar
where:

[1.2.45]

v = velocity of flowing fluid, ft/day
p = fluid density at (» + d7), Ib/ft?
A =areaat (r +dr)
At = time interval, days
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The area of the element at the entering side is:

Aprar =2m (r+dr)h [1.2.46]
Combining Equations 1.2.46 with 1.2.35 gives:
[Massli, = 2n At(r + dr)h(vo)yiar [1.2.47]

Mass leaving the volume element Adopting the same
approach as that of the leaving mass gives:

[Mass]oy = 27 Atrh(vp), [1.2.48]

Total accumulation of mass The volume of some element
with a radius of 7 is given by:

V =nr’h
Differentiating the above equation with respect to » gives:
dv
Fri 2mrh

or:
dV = 2rrh) dr [1.2.49]

Total mass accumulation during At = dV[(¢p) 1t — (@p)¢].
Substituting for dV yields:

Total mass accumulation = 2 7k)dr[($p)s4ar — (Pp)1]
[1.2.5

Replacing the terms of Equation 1.2.44 with those of the
calculated relationships gives:

2nh(r + dr) At(¢pp) rrar — 27hr At($p)r

= Q2arh)dr[(pp)rrat — (Pp)i]

Dividing the above equation by (2r7k)dr and simplifying
gives:

1 1
P L+ @P)r oy =rwe),] = 5 (@it = @p)]
or:
10 p)
~ o Tl = 2 (@)

where:

[1.2.51]

¢ = porosity
p = density, Ib/ft?
V = fluid velocity, ft/day

Equation 1.2.51 is called the continuity equation and it
provides the principle of conservation of mass in radial
coordinates.

The transport equation must be introduced into the conti-
nuity equation to relate the fluid velocity to the pressure gra-
dient within the control volume d V. Darcy’s law is essentially
the basic motion equation, which states that the velocity is
proportional to the pressure gradient 9p/97. From Equation

12.13:
k op
v = (5.615) (0.001127) -2

— (0.006328) * 2

1.2.52
Ly [1.2.52]

where:

k = permeability, md

v = velocity, ft/day
Combining Equation 1.2.52 with 1.2.51 results in:
0.006328 & ﬁ( r)afp _i@ )

rar\u " ar) T 9P

Expanding the right-hand side by taking the indicated deriva-
tives eliminates the porosity from the partial derivative term

[1.2.53]

on the right-hand side:

3 p 9
o (#0) _¢8t tooy
The porosity is related to the formation compressibility by

the following:

[1.2.54]

o= 102 [1.2.55]
¢ 9p
Applying the chain rule of differentiation to d¢/0t¢:
d¢  0¢ dp
ot ap ot
Substituting Equation 1.2.55 into this equation:
d¢ ap
ot =%t

Finally, substituting the above relation into Equation 1.2.54
and the result into Equation 1.2.53 gives:

0.006328 8 [k AN ap ap
= (;“’%7) = e + o

r ar

Equation 1.2.56 is the general partial differential equation
used to describe the flow of any fluid flowing in a radial direc-
tion in porous media. In addition to the initial assumptions,
Darcy’s equation has been added, which implies that the flow
is laminar. Otherwise, the equation is not restricted to any
type of fluid and is equally valid for gases or liquids. How-
ever, compressible and slightly compressible fluids must be
treated separately in order to develop practical equations
that can be used to describe the flow behavior of these two
fluids. The treatments of the following systems are discussed
below:

[1.2.56]

o radial flow of slightly compressible fluids;
o radial flow of compressible fluids.

1.2.5 Radial flow of slightly compressibility fluids

To simplify Equation 1.2.56, assume that the permeability
and viscosity are constant over pressure, time, and distance
ranges. This leads to:

0.006328%7 8 , w\ _ e ap +¢8£
wr ar \"Por ) =P T %%
Expanding the above equation gives:

. a2
0.006328 <5> S
w/)lror or?

e () (2
_p¢cf(2)t)+¢<8t)

Using the chain rule in the above relationship yields:

EN|pap 9% [ap\’ap

_ p W\ (op
_"m(at)”’(at) (ap>

Dividing the above expression by the fluid density p gives:

E\[1ap 9%  (dp\*(1op
0'006328<;> Laﬁarﬁ(a) (;@)
_ ap ap (1dp
_¢Cf(8t)+¢8t(581)>

Recalling that the compressibility of any fluid is related to its
density by:

[1.2.57]

ap dp
dr or

10,
C:**p
p 3p
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combining the above two equations gives:
EN[a%p 1ap ap\?
0.006328( — | | — + - — —
(;4) {372 + ror +C<Br>
(o ap
=oa (G ) +oc( 57

The term c(ap/ 81’)2 is considered very small and may be
ignored, which leads to:

EN[3% 10p ap
0.006328 (;) [ﬁ + ;5] =¢(cc+¢) o [1.2.58]
Defining total compressibility, ¢, as:
¢ =cC+ ¢ [1.2.59]

and combining Equation 1.2.57 with 1.2.58 and rearranging

gives:

#p  1dp puc  9p

ar2  rar ~ 0.006328k ot

where the time # is expressed in days.
Equation 1.2.60 is called the diffusivity equation and is

considered one of the most important and widely used

mathematical expressions in petroleum engineering. The

equation is particularly used in the analysis of well testing

data where the time ¢ is commonly reordered in hours. The

equation can be rewritten as:

[1.2.60]

?p 1ap puc,  dp
arz " rar  0.0002637k ot [1.2.61]
where:

k= permeability, md
r= radial position, ft

p = pressure, psia

¢ = total compressibility, psi~
t = time, hours

¢ = porosity, fraction

= viscosity, cp

1

When the reservoir contains more than one fluid, total
compressibility should be computed as
€t = €S0 + CwSw + €S + ¢t [1.2.62]
where ¢,, ¢y, and ¢, refer to the compressibility of oil, water,
and gas, respectively, and S,, Sw, and S, refer to the frac-
tional saturation of these fluids. Note that the introduction of
¢, into Equation 1.2.60 does not make this equation applica-
ble to multiphase flow; the use of ¢, as defined by Equation
1.2.61, simply accounts for the compressibility of any immo-
bile fluids which may be in the reservoir with the fluid that
is flowing.

The term 0. 000264%/ ¢ ¢, is called the diffusivity constant
and is denoted by the symbol 7, or:

y = 0002637k [1.2.63]
Puc

The diffusivity equation can then be written in a more

convenient form as:

9% N 1op 10p
a2 ror not
The diffusivity equation as represented by relationship 1.2.64
is essentially designed to determine the pressure as a
function of time ¢ and position 7.

Notice that for a steady-state flow condition, the pressure
at any point in the reservoir is constant and does not change
with time, i.e., 3p/9t = 0, so Equation 1.2.64 reduces to:
2p  19p
78, 2% 9
arz  rar
Equation 1.2.65 is called Laplace’s equation for steady-state
flow.

[1.2.64]

[1.2.65]

Example 1.9 Show that the radial form of Darcy’s equa-
tion is the solution to Equation 1.2.65.

Solution

Step 1. Start with Darcy’s law as expressed by Equation
1.2.17:

—pt QoBotto N
b= bt | 500708k n(ﬁ)

Step 2. For a steady-state incompressible flow, the term with
the square brackets is constant and labeled as C, or:

r
p=pu+1cin( )
Step 3. Evaluate the above expression for the first and
second derivative, to give:

» 1
3y = (€] (;)

9% -1
372 = [C] (7)

Step 4. Substitute the above two derivatives in Equation

1.2.65:
s ()
7 r 7

Step 5. Results of step 4 indicate that Darcy’s equation sat-
isfies Equation 1.2.65 and is indeed the solution to
Laplace’s equation.

To obtain a solution to the diffusivity equation (Equation
1.2.64), it is necessary to specify an initial condition and
impose two boundary conditions. The initial condition sim-
ply states that the reservoir is at a uniform pressure p; when
production begins. The two boundary conditions require
that the well is producing at a constant production rate and
the reservoir behaves as if it were infinite in size, i.e., 7. = oo.

Based on the boundary conditions imposed on Equation
1.2.64, there are two generalized solutions to the diffusivity
equation. These are:

(1) the constant-terminal-pressure solution
(2) the constant-terminal-rate solution.

The constant-terminal-pressure solution is designed to pro-
vide the cumulative flow at any particular time for a reservoir
inwhich the pressure at one boundary of the reservoir is held
constant. This technique is frequently used in water influx
calculations in gas and oil reservoirs.

The constant-terminal-rate solution of the radial diffusiv-
ity equation solves for the pressure change throughout the
radial system providing that the flow rate is held constant
at one terminal end of the radial system, i.e., at the pro-
ducing well. There are two commonly used forms of the
constant-terminal-rate solution:

(1) the Ei function solution;
(2) the dimensionless pressure drop pp solution.

Constant-terminal-pressure solution
In the constant-rate solution to the radial diffusivity equation,
the flow rate is considered to be constant at certain radius
(usually wellbore radius) and the pressure profile around
that radius is determined as a function of time and position.
In the constant-terminal-pressure solution, the pressure is
known to be constant at some particular radius and the solu-
tion is designed to provide the cumulative fluid movement
across the specified radius (boundary).

The constant-pressure solution is widely used in water
influx calculations. A detailed description of the solution
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and its practical reservoir engineering applications is appro-
priately discussed in the water influx chapter of the book
(Chapter 5).

Constant-terminal-rate solution

The constant-terminal-rate solution is an integral part of most
transient test analysis techniques, e.g., drawdown and pres-
sure buildup analyses. Most of these tests involve producing
the well at a constant flow rate and recording the flowing
pressure as a function of time, i.e., p(7w,t). There are two
commonly used forms of the constant-terminal-rate solution:

(1) the Ei function solution;
(2) the dimensionless pressure drop pp solution.

These two popular forms of solution to the diffusivity
equation are discussed below.

The Ei function solution

For an infinite-acting reservoir, Matthews and Russell (1967)
proposed the following solution to the diffusivity equation,
i.e., Equation 1.2.55:

70.6Qup1B, | 5 [ ~948¢cr®
kh kt

Dty =i+ [ ] [1.2.66]

where:

p(r,t) = pressure at radius 7 from the well after ¢ hours
t = time, hours
k = permeability, md
Q, = flow rate, STB/day

The mathematical function, Ei, is called the exponential
integral and is defined by:

Ei(—x) — ;/ e “du

u

x x x
=|:1nx—+

1t 2@ ‘3(3!)*”1

Craft et al. (1991) presented the values of the Ei function
in tabulated and graphical forms as shown in Table 1.1 and
Figure 1.19, respectively.

The Ei solution, as expressed by Equation 1.2.66, is
commonly referred to as the line source solution. The expo-
nential integral “Ei” can be approximated by the following
equation when its argument x is less than 0.01:

2
[1.2.67]

Ei(—x) = In (1.781x) [1.2.68]

where the argument x in this case is given by:
_ 948¢ucir’
N kt

Equation 1.2.68 approximates the Ei function with less than
0.25% error. Another expression that can be used to approx-
imate the Ei function for the range of 0.01 < x < 3.0 is
given by:
Ei(—x) = a1 + a5 In(x) + as[In() * + as[In@) ] + asx

+ agx® + ax® + ag/x [1.2.69]

with the coefficients a; through ag having the following
values:
a; = —0.33153973 a; = —0.81512322

a; = 5.22123384 x 102 @4 = 5.9849819 x 1073

Table 1.1 Values of —Ei(—x) as a function of x
(After Craft et al. 1991)

x —Ei(-x) =« —Ei(—x) « —Ei(—x)
0.1 1.82292 3.5 0.00697 6.9 0.00013
0.2 122265 3.6 0.00616 7.0 0.00012
0.3  0.90568 3.7 0.00545 7.1 0.00010
0.4 0.70238 3.8 0.00482 7.2 0.00009
0.5 0.55977 3.9 0.00427 7.3 0.00008
0.6 045438 4.0 0.00378 7.4 0.00007
0.7 037377 4.1 0.00335 7.5 0.00007
0.8 0.31060 4.2 0.00297 7.6 0.00006
0.9 026018 4.3 0.00263 7.7 0.00005
1.0 0.21938 4.4 0.00234 7.8 0.00005
1.1 018599 45 0.00207 7.9  0.00004
1.2 0.15841 4.6 0.00184 8.0  0.00004
1.3 013545 4.7 0.00164 8.1 0.00003
14 0.11622 4.8 0.00145 8.2 0.00003
1.5 010002 49 0.00129 8.3 0.00003
1.6 0.08631 5.0 0.00115 8.4 0.00002
1.7  0.07465 5.1 0.00102 8.5 0.00002
1.8 0.06471 5.2 0.00091 8.6  0.00002
1.9 0.05620 5.3 0.00081 8.7 0.00002
2.0 0.04890 54  0.00072 8.8  0.00002
2.1 0.04261 5.5 0.00064 8.9 0.00001
2.2 0.03719 5.6  0.00057 9.0 0.00001
2.3 0.03250 5.7 0.00051 9.1 0.00001
2.4 0.02844 5.8 0.00045 9.2 0.00001
2.5 0.02491 5.9 0.00040 9.3 0.00001
2.6 0.02185 6.0 0.00036 9.4 0.00001
2.7 0.01918 6.1 0.00032 9.5  0.00001
2.8 0.01686 6.2  0.00029 9.6 - 0.00001
2.9 0.01482 6.3  0.00026 9.7 0.00001
3.0 0.01305 6.4 0.00023 9.8  0.00001
3.1 0.01149 6.5 0.00020 9.9  0.00000
3.2 0.01013 6.6 0.00018 10.0  0.00000
3.3 0.00894 6.7 0.00016

3.4 0.00789 6.8 0.00014

as = 0.662318450 as = —0.12333524

a7 = 1.0832566 x 1072 as = 8.6709776 x 10~

The above relationship approximated the Ei values with an
average error of 0.5%.

It should be pointed out that for x > 10.9, Ei(—x) can be
considered zero for reservoir engineering calculations.

Example 1.10 An oil well is producing at a constant
flow rate of 300 STB/day under unsteady-state flow con-
ditions. The reservoir has the following rock and fluid
properties:

B, =1.25bbl/STB, o =1.5¢p, ¢ =12 x 1076 psi~!
ko = 60 md, h=151t, i = 4000 psi

& = 15%, 7 = 0.25 ft

(1) Calculate the pressure at radii of 0.25, 5, 10, 50, 100,

500, 1000, 1500, 2000, and 2500 ft, for 1 hour. Plot the
results as:

(a) pressure versus the logarithm of radius;
(b) pressure versus radius.
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Figure 1.19 Ei function (After Craft et al., 1991).

(2) Repeat part 1 for + = 12 hours and 24 hours. Plot the

results as pressure versus logarithm of radius.

Solution

Step 1. From Equation 1.2.66:

5.1 = 4000 + |:70.6 (300)(1.5)(1.25)}

(60)(15)

.| —948(1.5)(1.5) (12 x 10)#?
x Ei
[ (60) (t) }

2
= 4000 + 44. 125Ei [(_42. 6 x 107°) ’7]

Remove Watermark Now

Step 2. Perform the required calculations after 1 hour in the

following tabulated form:

r(ft) x=(—42.6x Ei (—x) p(r,12) =
10-%)#2/1 4000 + 44.125
Ei(—x)

0.25 —2.6625x 1076 —12.26% 3459

5 —0.001065 —6.27° 3723
10 —0.00426 —4.884 3785
50 —0.1065 —1.76* 3922
100 —0.4260 —0.75" 3967
500 —10.65 0 4000
1000 —42.60 0 4000
1500 —95.85 0 4000
2000 —175.40 0 4000
2500 —266.25 0 4000
2As calculated from Equation 1.2.17.

YFrom Figure 1.19.
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Figure 1.20 Pressure profiles as a function of time.
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Figure 1.21 Pressure profiles as a function of time on a semi-log scale.
Step 3. Show the }'esqlts of the calculation graphically as r () x=(—42.6x Ei(-) p(r,24)
illustrated in Figures 1.20 and 1.21. 10-6)72/24 4000 -+ 44.125
Step 4. Repeat the calculation for ¢ = 12 and 24 hours, as in r E_t )
the tables below: 1
0.25 —0.111 x 1076 —15.44¢ 3319
r(ft)y x=(42.6x Ei(-x) p(r,12) = 5 —44.38 x 106 —9.45¢ 3583
10-6)72/12 4000 + 44.125 10 —177.5x 1078 —8.06° 3644
Ei(—%) 50  —0.0045 —4.83° 3787
100 —0.0178 —8.458" 3847
0.25 0.222 x10°% —14.74¢ 3350 500 —0.444 —0.640 3972
5 88.75 x 1076 —8.75¢ 3614 1000 —1.775 —0.067 3997
10 355.0 x 106 —7.374 3675 1500 —3.995 —0.0427 3998
50  0.0089 —4.14¢ 3817 2000 —7.310 8.24 x 106 4000
100 0.0355 —2.81" 3876 2500 —104.15 0 4000
500 0.883 —0.269 3988 @As calculated from Equation 1.2.17.
1000 3.55 —0.0069 4000 bFrom Figure 1.19,
1500 7.99 —3.77 x 1075 4000 . .
2000 14.62 0 4000 Step 5. Results of step 4 are shown graphically in
2500 208.3 0 4000 Figure 1.21.

@As calculated from Equation 1.2.17.
OFrom Fj igure 1.19.

Figure 1.21 indicates that as the pressure disturbance
moves radially away from the wellbore, the reservoir
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boundary and its configuration has no effect on the pressure
behavior, which leads to the definition of transient flow as:
“Transient flow is that time period during which the bound-
ary has no effect on the pressure behavior and the well acts
as if it exists in an infinite size reservoir.”

Example 1.10 shows that most of the pressure loss occurs
close to the wellbore; accordingly, near-wellbore condi-
tions will exert the greatest influence on flow behavior.
Figure 1.21 shows that the pressure profile and the drainage
radius are continuously changing with time. It is also impor-
tant to notice that the production rate of the well has no
effect on the velocity or the distance of the pressure dis-
turbance since the Ei function is independent of the flow
rate.

When the Ei parameter x < 0. 01, the log approximation of
the Ei function as expressed by Equation 1.2.68 can be used

in 1.2.66 to give:
162.6Q,Bo 4o [log( kt 2) _3 23:|
[1.2.70]

kh oucr
For most of the transient flow calculations, engineers are
primarily concerned with the behavior of the bottom-hole
flowing pressure at the wellbore, i.e., 7 = 7. Equation 1.2.70
can be applied at » = », to yield:

162.6QBosty [, (
kh ducr?

p(r,t) =pi —

bwi =Di —

where:

) - 3.23] [1.2.71]

k = permeability, md
t = time, hours
¢, = total compressibility, psi—!

It should be noted that Equations 1.2.70 and 1.2.71 cannot
be used until the flow time ¢ exceeds the limit imposed by
the following constraint:

2
t>9.48 x 104"’“% [1.2.72]

where:
k = permeability, md
t = time, hours

Notice that when a well is producing under unsteady-state
(transient) flowing conditions at a constant flow rate, Equa-
tion 1.2.71 can be expressed as the equation of a straight line
by manipulating the equation to give:

- KRB gt +10g (0 ) - 5.23]
t'w

bwi = bi o

or:
pwi = a+mlog(t)

The above equation indicates that a plot of py; vs. ¢ on a
semilogarithmic scale would produce a straight line with an
intercept of @ and a slope of m as given by:

162.6Q,B, 110 k
h [I"g (w%) -3 23]

162.6Q,Bo 1t
= T

a=pi—

Example 1.11 Using the data in Example 1.10, esti-
mate the bottom-hole flowing pressure after 10 hours of
production.

Solution

Step 1. Equation 1.2.71 can only be used to calculate pys
at any time that exceeds the time limit imposed by

Equation 1.2.72, or:

2
t>9.48 x 104‘/’“%

¢ —0.48(101) 1905 (1260X 10-9) (0.25)°

= 0.000267 hours
= (0. 153 seconds

For all practical purposes, Equation 1.2.71 can be
used anytime during the transient flow period to
estimate the bottom-hole pressure.

Step 2. Since the specified time of 10 hours is greater than
0.000267 hours, the value of py can be estimated by
applying Equation 1.2.71:

162.6Q,Bo 10 kit
#h [1°g(¢ucm%> ’3'23}

162.6(300) (1.25) (1.5)
(

(60) (15

bwt=pi—

=4000—

(60)(10)
) [log<(o.15) (1.5) (12 x 10-6) (0.25)2> _3'23}
=3358 psi

The second form of solution to the diffusivity
equation is called the dimensionless pressure drop
solution and is discussed below.

The dimensionless pressure drop pp solution

To introduce the concept of the dimensionless pressure drop
solution, consider for example Darcy’s equation in a radial
form as given previously by Equation 1.2.15

_ 0.00708kh (pe — pwi) kh(pe — Dwr)
°T woB, In(re/7w) " 141.2u0B, In(re/7w)
Rearranging the above equation gives:
pe - ow Te
T141.2Q.Boa — =In <7w) [1.2.73]
kh

It is obvious that the right-hand side of the above equa-
tion has no units (i.e., it is dimensionless) and, accordingly,
the left-hand side must be dimensionless. Since the left-
hand side is dimensionless, and p. — pw has the units of
psi, it follows that the term Q,B,u,/0.00708kk has units
of pressure. In fact, any pressure difference divided by
Q0B 11,/0.00708%h is a dimensionless pressure. Therefore,
Equation 1.2.73 can be written in a dimensionless form as:

pp =1n(7ep)
where:
= be — bwi
D= 141.2QOBO[,L0)
kh
Te
YeD = —

w
The dimensionless pressure drop concept can be extended
to describe the changes in the pressure during the unsteady-
state flow condition where the pressure is a function of time
and radius:

p=p01)
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Therefore, the dimensionless pressure during the unsteady-
state flowing condition is defined by:

)
b = W"B”““) [1.2.74]
( kh

Since the pressure p(7,t), as expressed in a dimensionless
form, varies with time and location, it is traditionally pre-
sented as a function of dimensionless time #p and radius 7p
as defined below:

0.0002637kt
= —""""—
pucr?

Another common form of the dimensionless time #p, is based
on the total drainage area A as given by:

[1.2.75a]

0.0002637kt 7”2
o= SOOIy, (Z) [1.2.75b]
= [1.2.76]
Tw
and:
e
Top = — [1.2.77]
T
where:

pp = dimensionless pressure drop
rep = dimensionless external radius
tp = dimensionless time based on wellbore
radius 7y,
tpa = dimensionless time based on well drainage
area A
A = well drainage area, i.e., 777, ft
rp = dimensionless radius
t = time, hours
p(r,t) = pressure at radius 7 and time ¢
k = permeability, md
= viscosity, cp

The above dimensionless groups (i.e., pp, tp, and 7p) can
be introduced into the diffusivity equation (Equation 1.2.64)
to transform the equation into the following dimensionless
form:

o, 1opy _ oty
Srrz) 7D 07D - dtp

[1.2.78]

Van Everdingen and Hurst (1949) proposed an analytical
solution to the above equation by assuming:

e aperfectly radial reservoir system;

o the producing well is in the center and producing at a
constant production rate of @;

e uniform pressure p; throughout the reservoir before
production;

e no flow across the external radius 7.

Van Everdingen and Hurst presented the solution to Equa-
tion 1.2.77 in a form of an infinite series of exponential terms
and Bessel functions. The authors evaluated this series for
several values of 7.p over a wide range of values for #p and
presented the solution in terms of dimensionless pressure
drop pp as a function of dimensionless radius 7.p and dimen-
sionless time #p. Chatas (1953) and Lee (1982) conveniently
tabulated these solutions for the following two cases:

(1) infinite-acting reservoir 7.p = oo;
(2) finite-radial reservoir.

Infinite-acting reservoir For an infinite-acting reservoir,
i.e., 7ep = o0, the solution to Equation 1.2.78 in terms of

Table 1.2 pp versus tp—infinite radial system,
constant rate at the inner boundary (After Lee, J.,
Well Testing, SPE Textbook Series, permission to
publish by the SPE, copyright SPE, 1982)

Ip o p bp Ip o
0 0 0.15 0.3750 60.0 2.4758
0.0005 0.0250 0.2 0.4241 70.0 2.5501
0.001 0.0352 0.3 0.5024  80.0 2.6147
0.002 0.0495 0.4 0.5645  90.0 2.6718
0.003 0.0603 0.5 0.6167  100.0 2.7233
0.004 0.0694 0.6 0.6622  150.0 2.9212
0.005 0.0774 0.7 0.7024  200.0 3.0636
0.006 0.0845 0.8 0.7387  250.0 3.1726
0.007 0.0911 0.9 0.7716  300.0 3.2630
0.008 0.0971 1.0 0.8019  350.0 3.3394
0.009 0.1028 1.2 0.8672  400.0 3.4057
0.01 0.1081 14 0.9160  450.0 3.4641
0.015 0.1312 2.0 1.0195  500.0 3.5164
0.02 0.1503 3.0 1.1665 550.0 3.5643
0.025 0.1669 4.0 1.2750  600.0 3.6076
0.03 0.1818 5.0 1.3625 650.0 3.6476
0.04 0.2077 6.0 1.4362 700.0 3.6842
0.05 0.2301 7.0 1.4997  750.0 3.7184
0.06 0.2500 8.0 1.5557  800.0 3.7505
0.07 0.2680 9.0 1.6057  850.0 3.7805
0.08 0.2845 10.0 1.6509  900.0 3.8088
0.09 0.2999 150 1.8294 950.0 3.8355
0.1 0.3144 20.0 1.9601 1000.0 3.8584

30.0 2.1470

40.0 2.2824

50.0 2.3884

Notes: For tpy < 0.01: pp = 2ztp /.
For 100 < fpy < 0.25#2D: ppy = 0.5 (In £y + 0.80907).

the dimensionless pressure drop pp is strictly a function of
the dimensionless time #p, or:

pp =f(tp)
Chatas and Lee tabulated the pp values for the infinite-acting
reservoir as shown in Table 1.2. The following mathemati-
cal expressions can be used to approximate these tabulated
values of pp.

For tp < 0.01:

pp =2/ [1.2.79]
T

For tp > 100:

pp = 0.5[In(tp) + 0.80907] [1.2.80]

For 0.02 < tp < 1000:
pp = a1 +axIn(tp) + as[ln(tp)1” + aslln(tp) 1’ + astp

+ ag(tp)? + a7 (ip)® + as/tp [1.2.81]

where the values of the coefficients of the above equations
are:

a; = 0.8085064 a; = 0.29302022

a3 = 3.5264177 x 1072 as = —1.4036304 x 10~°

as = —4.7722225 x 10 ag = 5.1240532 x 1077

a7 = —2.3033017 x 1071 g = —2.6723117 x 1073

Finite radial reservoir For afinite radial system, the solution
to Equation 1.2.78 is a function of both the dimensionless
time #p and dimensionless time radius 7.p, or:

po =f(tp, 7ep)
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where:
external radius Te

7eD —_—————— —

~ wellbore radius ~ 7y [1.2.82]

Table 1.3 presents pp as a function of #p for 1.5 < 7.p < 10.
It should be pointed out that van Everdingen and Hurst
principally applied the pp function solution to model the
performance of water influx into oil reservoirs. Thus, the
authors’ wellbore radius 7, was in this case the external
radius of the reservoir and 7. was essentially the external
boundary radius of the aquifer. Therefore, the ranges of the
7ep values in Table 1.3 are practical for this application.

Consider the Ei function solution to the diffusivity equa-
tions as given by Equation 1.2.66:

70.6QBu Ei —948¢pucer?
kh kt

This relationship can be expressed in a dimensionless form
by manipulating the expression to give:

pmn=m+[

b)) 1. —(r/r)*
141.2QoBopo |~ 2 (o. 0002637kt>
4
kh puerz

From the definition of the dimensionless variables of Equa-
tions 1.2.74 through 1.2.77, i.e., pp, tp, and 7p, this relation
is expressed in terms of these dimensionless variables as:

[1.2.83]

Chatas (1953) proposed the following mathematical form for
calculated pp when 25 < tp and 0. 25’31) < Ip:

5 0.5+ 2tp 74 [3—4In (rep)] — 277, — 1
D = - .
8 -1 4(r% — 1)2

There are two special cases of the above equation which arise
when 724, > 1 or when tp /7%, > 25:

If %, > 1, then:

2t
Pp = TD + In(7ep) — 0.75
7D

Iftp/r%, > 25, then:

pp = 1 |:ln t% +0. 80907] [1.2.84]
2 75

The computational procedure of using the pp function to
determine the bottom-hole flowing pressure changing the
transient flow period, i.e., during the infinite-acting behavior,
is summarized in the following steps:

Step 1. Calculate the dimensionless time #p by applying
Equation 1.2.75:
0.0002637kt
= —
¢I/«Ct7’v2V
Step 2. Determine the dimensionless radius 7.p. Note that
for an infinite-acting reservoir, the dimensionless
radius 7ep = oo.
Step 3. Using the calculated value of fp, determine the corre-
sponding pressure function pp from the appropriate
table or equations, e.g., Equation 1.2.80 or 1.2.84:
For an infinite-acting pp = 0. 5[In(tp) + 0.80907]
reservoir
For a finite reservoir pp = %[ln(tD / r%) +0.80907]

Step 4. Solve for the pressure by applying Equation 1.2.74:

141.2Q, B, 110
P (Furt) = i — (#>ﬁn

i [1.2.85]

Example 1.12 A wellis producing at a constant flow rate
of 300 STB/day under unsteady-state flow conditions. The
reservoir has the following rock and fluid properties (see
Example 1.10):

B, = 1.25bbl/STB,
k=60md,
¢ = 15%,

o =1.5¢p, ¢ =12 x 1076 psi~!
h=15f,  p = 4000 psi
ry = 0.25 ft

Assuming an infinite-acting reservoir, i.e., 7ep = 00, calculate
the bottom-hole flowing pressure after 1 hour of production
by using the dimensionless pressure approach.

Solution

Step 1. Calculate the dimensionless time #p from Equation
1.2.75:

~0.0002637kt
YT T Guer?
0.000264 (60) (1
- ) _ g3566.67
(0.15) (1.5) (12 x 10-5) (0.25)

Step 2. Since #p > 100, use Equation 1.2.80 to calculate the
dimensionless pressure drop function:

pp = 0.5[In(tp) + 0.80907]

= 0.5[In(93 866. 67) + 0.80907] = 6.1294

Step 3. Calculate the bottom-hole pressure after 1 hour by
applying Equation 1.2.85:
141.2Q,Bo 116 »
kh b

P(’w,t)=1>i—<

$(0:25,1) = 4000 — [141 2(300) (1.25) (1. 5)}

(60) (15)
x (6.1294) = 3459 psi

This example shows that the solution as given by the pp func-
tion technique is identical to that of the Ei function approach.
The main difference between the two formulations is that the
Do function can only be used to calculate the pressure at radius
r when the flow rate Q is constant and known. In that case,
the pp function application is essentially restricted to the
wellbore radius because the rate is usually known. On the
other hand, the Ei function approach can be used to calculate
the pressure at any radius in the reservoir by using the well
flow rate Q.

It should be pointed out that, for an infinite-acting reser-
voirwith fp > 100, the pp functionis related to the Ei function
by the following relation:

e 53]

The previous example, i.e., Example 1.12, is not a practical
problem, but it is essentially designed to show the physical
significance of the pp solution approach. In transient flow
testing, we normally record the bottom-hole flowing pres-
sure as a function of time. Therefore, the dimensionless
pressure drop technique can be used to determine one or
more of the reservoir properties, e.g. k or kh, as discussed
later in this chapter.

[1.2.86]

1.2.6 Radial flow of compressible fluids

Gas viscosity and density vary significantly with pressure
and therefore the assumptions of Equation 1.2.64 are not
satisfied for gas systems, i.e., compressible fluids. In order
to develop the proper mathematical function for describing
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Table 1.3 pp vs. tp—finite radial system, constant rate at the inner boundary (After Lee, J., Well Testing, SPE
Textbook Series, permission to publish by the SPE, copyright SPE, 1982)

7eD =15 7eD =2.0 7eD =2.5 7eD =3.0 7eD =3.5 7eD =4.0
o J2) ) bp tp )2 p 2 p bp tp bp
0.06 0.251 0.22 0.443 0.40 0.565 0.52 0.627 1.0 0.802 15 0.927
0.08 0.288 0.24 0.459 0.42 0.576 0.54 0.636 1.1 0.830 1.6 0.948
0.10 0.322 0.26 0.476 0.44 0.587 0.56 0.645 1.2 0.857 1.7 0.968
0.12 0.355 0.28 0.492 0.46 0.598 0.60 0.662 1.3 0.882 1.8 0.988
0.14 0.387 0.30 0.507 0.48 0.608 0.65 0.683 14 0.906 1.9 1.007
0.16 0.420 0.32 0.522 0.50 0.618 0.70 0.703 15 0.929 2.0 1.025
0.18 0.452 0.34 0.536 0.52 0.628 0.75 0.721 1.6 0.951 2.2 1.059
0.20 0.484 0.36 0.551 0.54 0.638 0.80 0.740 1.7 0.973 2.4 1.092
0.22 0.516 0.38 0.565 0.56 0.647 0.85 0.758 1.8 0.994 2.6 1.123
0.24 0.548 0.40 0.579 0.58 0.657 0.90 0.776 1.9 1.014 2.8 1.154
0.26 0.580 0.42 0.593 0.60 0.666 0.95 0.791 2.0 1.034 3.0 1.184
0.28 0.612 0.44 0.607 0.65 0.688 1.0 0.806 2.25 1.083 3.5 1.255
0.30 0.644 0.46 0.621 0.70 0.710 1.2 0.865 2.50 1.130 4.0 1.324
0.35 0.724 0.48 0.634 0.75 0.731 14 0.920 2.75 1.176 45 1.392
0.40 0.804 0.50 0.648 0.80 0.752 1.6 0.973 3.0 1.221 5.0 1.460
0.45 0.884 0.60 0.715 0.85 0.772 2.0 1.076 4.0 1.401 5.5 1.527
0.50 0.964 0.70 0.782 0.90 0.792 3.0 1.328 5.0 1.579 6.0 1.594
0.55 1.044 0.80 0.849 0.95 0.812 4.0 1.578 6.0 1.757 6.5 1.660
0.60 1.124 0.90 0.915 1.0 0.832 5.0 1.828 7.0 1.727
0.65 1.204 1.0 0.982 2.0 1.215 8.0 1.861
0.70 1.284 2.0 1.649 3.0 1.506 9.0 1.994
0.75 1.364 3.0 2.316 4.0 1.977 10.0 2.127
0.80 1.444 5.0 3.649 5.0 2.398

1’er)—45 feD—SO 7’er)—60 7'eD—7-O 1’6[)—80 rep_90 TeD—IOO
tp bp tp bp p bp p bo p 2 p bp p bp

2.0 1023 3.0 1167 40  1.275 6.0 1.436 80 155 100 1651  12.0 1.732
21 1.040 31 1180 45  1.322 6.5  1.470 85 1.582 105 1.673 125 1.750
2.2 1.056 32 1192 5.0 1.364 70 1501 9.0 ~ 1607 11.0 1693 13.0 1.768
23 1702 3.3 1.204 5.5 1404 75 1531 95 1631 115 1713 13,5 1.784
24 1.087 34 1215 6.0 1441 80 1559 100 1.663 120 1.732  14.0 1.801
25 1102 3.5  1.227 6.5 1477 85 158 105 1675 125 1750 145 1.817
26 1116 3.6  1.238 70 1511 9.0 1613 11.0 1697 130 1768  15.0 1.832
27 1130 3.7 1.249 75 1544 95 1638 115 1717 135 1786 155 1.847
28 1144 3.8  1.259 80 1576 100 1663 120 1737 140 1803 16.0 1.862
29 1158 39 1270 85 1607 11.0 1711 125 1757 145 1819 17.0 1.890
3.0 1171 40 1.281 9.0 1638 120 1757 130 1776 150 1835 180 1.917
3.2 1197 42 1301 95 1668 13.0 1810 135 1795 165 1.851  19.0 1.943
34 1222 44 1321 100 1.698 140 1845 140 1813 160 1867  20.0 1.968
3.6  1.246 46 1340 11.0 1757 150 1.888 145 1831 170 1897  22.0 2.017
3.8  1.269 48 1360 120 1815 160 1931 150 1.849 180 1926 24.0 2.063
4.0  1.292 50 1378 130 1873 170 1974 170 1919 190 1955  26.0 2.108
45  1.349 55 1424 140 1931 180 2016 190 198 20.0 1983  28.0 2.151
5.0 1403 6.0 1469 150 1988 190 2.058 21.0 2.051 220 2.037 30.0 2.194
5.5 1457 6.5 1513 160 2.045 200 2100 230 2116 240 2906 32.0 2.236
6.0 1.510 7.0 1556 17.0 2103 220 2184 250 2180 260 2142 340 2.278
70  1.615 75 1598 180 2160 240 2267 300 2340 280 2193 36.0 2.319
8.0 1.719 80 1641 190 2217 260 2351 350 2499 300 2244 38.0 2.360
9.0 1823 9.0 1725 200 2274 280 2434 40.0 2,658 340 2345 400 2.401
100 1927 100 1808 250 2560 300 2517 450 2817 380 2446  50.0 2.604

11.0 2031 11.0 1892 300 2.846 40.0 2496  60.0 2.806
120 2135 120 1975 450 2,621  70.0 3.008
13.0 2239 13.0  2.059 50.0 2746  80.0 3.210
140 2343 140 2142 60.0 2996  90.0 3.412
150 2447 150  2.225 70.0 3.246  100.0 3.614

Notes: For ¢y smaller than values listed in this table for a given 7,y reservoir is infinite acting.
Find pp in Table 1.2.
For 25 < tp and tp larger than values in table:

(1/2;2tD) B 3r —47 1nr D2 2r2D 1
,
eD 4( eD™ )
For wells in rebounded reservoirs with r > 1L

bp =

pp = T +In7ep —3/4.
"eD

TLFeBOOK



WELL TESTING ANALYSIS

the flow of compressible fluids in the reservoir, the following
two additional gas equations must be considered:
(1) Gas density equation:
M
P = ===
ZRT
(2) Gas compressibility equation:
L1 _1dz
Tp Zdp
Combining the above two basic gas equations with that of
Equation 1.2.56 gives:

138 <,L @) __%ue P 9P
rdr \ uZ dr ) 0.000264k uZ 3t
where:

[1.2.87]

t= time, hours
k= permeability, md
¢i= total isothermal compressibility, psi—!

¢= porosity

Al-Hussainy et al. (1966) linearized the above basic flow
equation by introducing the real-gas pseudopressure 7 (p)
into Equation 1.2.87. Recalling the previously defined (p)
equation:

llzp
me) = [ Lap

and differentiating this relation with respect to p, gives:
om@)  2p

ap  uZ
The following relationships are obtained by applying the
chain rule:

am@) _ am@) 9p

[1.2.88]

[1.2.89]

[1.2.90]
ar ap  Ir
M = Maﬁ [1.2.91]
at ap ot
Substituting Equation 1.2.89 into 1.2.90 and 1.2.91, gives:
9 _ nZ dm @) [1.2.92]
r 20 or
and:
8 _ pZ am @) [1.2.93]
ot 2p ot
Combining Equations 1.2.92 and 1.2.93 with 1.2.87, yields:
Fm@p)  1am@) puc.  dm ()
ar2 "y 9r  0.000264k ot [1.2.94]

Equation 1.2.94 is the radial diffusivity equation for com-
pressible fluids. This differential equation relates the real-
gas pseudopressure (real-gas potential) to the time ¢ and the
radius 7. Al-Hussany et al. (1966) pointed out that in gas well
testing analysis, the constant-rate solution has more practi-
cal applications than that provided by the constant-pressure
solution. The authors provided the exact solution to Equa-
tion 1.2.94 that is commonly referred to as the 7 (p) solution
method. There are also two other solutions that approxi-
mate the exact solution. These two approximation methods
are called the pressure-squared method and the pressure
method. In general, there are three forms of mathematical
solution to the diffusivity equation:

(1) m(p) solution method (exact solution);
(2) pressure-squared method (p? approximation method);
(3) pressure-method (p approximation method).

These three solution methods are presented below.

First solution: m(p) method (exact solution)

Imposing the constant-rate condition as one of the bound-
ary conditions required to solve Equation 1.2.94, Al-Hussany
et al. (1966) proposed the following exact solution to the
diffusivity equation:

m (but) = m (p;) — 57895.3 (%) (QgT)

s kh
kt
X [log ( 5 ) -3. 23] [1.2.95]
PUCHTy
where

pwi = bottom-hole flowing pressure, psi

pe = initial reservoir pressure

Q, = gas flow rate, Mscf/day

time, hours
k = permeability, md

psc = standard pressure, psi
s« = standard temperature, °R
T = Reservoir temperature
rw = wellbore radius, ft

h = thickness, ft

1 = gas viscosity at the initial pressure, cp

¢ = total compressibility coefficient at p;, psi_1
¢ = porosity

Setting psc = 14.7 psia and Ty, = 520°R, then Equation
1.2.95 reduces to:

1637Q,T Bt
mbur) = m () — (T"g) |:10g (W-cﬁrz ) _3, 23]
" (12961

The above equation can be simplified by introducing the
dimensionless time (as defined previously by Equation
1.2.74) into Equation 1.2.96:

0.0002637 kt
g
Puichry
Equivalently, Equation 1.2.96 can be written in terms of the
dimensionless time #p as:

m(pur) = m(p;) — <%) [log <%)]

The parameter y is called Euler’s constant and is given by:
y = ™72 — 1,781 [1.2.98]

The solution to the diffusivity equation as given by Equa-
tions 1.2.96 and 1.2.97 expresses the bottom-hole real-gas
pseudopressure as a function of the transient flow time £. The
solution as expressed in terms of 7 (p) is the recommended
mathematical expression for performing gas well pressure
analysis due to its applicability in all pressure ranges.

The radial gas diffusivity equation can be expressed in a
dimensionless form in terms of the dimensionless real-gas
pseudopressure drop vp. The solution to the dimensionless
equation is given by:

[1.2.97]

o = m(pi) — m(pus)
DT (1422Q, T /kh)
or:
m(pw) = m (p;) — (%) YD [1.2.99]
where:

Q. = gas flow rate, Mscf/day
k = permeability, md

The dimensionless pseudopressure drop ¥ can be deter-
mined as a function of f;, by using the appropriate expression
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of Equations 1.2.79 through 1.2.84. When #;, > 100, ¥p can
be calculated by applying Equation 1.2.70. That is:

Yp = 0.5[In(tp) + 0.80907] [1.2.100]
Example 1.13 A gas well with a wellbore radius of 0.3 ft
is producing at a constant flow rate of 2000 Mscf/day under
transient flow conditions. The initial reservoir pressure
(shut-in pressure) is 4400 psi at 140°F. The formation per-
meability and thickness are 65 md and 15 ft, respectively.
The porosity is recorded as 15%. Example 1.7 documents the
properties of the gas as well as values of 7 (p) as a function of
pressures. The table is reproduced below for convenience:

P g (cp) z m(p) (psi®/cp)
0 0.01270 1.000 0.000

400 0.01286 0.937 13.2 x 108
800 0.01390 0.882 52.0 x 108
1200 0.01530 0.832 113.1 x 108
1600 0.01680 0.794 198.0 x 106
2000 0.01840 0.770 304.0 x 10°
2400 0.02010 0.763 422.0 x 106
2800 0.02170 0.775 542.4 x 108
3200 0.02340 0.797 678.0 x 106
3600 0.02500 0.827 816.0 x 10°
4000 0.02660 0.860 950.0 x 10°
4400 0.02831 0.896 1089.0 x 106

Assuming that the initial total isothermal compressibility is
3 x 10~* psi~!, calculate the bottom-hole flowing pressure
after 1.5 hours.

Solution

Step 1. Calculate the dimensionless time #p:

_ 0.0002637kt
b= Puicirt
(0.0002637) (65) (1.5)

- = 224498.6
(0.15) (0.02831) (3 x 10-%) (0.32)

Step 2. Solve for m (py) by using Equation 1.2.97:

m(pwi) = m(p;) — <%) [log <%)]

. (1637) (2000) (600)
=1089 x 10° — T m

) (4)224498. 6
x| l08 Q05772

)} =1077.5 x 10°

Step 3. From the given PVT data, interpolate using the value
of m (pys) to give a corresponding py; of 4367 psi.

An identical solution can be obtained by applying the yp
approach as shown below:

Step 1. Calculate vrp from Equation 1.2.100:

¥p = 0.5[In(#p) + 0.80907]
= 0.5[In(224 498. 6) + 0.8090] = 6. 565

Step 2. Calculate m(pys) by using Equation 1.2.99:

1422Q,T
A) ¥p

m(ﬁwf)=m(171)—< o

1422 (2000) (600)

=1089 x 10° — ( @) (15)

) (6.565)

=1077.5 x 10°

By interpolation at 7 (pys) = 1077.5 x 108, this gives
a corresponding value of py; = 4367 psi.

Second solution: pressure-squared method

The first approximation to the exact solution is to move
the pressure-dependent term (1Z) outside the integral that
defines m (py) and m(p;), to give:

2 [k
mp) —mpw) = — pdp

[1.2.101]
4 Dwt
or:
2 42
m(p) — m(py) = PPt 1.2.102]
uZ

The bars over . and Z represent the values of the gas viscos-
ity and deviation factor as evaluated at the average pressure
p. This average pressure is given by:

P+
=y

Combining Equation 1.2.102 with 1.2.96, 1.2.97, or 1.2.99,
gives:

v o (1637Q,TiZ < kt )_
Dy =1 ( log Py 3.23

[1.2.103]

kh
[1.2.104]
or:
, ., [1637Q,THZ 4ty
2 gy | DT ¥eT P =D
Pyt =15 ( o ) [10g< ) )] [1.2.105]
Equivalently:
P=10f— (ngzmz) D [1.2.106]

The above approximation solution forms indicate that the
product (uZ) is assumed constant at the average pressure
. This effectively limits the applicability of the p> method to
reservoir pressures of less than 2000. It should be pointed
out that when the ? method is used to determine py it is
perhaps sufficient to set iZ = u;Z.

Example 1.14 A gas well is producing at a constant rate
of 7454.2 Mscf/day under transient flow conditions. The
following data is available:

k=50md, k=101t
T =600°R, 7y =0.31t,

é=20% p; = 1600 psi
ci = 6.25 x 107 psi~!

The gas properties are tabulated below:

P g (cp) Z m@®) (psi®/cp)
0 0.01270 1.000 0.000

400 0.01286 0.937 13.2 x 106
800 0.01390 0.882 52.0 x 108
1200 0.01530 0.832 113.1 x 108
1600 0.01680 0.794 198.0 x 106
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Calculate the bottom-hole flowing pressure after 4 hours by
using:

(a) the m(p) method;
(b) the p* method.

Solution
(a) The m(p) method:
Step 1. Calculate #p:

0.000264 (50) (4)
(0.2) (0.0168) (6.25 x 10-) (0.3?)

= 279365.1
Step 2. Calculate vrp:
Y¥p = 0.5[In(fp) + 0.80907]

= 0.5[In (279365.1) + 0.80907] = 6.6746
Step 3. Solve for m (pws) by applying Equation 1.2.99:

tp =

1422Q,T
m(pwi) =m(pi) — <T0g> ¥p
(198 10°) - 1422(7454.2) (600) 6.6746
(50) (10)

=113.1x10°
The corresponding value of py; = 1200 psi.

(b) The p* method:

Step 1. Calculate vrp by applying Equation 1.2.100:
Yp = 0.5[In(¢p) + 0.80907]

= 0.5[In (279 365. 1) 4 0.80907] = 6. 6747
Step 2. Calculate pfvf by applying Equation 1.2.106:

. . [1422Q,TRZ
Da=pi—\ = | Vv
(1422) (7454.2) (600) (0.0168) (0.794)

(50) (10)

=1600% — :| 6.6747

=1427491
Pwt=1195 psi.
Step 3. The absolute average error is 0.4%.

Third solution: pressure approximation method

The second method of approximation to the exact solution of
the radial flow of gases is to treat the gas as a pseudo-liquid.
Recal that the gas formation volume factor By as expressed
in bbl/scf is given by:

s zT
By = (5.615Tsc> (7)
B, = 0.00504 (%T)

Solving the above expression for p/Z gives:

b_( Tpe (L
Z ~\5.615T. ) \ B,
The difference in the real-gas pseudopressure is given by:

i 2
m(Pi)*(ow)=/ %dp
pwi M

or:

Combining the above two expressions gives:

bi
m(pr) — m(pug) = —iBe (i)dp

= 12.1
5.615T% J5,, \ B, 121071

MBg

B R
A

~ 3000
Pressure

Figure 1.22 Plot of 1/uBg vs. pressure.

Fetkovich (1973) suggested that at high pressures above
3000 psi (p > 3000), 1/uBy is nearly constant as shown
schematically in Figure 1.22. Imposing Fetkovich’s condition
on Equation 1.2.107 and integrating gives:

2Tpsc
5.615TiB, (b = pu0)

Combining Equation 1.2.108 with 1.2.96, 1.2.97, or 1.2.99
gives:

162.5 x 10°Q, 1By kt
pur=pi - (kh [log ( WM) 3, 23]

[1.2.109]

m(Pi) — m (Pwi) = [1.2.108]

or:

-
Dot = P — (WMO)le‘Bg) [log (‘ﬁ)} [1.2.110]
kh Y

or, equivalently, in terms of dimensionless pressure drop:

A
e ((141.2 x 10 )Qg,LBg>pD [L2.111]

kh

where:

Q. = gas flow rate, Mscf/day
k = permeability, md

B, = gas formation volume factor, bbl/scf
t = time, hours

pp = dimensionless pressure drop

tp = dimensionless

It should be noted that the gas properties, i.e., i, By, and ¢,
are evaluated at pressure p as defined below:
—  bit+bw

b= 2

Again, this method is limited only to applications above
3000 psi. When solving for pys, it might be sufficient to
evaluate the gas properties at p;.

[1.2.112]

Example 1.15 The data of Example 1.13 is repeated
below for convenience.

A gas well with a wellbore radius of 0.3 ft is producing
at a constant flow rate of 2000 Mscf/day under transient
flow conditions. The initial reservoir pressure (shut-in pres-
sure) is 4400 psi at 140°F. The formation permeability and
thickness are 65 md and 15 ft, respectively. The poros-
ity is recorded as 15%. The properties of the gas as well
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as values of m(p) as a function of pressures are tabulated
below:

P e (D) z m(p) (psiZ/cp)
0 001270  1.000  0.000

400 001286 0937  13.2x 10°
800 001390  0.882  52.0 x 10°
1200 001530  0.832  113.1 x 10°
1600  0.01680 0794  198.0 x 10°
2000  0.01840  0.770  304.0 x 10°
2400  0.02010  0.763  422.0 x 10°
2800  0.02170 0775  542.4 x 10
3200  0.02340  0.797  678.0 x 10°
3600  0.02500  0.827  816.0 x 10°
4000  0.02660  0.860  950.0 x 10°
4400  0.02831  0.896  1089.0 x 10°

Assuming that the initial total isothermal compressibility is
3 x 10~*psi~!, calculate, the bottom-hole flowing pressure
after 1.5 hours by using the p approximation method and
compare it with the exact solution.

Solution

Step 1. Calculate the dimensionless time #p:

0.0002637kt
ty= ——— =
Puicirs
(0.000264) (65) (1.5)

= = 224498.6
(0.15) (0.02831) (3 x 10-*) (0.3%)

Step 2. Calculate By at p;:

By = 0.00504 (Z;)T>

(0.896) (600)
4400

Step 3. Calculate the dimensionless pressure pp, by applying
Equation 1.2.80:

pp = 0.5[In(tp) + 0.80907]

= 0.00504 = 0.0006158 bbl/scf

= 0.5[In (224 498.6) + 0.80907] = 6.565
Step 4. Approximate pys from Equation 1.2.111:

141.210®) Q, B,
bwi=pi— ((kh)qug)f?D

141.2 x 10° (2000) (0.02831) (0.0006158)

(65) (15)

=4400— |: i| 6.565

=4367 psi

The solution is identical to that of the exact solution of
Example 1.13.

It should be pointed out that Examples 1.10 through 1.15
are designed to illustrate the use of different solution meth-
ods. However, these examples are not practical because,
in transient flow analysis, the bottom-hole flowing pressure
is usually available as a function of time. All the previous
methodologies are essentially used to characterize the reser-
voir by determining the permeability £ or the permeability
and thickness product (kk).

1.2.7 Pseudosteady state

In the unsteady-state flow cases discussed previously, it was
assumed that a well is located in a very large reservoir
and producing at a constant flow rate. This rate creates a
pressure disturbance in the reservoir that travels through-
out this “infinite-size reservoir.” During this transient flow
period, reservoir boundaries have no effect on the pres-
sure behavior of the well. Obviously, the time period when
this assumption can be imposed is often very short in
length. As soon as the pressure disturbance reaches all
drainage boundaries, it ends the transient (unsteady-state)
flow regime and the beginning of the boundary-dominated
flow condition. This different type of flow regime is called
pseudosteady (semisteady)-State Flow. Itis necessary at this
point to impose different boundary conditions on the diffu-
sivity equation and drive an appropriate solution to this flow
regime.

Consider Figure 1.23 which shows a well in a radial sys-
tem that is producing at a constant rate for a long enough
period that eventually affects the entire drainage area. Dur-
ing this semisteady-state flow, the change in pressure with
time becomes the same throughout the drainage area.
Figure 1.23(b) shows that the pressure distributions become
paralleled at successive time periods. Mathematically, this
important condition can be expressed as:

9
(l) = constant
at /),

The “constant” referred to in the above equation can be
obtained from a simple material balance using the defini-
tion of the compressibility, assuming no free gas production,
thus:

[1.2.113]

—1dV
TV d»
Rearranging:
cVdp = —-dV
Differentiating with respect to time ¢:
dp v
Y&~ @
or:
b__a
dt cV

Expressing the pressure decline rate dp/d¢ in the above
relation in psi/hr gives:

b a QB
dt T 24V T T 24cV [1.2.114]
where:

q = flow rate, bbl/day
Q, = flow rate, STB/day
dp/dt = pressure decline rate, psi/hr
V' = pore volume, bbl

For a radial drainage system, the pore volume is given by:

nr’h¢  Ahg

= 5615 — 5605 [1.2.115]
where:

A = drainage area, ft?
Combining Equation 1.2.115 with 1.2.114 gives:
dp  0.23396g  —0.23396g  —0.23396q
dt = a(rdhe ~  cAhp T ci(pore volume)

[1.2.116]

Examining Equation 1.2.116 reveals the following important
characteristics of the behavior of the pressure decline rate
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Figure 1.23 Semisteady-state flow regime.

dp/dt during the semisteady-state flow:

o the reservoir pressure declines at a higher rate with
increasing fluid production rate;

e the reservoir pressure declines at a slower rate for
reservoirs with higher total compressibility coefficients;

e the reservoir pressure declines at a lower rate for reser-
voirs with larger pore volumes.

And in the case of water influx with an influx rate of e,
bbl/day, the equation can be modified as:

di: _ —0.23396q + ey

dt ~ ¢ (pore volume)

Example 1.16 Anoil wellis producing at constant oil flow
rate of 120 STB/day under a semisteady-state flow regime.
Well testing data indicates that the pressure is declining at a
constant rate of 0.04655 psi/hr. The following addition data
is available:

h=T721, ® = 25%,
B, =1.3bbl/STB, ¢ =25 x 105 psi—!

Calculate the well drainage area.

Here:
q = Q,B, = (120) (1.3) = 156 bbl/day
Apply Equation 1.2.116 to solve for A:
dp 0.23396g  —0.23396q ~0.23396q
dat = T (rdhg = cAhg = ¢ (pore volume)

0.23396(156)
(25 x 10-5) (4) (72) (0.25)

Solution

—0.04655 = —

A = 1742400 ft?
or:
A = 1742 400/43 560 = 40 acres

Matthews et al. (1954) pointed out that once the reservoir
is producing under the semisteady-state condition, each well
will drain from within its own no-flow boundary indepen-
dently of the other wells. For this condition to prevail, the
pressure decline rate dp/dt must be approximately constant
throughout the entire reservoir, otherwise flow would occur
across the boundaries causing a readjustment in their posi-
tions. Because the pressure at every point in the reservoir is
changing at the same rate, it leads to the conclusion that the
average reservoir pressure is changing at the same rate. This
average reservoir pressure is essentially set equal to the vol-
umetric average reservoir pressure p,. Itis the pressure that
is used to perform flow calculations during the semisteady-
state flowing condition. The above discussion indicates that,
in principle, Equation 1.2.116 can be used to estimate the
average pressure in the well drainage area p by replacing
the pressure decline rate dp/d¢ with (p; — p) /¢, or:

P 0. 233964t

' ct(Ahg)

or:

B [0. 23396q}
-

b= m [1.2.117]

Note that the above expression is essentially an equation
of a straight line, with a slope of m' and intercept of p;, as
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expressed by:

p=a+mt
L [0.233960] _ [ 0.23396
B c(Ahe) |~ | ci(pore volume)
a = pi

Equation 1.2.117 indicates that the average reservoir pres-
sure, after producing a cumulative oil production of N, STB,
can be roughly approximated by:

e [o. 23396BONp]
' ¢ (Ahg)

It should be noted that when performing material balance
calculations, the volumetric average pressure of the entire
reservoir is used to calculate the fluid properties. This pres-
sure can be determined from the individual well drainage
properties as follows:

! >V
in which:

V; = pore volume of the jth well drainage volume
(p); = volumetric average pressure within the jth
drainage volume

Figure 1.24 illustrates the concept of the volumetric aver-
age pressure. In practice, the V; are difficult to determine
and, therefore, it is common to use individual well flow
rates ¢; in determining the average reservoir pressure from
individual well average drainage pressure:

- Zj (Z‘I)j
= Z/‘Ij

The flow rates are measured on a routing basis through-
out the lifetime of the field, thus facilitating the calculation
of the volumetric average reservoir pressure p.. Alterna-
tively, the average reservoir pressure can be expressed
in terms of the individual well average drainage pressure
decline rates and fluid flow rates by:

p [1.2.118]
T Y la/ (/o)) 2.
94
K
P = ZilPiai) P4, Vg
' i

5, _ Zilea)/@plon]
"% la/@pren]

Figure 1.24 \Volumetric average reservoir pressure.

However, since the material balance equation is usually
applied at regular intervals of 3-6 months, i.e., At = 3-6
months, throughout the lifetime of the field, the average field
pressure can be expressed in terms of the incremental net
change in underground fluid withdrawal A (F) as:

5 >0 A(F);/ Ap;
YN

where the total underground fluid withdrawal at time ¢ and
t + At are given by:

[1.2.119]

t
Fi= f [QoBo+Q@uBy + (Qy — QoRs— QuRe) Beldt
0

t+At
Ft+At:/ [Q0B0+QWBW+(Qg_QORS_QWRSW)Bg]dt
0

with:
AWF) =Fni — F
and where:

R = gas solubility, scf/STB
Ry, = gas solubility in the water, scf/STB

B, = gas formation volume factor, bbl/scf
, = oil flow rate, STB/day

q, = oil flow rate, bbl/day

Q,,= water flow rate, STB/day

qw = water flow rate, bbl/day

Q.= gas flow rate, scf/day

The practical applications of using the pseudosteady-state
flow condition to describe the flow behavior of the following
two types of fluids are presented below:

(1) radial flow of slightly compressible fluids;
(2) radial flow of compressible fluids.

1.2.8 Radial flow of slightly compressible fluids

The diffusivity equation as expressed by Equation 1.2.61 for
the transient flow regime is:
Fp 1op _ ([ oue \0p
a2  ror  \0.000264k ) ot

For the semisteady-state flow, the term 9p/dt is constant
and is expressed by Equation 1.2.116. Substituting Equation
1.2.116 into the diffusivity equation gives:

) Llop _( ouc —0.23396¢
ar2  roar  \0.000264k clAhp
#p 1dp —887.22qu
ar2 " ror  Ahk
This expression can be expressed as:

19 < 81)) 887.22qu
A P I ik 1o
ror \' ar (mr2) bk

or:

9%p

Integrating this equation gives:

p 887.22qu (1'2 )

V—=——— | = C1

ar (er2)hk \ 2
where ¢; is the constant of integration and can be evalu-
ated by imposing the outer no-flow boundary condition (i.e.,
(@p/37)re = 0) on the above relation, to give:
_ 141.2qu
T nhk
Combining these two expressions gives:

ap  141.2qu (1 r)

ar kb \r 12

1
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Integrating again:

b 141. 2 S
byt ™w r e

Performing the above integration and assuming 72 /72 is
negligible gives:

‘ _ 141. 2qu Te 1
b1 — pwi) = T [ln (a) - E:|

A more appropriate form of the above is to solve for the flow
rate as expressed in STB/day, to give:

0.00708k% (5; — pug)
uB[In (re/ry) — 0.5]

where:

Q= [1.2.120]

Q@ = flow rate, STB/day
B = formation volume factor, bbl/STB
k = permeability, md

The volumetric average pressure in the well drainage area
p is commonly used in calculating the liquid flow rate under
the semisteady-state flowing condition. Introducing p into
Equation 1.2.120 gives:

~0.00708khk (p — pus) (0 —pwt)
" uB[In(re/rw) —0.75] ~ 141.2uB[ln (re/7w) — 0.75]

[1.2.121]
(%) 075 = (%7
Tw Tw

The above observation suggests that the volumetric average
pressure p occur at about 47% of the drainage radius during
the semisteady-state condition. That is:

~ 0.00708k: (p = put)
"~ uB[In (0.4717/7y)]

It should be pointed out that the pseudosteady-state flow
occurs regardless of the geometry of the reservoir. Irreg-
ular geometries also reach this state when they have been
produced long enough for the entire drainage area to be
affected.

Rather than developing a separate equation for the geom-
etry of each drainage area, Ramey and Cobb (1971) intro-
duced a correction factor called the shape factor C4 which
is designed to account for the deviation of the drainage area
from the ideal circular form. The shape factor, as listed in
Table 1.4, accounts also for the location of the well within
the drainage area. Introducing Cy4 into Equation 1.2.121 and
solving for pyr gives the following two solutions:

Note that:

(1) In terms of the volumetric average pressure p:

_  162.6QBu 2.2458A
b =p—— log < Car? >
(2) Interms of the initial reservoir pressure, p;, recall Equa-
tion 1.2.117 which shows the changes of the average

reservoir pressure p as a function of time and initial
reservoir pressure p;:

— 0.233964t
p

[1.2.122]

A CtAh¢
Combining this equation with Equation 1.2.122 gives:

0.23396QBt\ _ 162.6QBu (224584
Ahpe, w2\

w

bwt = (ﬁi -
[1.2.123]

where:

k = permeability, md
A= drainage area, ft*
C4 = shape factor
@ = flow rate, STB/day
t= time, hours
c= total compressibility coefficient, psi~!

Equation 1.2.123 can be slightly rearranged as:
i = pi— 162.6QBu o 2.24584\7 (0.23396QB
= | P o 8\ TGz Ahde,

The above expression indicates that under semisteady-
state flow and constant flow rate, it can be expressed as an
equation of a straight line:

pwf = Qpss + mpsst
with apss and m,ss as defined by:

162.6QB | (2.24584
e\ G2

0.23396QB _ 0.23396QB
c(Ahg) ) ¢ (pore volume)

Itis obvious that during the pseudosteady (semisteady)-state
flow condition, a plot of the bottom-hole flowing pressure py¢
versus time ¢ would produce a straight line with a negative
slope of mss and intercept of aps.

A more generalized form of Darcy’s equation can be devel-
oped by rearranging Equation 1.2.122 and solving for @ to
give:

Apss = |:p1 -

Mpss =

kh(p = pwr)
162. 6B log (2.2458A4/Cyr2)
It should be noted that if Equation 1.2.124 is applied to a

circular reservoir of radius 7., then:

2
A=nr;

Q= [1.2.124]

and the shape factor for a circular drainage area as given in
Table 14 as:

Cq =31.62
Substituting in Equation 1.2.124, it reduces to:
0= 0.00708kh (b — pwr)
Bulln(re/ry) — 0.75]
This equation is identical to that of Equation 1.2.123.

Example 1.17 An oil well is developed on the center of
a 40 acre square-drilling pattern. The well is producing at a
constant flow rate of 100 STB/day under a semisteady-state
condition. The reservoir has the following properties:

¢ = 15%, h=301t, k =20md
uw=15cp, B,=1.2bbl/STB, ¢ =25x 107 psi?!
pi = 4500 psi, 7y = 0.251t, A = 40 acres

(a) Calculate and plot the bottom-hole flowing pressure as
a function of time.

(b) Based on the plot, calculate the pressure decline rate.
What is the decline in the average reservoir pressure
from ¢ = 10 to £ = 200 hours?

Solution
(a) For the pys calculations:

Step 1. From Table 1.4, determine Cy:
Cq = 30.8828
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Table 1.4 Shape factors for various single-well drainage areas (After Earlougher, R, Advances in Well Test Analysior Sk
permission to publish by the SPE, copyright SPE, 1977)

In bounded Cy InCy 1n ( 2‘2458) Exact Less than Use infinite system
reservoirs 2 Ca Jortps > 1% error solution with less
for tpg > than 1% error
for tpa >
) 31.62 3.4538 ~1.3224 0.1 0.06 0.10
@ 31.6 3.4532 ~1.3220 0.1 0.06 0.10
A 27.6 3.3178 —1.2544 0.2 0.07 0.09
27.1 3.2995 —1.2452 0.2 0.07 0.09
N 219 30865  —11387 04 0.12 0.08
1
3{ }4 0.098 —2.3227 +1.5659 0.9 0.60 0.015
E] 30.8828 3.4302 —1.3106 0.1 0.05 0.09
EB 12.9851 2.5638 —0.8774 0.7 0.25 0.03
EE 10132 1.5070 —0.3490 0.6 0.30 0.025
0.25 0.01
@ 3.3351 1.2045 ~0.1977 0.7
Ez]* 21.8369 3.0836 ~1.1373 03 0.15 0.025
E‘ 10.8374 2.3830 —0.7870 0.4 0.15 0.025
H 10141 15072 ~0.3491 15 0.50 0.06
EE‘ 2.0769 0.7309 ~0.0391 17 0.50 0.02
Sl 31573 11497 ~0.1703 0.4 0.15 0.005
EEZE@ 0.5813 —0.5425 +0.6758 2.0 0.60 0.02
e 01109  —21991  +1.5041 30 0.60 0.005
2
I 5.3790 1.6825 —0.4367 0.8 0.30 0.01
—— 2.6896 0.9894 ~0.0902 0.8 0.30 0.01
4
= 0.2318 ~1.4619 +1.1355 4.0 2.00 0.03
== 0.1155 ~2.1585 +1.4838 4.0 2.00 0.01
[+ | 2.3606 0.8589 ~0.0249 1.0 0.40 0.025
In vertically fractured reservoirs use (t./%)? in place of A/ 7&, for fractured systems
1| = |= ><‘/>(e
2.6541 0.9761 —0.0835 0.175 0.08 cannot use
0.2
‘ 2.0348 0.7104 10.0493 0.175 0.09 cannot use
0.3
%] 19986 0.6924 +0.0583 0.175 0.09 cannot use
1
%] 16620 05080 +0.1505 0.175 0.09 cannot use
1
0.7
1 1.3127 0.2721 +0.2685 0.175 0.09 cannot use
1‘0 In water-drive reservoirs
1| 0.7887 —0.2374 +0.5232 0.175 0.09 cannot use
1
@ 19.1 2.95 ~1.07 - - -
In reservoirs of unknown production character
@ 25.0 3.22 ~1.20 - - -
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3700
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3—7 = —1.719 psi‘hr
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T T
100 120 140 160 180 200

t, hrs

Figure 1.25 Bottom-hole flowing pressure as a function of time.

Step 2. Convert the area A from acres to ft?:
A = (40) (43560) = 1742400 ft?
Step 3. Apply Equation 1.2.123:

~ < 0.23306QBt
bwt = | i Ah¢€(
_ 162.6QBu | (2.24584
AN

= 4500 — 0. 143¢ — 48.781og (2 027 436)
or:
pwi = 4192 — 0.143¢
Step 4. Calculate p.; at different assumed times, as

follows:

t (hr) pwt = 4192 — 0.143¢
10 4191

20 4189

50 4185

100 4178

200 4163

Step 5. Present the results of step 4 in graphical form as
shown in Figure 1.25.

(b) Itis obvious from Figure 1.25 and the above calculation
that the bottom-hole flowing pressure is declining at a
rate of 0.143 psi/hr, or:

dp .

= 0.143 psi/hr
The significance of this example is that the rate of pres-
sure decline during the pseudosteady state is the same
throughout the drainage area. This means that the aver-
age reservoir pressure, p,, is declining at the same rate of
0.143 psi/hr, therefore the change in p, from 10 to 200
hours is:

Ap; = (0.143) (200 — 10) = 27.17 psi

Example 1.18 An oil well is producing under a constant
bottom-hole flowing pressure of 1500 psi. The current aver-
age reservoir pressure p; is 3200 psi. The well is developed

in the center of 40 acre square-drilling pattern. Given the
following additional information:

¢ = 16%, h=151t, k =50md,
= 26cp, B, = 1.15bbl/STB,
¢ =10x 10" psi!, 7, =0.251t

calculate the flow rate.

Solution
Because the volumetric average pressure is given, solve for
the flow rate by applying Equation 1.2.124:

_ kh (b — pwr)
162. 6By log [2g45§A]
Alw

(50) (15) (3200 — 1500)

(162.6) (1.15) (2.6) log | 245840 %0 |

=416 STB/day

It is interesting to note that Equation 1.2.124 can also be
presented in a dimensionless form by rearranging and
introducing the dimensionless time #p and dimensionless
pressure drop pp, to give:

[1.2.125]

1 I 2.3458A
pp =2mips + zIn Car?

with the dimensionless time based on the well drainage given
by Equation 1.2.75a as:

~0.0002637kt (72
DA = T oncA Z4 oy

where:

s = skin factor (to be introduced later in the chapter)
C4 = shape factor
tpa = dimensionless time based on the well drainage
area 7?2,
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Equation 1.2.125 suggests that during the boundary-
dominated flow, i.e., pseudosteady state, a plot of pp vs. tp4 on
a Cartesian scale would produce a straight line with a slope
of 27r. That is:

.

=21 [1.2.126]
For a well located in a circular drainage area with no skin,
i.e.,s = 0, and taking the logarithm of both sides of Equation
1.2.125 gives:

log (pp) = log(27) + log(tpa)

which indicates that a plot of pp vs. tps on a log-log scale
would produce a 45° straight line and an intercept of 2.

1.2.9 Radial flow of compressible fluids (gases)

The radial diffusivity equation as expressed by Equation
1.2.94 was developed to study the performance of a com-
pressible fluid under unsteady-state conditions. The equa-
tion has the following form:

Fm@)  1om@®) _ ¢uc am(p)
ar2 r or  0.000264k ot

For semisteady-state flow, the rate of change of the real-gas
pseudopressure with respect to time is constant. That is:

am(®)
t

——— = constant
9

Using the same technique identical to that described pre-
viously for liquids gives the following exact solution to the
diffusivity equation:

kit [m(p;) — m(pu) ]

14227 [ln (:—) —o. 75}

where:

Qq = (1.2.127)

Q. = gas flow rate, Mscf/day
T = temperature, °R
k = permeability, md

Two approximations to the above solution are widely used.
These are:

(1) the pressure-squared approximation;
(2) the pressure approximation.

Pressure-squared method

As outlined previously, this method provides us with com-
patible results to that of the exact solution approach when
p < 2000 psi. The solution has the following familiar
form:

ki (B, — %)

142277 <ln (:—) —o. 75)

The gas properties Z and &z are evaluated at:

Qq = [1.2.128]

be + P,

b= )

where:

Q. = gas flow rate, Mscf/day
T = temperature, °R
k = permeability, md

Pressure approximation method
This approximation method is applicable at p > 3000 psi and
has the following mathematical form:

— kh (,Er — Dt )
14221B, [In (re/ry) — 0.75]

with the gas properties evaluated at:

*_pr‘i“pw[
="

[1.2.129]

g

where:

Qg = gas flow rate, Mscf/day
E = permeability, md

B, = gas formation volume factor at a average
pressure, bbl/scf

The gas formation volume factor is given by the following
expression:
ZT
B, = 0. 00504 =
In deriving the flow equations, the following two main
assumptions were made:

(1) uniform permeability throughout the drainage area;
(2) laminar (viscous) flow.

Before using any of the previous mathematical solutions to
the flow equations, the solution must be modified to account
for the possible deviation from the above two assump-
tions. Introducing the following two correction factors into
the solution of the flow equation can eliminate these two
assumptions:

(1) skin factor;
(2) turbulent flow factor.

1.2.10 Skin factor

It is not unusual during drilling, completion, or workover
operations for materials such as mud filtrate, cement slurry,
or clay particles to enter the formation and reduce the perme-
ability around the wellbore. This effect is commonly referred
to as “wellbore damage” and the region of altered perme-
ability is called the “skin zone.” This zone can extend from a
few inches to several feet from the wellbore. Many other
wells are stimulated by acidizing or fracturing, which in
effect increases the permeability near the wellbore. Thus,
the permeability near the wellbore is always different from
the permeability away from the well where the formation
has not been affected by drilling or stimulation. A schematic
illustration of the skin zone is shown in Figure 1.26.

Damaged Zone Pressure Profile

Undamaged Zone

Kskin

k

—y fy

Tskin

Figure 1.26 Near-wellbore skin effect.
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E Pressure Profile
E Improved \
! k
Ap<0 E L QoBont k Tki
: APsiin = (o il e e
PR Lt . skin w
Ap>0 E v L ’ Reduced
: ’ K APein = QoBotio
i skin = | 0.00708 kh
Y
: > I'skin
Figure 1.27 Representation of positive and negative skin effects.
The effect of the skin zone is to alter the pressure distri- where s is called the skin factor and defined as:
bution around the wellbore. In case of wellbore damage, the A )
skin zone causes an additional pressure loss in the formation. g — [ _ 1] In (”“ﬂ) [1.2.131]
In case of wellbore improvement, the opposite to that of well- ksicin Tw

bore damage occurs. If we refer to the pressure drop in the
skin zone as Apgin, Figure 1.27 compares the differences in
the skin zone pressure drop for three possible outcomes.

o First outcome: Apgqn > 0, which indicates an additional
pressure drop due to wellbore damage, i.e., kgin < k.

o Second outcome: Apgin < 0, which indicates less pressure
drop due to wellbore improvement, i.e., Bsyin > k.

o Third outcome: Apg, = 0, which indicates no changes in
the wellbore condition, i.e., kgi, = k.

Hawkins (1956) suggested that the permeability in the skin
Zone, i.e., ksin, is uniform and the pressure drop across the
zone can be approximated by Darcy’s equation. Hawkins
proposed the following approach:

I

Applying Darcy’s equation gives:

Ap in skin zone

due to kskin

Apgin = [ Ap in the skin zone ]

duetok

_ QoBo,uo 7skin
(AP)sin = (0. 00708hkskin> 1“( T )
_ QoBol‘vo In 7skin
0.00708hk Tw
or:
o QoBoMo k 7skin
Absin = <0. 00708kh> [kskm - 1] h‘( na )
where:

k = permeability of the formation, md
kskin = permeability of the skin zone, md

The above expression for determining the additional pres-
sure drop in the skin zone is commonly expressed in the
following form:

QOBO/’LO

Depending on the permeability ratio ~k/kgi, and if
In(rgqn/7w) is always positive, there are only three possible
outcomes in evaluating the skin factor s:

(1) Positive skin factor, s > 0: When the damaged zone near
the wellbore exists, kg, is less than 2 and hence sis a pos-
itive number. The magnitude of the skin factor increases
as kgq, decreases and as the depth of the damage 7,
increases.

(2) Negative skin factor, s < 0: When the permeability around
the well kg, is higher than that of the formation &, a
negative skin factor exists. This negative factor indicates
an improved wellbore condition.

(3) Zero skin factor, s = 0: Zero skin factor occurs when no
alternation in the permeability around the wellbore is
observed, i.e., kgi, = k.

Equation 1.2.131 indicates that a negative skin factor will
result in a negative value of Apg,. This implies that a stim-
ulated well will require less pressure drawdown to produce
at rate ¢ than an equivalent well with uniform permeability.

The proposed modification of the previous flow equation is
based on the concept that the actual total pressure drawdown
will increase or decrease by an amount Apgyi,. Assuming that
(Ap)igeal Tepresents the pressure drawdown for a drainage
area with a uniform permeability &, then:

(Ap)actual = (Ap)ideal + (Ap)skin
or:

(b1 — pwdactual = (Bi — Pwi)ideat + APskin [1.2.132]

The above concept of modifying the flow equation to account
for the change in the pressure drop due the wellbore skin
effect can be applied to the previous three flow regimes:

(1) steady-state flow;
(2) unsteady-state (transient) flow;
(3) pseudosteady (semisteady)-state flow.

/e Watermark Now

Absiin = <0. 00708k

_ QOBOI‘LO
>s_ 141.2( h )s

[1.2.130]

Basically, Equation 1.2.132 can be applied as follows.
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Steady state radial flow (accounting for the skin factor)
Substituting Equations 1.2.15 and 1.2.130 into Equation
1.2.132, gives:

(AI)) actual = (Aﬁ) ideal 1+ (AP) skin

| _(QeButo Yy (7 (@Bt
i = Put)actual = (0. 00708kh> fn <rw> * (0- 00708kh)

Solving for the flow rate gives:
~0.00708kk (p; — pur)

(98 , [1.2.133]
oBo |:1n i + S]
where:
Q, = oil flow rate, STB/day
k = permeability, md
h = thickness, ft
s = skin factor
B, = oil formation volume factor, bbl/STB
1o = oil viscosity, cp
pi = initial reservoir pressure, psi
pwi = bottom-hole flowing pressure, psi

Unsteady-state radial flow (accounting for the skin factor)
For slightly compressible fluids Combining Equations
1.2.71 and 1.2.130 with that of 1.2.132 yields:

(Ap)actual = (Ap)ideal + (Ap)skin

. _ QoBo/‘vo kt
bi — pwi = 162.6 (T) |:10 e’ -3. 23]
QoBo 1o
+141.2 ( o )s
or:
. _ QoBollvo kt o
pi— pur = 162.6 ( " ) [log S =SB0 sa}
[1.2.134]

For compressible fluids A similar approach to that of the
above gives:

m(p;) —m(pwi) =

& —3.23+0. 87si|

4w
[1.2.135]

and in terms of the pressure-squared approach, the differ-
ence [m(p;) — m(pwt)] can be replaced with:

1637Q, T [, ki
kh pucs

P 2p pE— Pl
mp) —mip) = [ dp = BBt
T e nz nZ
to give:
1637Q,TZ 1 kt
2 2 g
2_p2 — -3.2 .
by — byt i [0 p— 3.23+0.87s
[1.2.136]
where:

Qg = gas flow rate, Mscf/day
T = temperature, °R

k = permeability, md

t = time, hours

Pseudosteady-state flow (accounting for the skin factor)
For slightly compressible fluids Introducing the skin factor
into Equation 1.2.123 gives:

0.00708kh (B, — pur)

11oBy [111 (;) —0.75 +s]

Qo = [1.2.137]

For compressible fluids

kh [m(p,) — m(pur) ]
14227 [m <;> —0.75+ s]

w

Q= [1.2.138]

or in terms of the pressure-squared approximation:

kh (22 - 172,

Q= — p [1.2.139]
1422TuZ [ln <7€) —-0.75+ s]
where :
@, = gas flow rate, Mscf/day
k = permeability, md
T = temperature, °R
g = gas viscosity at average pressure p, cp
. = gas compressibility factor at average pressure p

Example 1.19 Calculate the skin factor resulting from
the invasion of the drilling fluid to a radius of 2 ft. The per-
meability of the skin zone is estimated at 20 md as compared
with the unaffected formation permeability of 60 md. The
wellbore radius is 0.25 ft.

Solution
Apply Equation 1.2.131 to calculate the skin factor:

60 2
s=|:%—1]ln(ﬁ>=4.16

Matthews and Russell (1967) proposed an-alternative treat-
ment to the skin effect by introducing the “effective or
apparent wellbore radius” 7y, that accounts for the pressure
drop in the skin. They define 7y, by the following equation:
Fwa = Fw€™’ [1.2.140]
All of the ideal radial flow equations can be also modified for
the skin by simply replacing the wellbore radius 7, with that
of the apparent wellbore radius 7y,. For example, Equation
1.2.134 can be equivalently expressed as:

. _ (99997 kt
= =626 (S5 ) lon T -

3.23]
[1.2.141]

1.2.11 Turbulent flow factor

All of the mathematical formulations presented so far are
based on the assumption that laminar flow conditions are
observed during flow. During radial flow, the flow velocity
increases as the wellbore is approached. This increase in
the velocity might cause the development of turbulent flow
around the wellbore. If turbulent flow does exist, it is most
likely to occur with gases and causes an additional pressure
drop similar to that caused by the skin effect. The term “non-
Darcy flow” has been adopted by the industry to describe the
additional pressure drop due to the turbulent (non-Darcy)
flow.

Referring to the additional real-gas pseudopressure drop
due to non-Darcy flow as Ayyennarcy, the total (actual) drop
is given by:

(AW)actual = (AW)ideal + (Aw)skin + (AW)non-Darcy

Wattenbarger and Ramey (1968) proposed the following
expression for calculating (Ay) non-Darcy:

_ BTy,
(AV)nonDarcy = 3. 161 x 1071 |:ng7iw Q:
This equation can be expressed in a more convenient
form as;

(Aw)non-Da_rcy = FQE

[1.2.142]

[1.2.143]
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where F is called the “non-Darcy flow coefficient” and
given by:

[1.2.144]

F=3.161 x 10712 [ BTvs ]

nghzrw
where:
@, = gas flow rate, Mscf/day
Iew = gas viscosity as evaluated at pys, cp
yg = gas specific gravity
h = thickness, ft
F = non-Darcy flow coefficient, psi?/cp/ (Mscf/day)?
B = turbulence parameter

Jones (1987) proposed a mathematical expression for esti-
mating the turbulence parameter g as:

/3 =1 88(10—10) (k)—1A47 (¢)—0453

where:

[1.2.145]

k = permeability, md
¢ = porosity, fraction

The term FQZ can be included in all the compressible
gas flow equations in the same way as the skin factor.
This non-Darcy term is interpreted as a rate-dependent skin.
The modification of the gas flow equations to account for
the turbulent flow condition is given below for the three flow
regimes:

(1) unsteady-state (transient) flow;
(2) semisteady-state flow;
(3) steady-state flow.

Unsteady-state radial flow

The gas flow equation for an unsteady-state flow is given
by Equation 1.2.135 and can be modified to include the
additional drop in the real-gas potential, as:

A _ (1637Q,T kt
(o) —m ( kh ) [log (¢Mict{7\%>

-3.2340. 87sj| +FQ: [1.2.146]

Equation 1.2.146 is commonly written in a more convenient
form as:

- = (58T )

—3.234+0.87s + 0. 87DQg] [1.2.147]

where the term D@, isinterpreted as the rate-dependent skin
factor. The coefficient D is called the “inertial or turbulent
flow factor” and given by:

_ Frkh
= 14227

The true skin factor s which reflects the formation damage
or stimulation is usually combined with the non-Darcy rate-
dependent skin and labeled as the apparent or total skin
factor s\. That is:

[1.2.148]

s\ =s+DQ, [1.2.149]
or:
' ([ 1637Q,T kt
) =) = (555 ) [ ()
—3.23+0. 875\} [1.2.150]

Equation 1.2.50 can be expressed in the pressure-squared
approximation form as:

92 = (1637§ZTZ“) [log : M 32340, 87s\]
ittily

[1.2.151]

where:

Q, = gas flow rate, Mscf/day
t = time, hours
k = permeability, md
i = gas viscosity as evaluated at p;, cp

Semisteady-state flow
Equation 1.2.138 and 1.2.139 can be modified to account for
the non-Darcy flow as follows:

ki [m(p;) — m(pur)]

Q= - [1.2.152]
14227 [m (7) —0.75+s+ DQg}
or in terms of the pressure-squared approach:
—2
ki (b, — %
Qs = S ) (1.2.153]
1422T7Z [111 (7) —0.75+s+ DQg]
where the coefficient D is defined as:
Fkh
= 15T [1.2.154]

Steady-state flow
Similar to the above modification procedure, Equations
1.2.32 and 1.2.33 can be expressed as:

kh [m(ﬁi) - m(ow)]

Q= ) [1.2.155]
14227 [ln <Te> —0.5+s +DQg]
kh 2 _ 42
Q = f’e Pu) [1.2.156]
1422T7Z |:1n (f) —0.5+s+ DQg}
Example 1.20 A gaswell has an estimated wellbore dam-

age radius of 2 feet and an estimated reduced permeability
of 30 md. The formation has permeability and porosity of
55 md and 12% respectively. The well is producing at a rate
of 20 MMscf/day with a gas gravity of 0.6. The following
additional data is available:

Fw = 0.25, h =20 ft, T = 140°F, g, = 0.013 cp

Calculate the apparent skin factor.

Solution

Step 1. Calculate skin factor from Equation 1.2.131:

_ k 7skin
s—h;‘qmﬁﬁ>

55 2
= [% - 1] In (m) =1.732
Step 2. Calculate the turbulence parameter 8 by applying
Equation 1.2.145:

/3 -1 88(10—10) (k)—1.47 (¢)—0,53
=1.88 x 10'°(55)~147(0.12) 05
=159.904 x 10°
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Step 3. Calculate the non-Darcy flow coefficient from Equa-
tion 1.2.144:

F=3.161x 1072 [L’f’]
Hgwh?7y

—3.1612 x 1012 [159 904 > 10°(600) (0. 6)]

(0.013) (20)2(0. 25)

=0.14
Step 4. Calculate the coefficient D from Equation 1.2.148:
_ Frh
14227
(0.14) (55) (20) 4
="~ =1.805x 10
(1422) (600) x
Step 5. Estimate the apparent skin factor by applying Equa-
tion 1.2.149:
s\=s+4 D@y =1.732 + (1.805 x 1074 (20 000)
= 5.342

1.2.12 Principle of superposition

The solutions to the radial diffusivity equation as presented
earlier in this chapter appear to be applicable only for describ-
ing the pressure distribution in an infinite reservoir that was
caused by constant production from a single well. Since real
reservoir systems usually have several wells that are operat-
ing at varying rates, a more generalized approach is needed
to study the fluid flow behavior during the unsteady-state
flow period.

The principle of superposition is a powerful concept that
can be applied to remove the restrictions that have been
imposed on various forms of solution to the transient flow
equation. Mathematically the superposition theorem states
that any sum of individual solutions to the diffusivity equa-
tion is also a solution to that equation. This concept can be
applied to account for the following effects on the transient
flow solution:

o effects of multiple wells;

o effects of rate change;

o effects of the boundary;

o effects of pressure change.

Slider (1976) presented an excellent review and discussion
of the practical applications of the principle of superposition
in solving a wide variety of unsteady-state flow problems.

Effects of multiple wells

Frequently, it is desired to account for the effects of more
than one well on the pressure at some point in the reser-
voir. The superposition concept states that the total pressure
drop at any point in the reservoir is the sum of the pressure
changes at that point caused by the flow in each of the wells
in the reservoir. In other words, we simply superimpose one
effect upon another.

Consider Figure 1.28 which shows three wells that are
producing at different flow rates from an infinite-acting reser-
voir, i.e., an unsteady-state flow reservoir. The principle of
superposition states that the total pressure drop observed at
any well, e.g., well 1, is:

(Ap) total drop at well 1 = (Ap) drop due to well 1
+ (AP) drop due to well 2
+ (AP) drop due to well 3

The pressure drop at well 1 due to its own production is
given by the log approximation to the Ei function solution

Well 2 Well 3

Well 1

Figure 1.28 Well layout for Example 1.21.

presented by Equation 1.2.134, or:

' _ _ 162. GQOIBOHO kt
(pl _pw[) - (Ap)welll - kh |:10g <¢,u()t1’3v>

—-3.23+0. 873]

where:

t = time, hours
s = skin factor
k = permeability, md
Q,1 = oil flow rate from well 1

The additional pressure drops at well 1 due to the production
from wells 2 and 3 must be written in terms of the Ei func-
tion solution, as expressed by Equation 1.2.66, since the log
approximation cannot be applied in calculating the pressure
at a large distance 7 from the well where x > 0. 1. Therefore:

70.6QupB, 7 . [ ~948¢ocir’
kh kt

Applying the above expression to calculate the additional
pressure drop due to two wells gives:

POt =i+ [

(Ap)drop duetowell2 =i — P (11,8) = — |: h

CEi [—948¢,L0ctrf]

70.6Qo1 140 B, :|

kt

(Ap)drop duetowell 3 = Di — P (7’2, t) = — |: o

CEi [—948¢u0cl722}

70.6Q02110B, j|

kt
The total pressure drop is then given by:

162.6Q01 B, 1o kt
(i = Pwhtotal at well 1 = (kihl> [log<¢uctrv% )

-3.23 + 0.875]

B 70.6Q02B, 110 Ei 7948¢;Lct712
kh kt

_ (70.6Q03B, 1o Ei _948¢//,ct722
kh kt

where Q,1, Qo2, and Q3 refer to the respective producing
rates of wells 1, 2, and 3.
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The above computational approach can be used to calcu-
late the pressure at wells 2 and 3. Further, it can be extended
to include any number of wells flowing under the unsteady-
state flow condition. It should also be noted that if the point
of interest is an operating well, the skin factor s must be
included for that well only.

Example 1.21 Assume that the three wells as shown in
Figure 1.28 are producing under a transient flow condition
for 15 hours. The following additional data is available:

Qo1 = 100 STB/day, Q. = 160 STB/day
Qo3 = 200 STB/day, p; = 4500 psi,

B, = 1.20 bbl/STB, ¢, = 20 x 1076 psi~,
S)wem = —0.5, &7 =201t

¢ =15%, k=40md,
7w =0.251t, wu,=2.0cp,
7y =400 1t, 7 =700 ft.

If the three wells are producing at a constant flow rate,
calculate the sand face flowing pressure at well 1.

Solution

Step 1. Calculate the pressure drop at well 1 caused by its
own production by using Equation 1.2.134:

162. 6Q01B; 4o
kh

X [log((b kctﬂ) 73.23+0.87s]
WetTy

(162.6) (100) (1.2) (2.0)
(40) (20)

(61 — b)) = (AD)wen1 =

(A[’)well 1=

) (40) (15)
i [Og ( (0.15)(2) (20 x 10-9) (0. 25)2)

—-3.23+0. 87(0)] = 270.2 psi

Step 2. Calculate the pressure drop at well 1 due to the
production from well 2:

(Ap)drop due towell2 — pi - P(’ly t)

_ [70. 6Q0110B, } - [ — 9481017 }

kh kt

(70.6) (160) (1. 2) (2)
(40) (20)

Ei (948) (0.15) (2.0) (20 x 10‘6) (400)2
) ‘[_ 0) (15) }

— 33.888[—Ei(~1.5168)]
= (33.888) (0. 13) = 4.41 psi

(AD)due to well2 = —

Step 3. Calculate the pressure drop due to production from
well 3:

(Ap)drop duetowell3 = Pi - P (72, t)

_ |:70 6Q02M0B0] Fi |:_948¢M06t7§i|

kh kt

(70.6) (200) (1.2) (2)
a (40) (20)

Ei (948) (0.15) (2.0) (20 x 10‘6) (700)2
1[_ {0) (15) }

— (42.36) [Ei(—4.645)]

(AD) due to well 3 =

= (42.36) (1.84 x 107%) = 0.08 psi
Step 4. Calculate the total pressure drop at well 1:
(AD)otal at w1 = 270.2 + 4.41 4 0.08 = 274.69 psi
Step 5. Calculate py at well 1:

Py = 4500 — 274. 69 = 4225. 31 psi

Effects of variable flow rates

All of the mathematical expressions presented previously
in this chapter require that the wells produce at a con-
stant rate during the transient flow periods. Practically all
wells produce at varying rates and, therefore, it is impor-
tant that we are able to predict the pressure behavior when
the rate changes. For this purpose, the concept of superpo-
sition states that “Every flow rate change in a well will result
in a pressure response which is independent of the pres-
sure responses caused by the other previous rate changes.”
Accordingly, the total pressure drop that has occurred at
any time is the summation of pressure changes caused
separately by each net flow rate change.

Consider the case of a shut-in well, i.e., @ = 0, that was
then allowed to produce at a series of constant rates for the
different time periods shown in Figure 1.29. To calculate the
total pressure drop at the sand face at time ¢, the composite
solution is obtained by adding the individual constant-rate
solutions at the specified rate-time sequence, or:

(AD)otal = (AD)que to(@51-0) T (AP)due to(Qpp-Q01)
+ (Ap)due to(Qo3—Q02) + (Ap)due to(Qos—Q03)

The above expression indicates that there are four contri-
butions to the total pressure drop resulting from the four
individual flow rates:

The first contribution results from increasing the rate from
0 to @, and is in effect over the entire time period #4, thus:

162.6 (@, —0)B
(AP)g, 0 = [(klh)ﬂ}

x |:10g <¢ k?,z ) ~3.23+0. 873]
Mt Ty

It is essential to notice the change in the rate, i.e., (new rate —
old rate), that is used in the above equation. It is the change
in the rate that causes the pressure disturbance. Further, it
should be noted that the “time” in the equation represents
the total elapsed time since the change in the rate has been
in effect.

The second contribution results from decreasing the rate
from @ to @ at t;, thus:

162.6 (@2 — B
(Ap)Qz—Ql = |:(th1),u:|

x [log <M> —3.23+0. 873]

pucerl
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Figure 1.29 Production and pressure history of a well.

Using the same concept, the two other contributions from

@ to @3 and from Qs to @, can be computed as:

[162.6 (Q; — @) Bu |
kh

« [log (M) _3.23+0. 873}

puerl

(ADP)g,;—q,

[162.6 (Q: — Q;) B |
kh

x [log (M) —3.23+0. 873}

e’
The above approach can be extended to model a well with
several rate changes. Note, however, that the above approach
is valid only if the well is flowing under the unsteady state
flow condition for the total time elapsed since the well began
to flow at its initial rate.

(AP)g,—@5 =

Example 1.22 Figure 1.29 shows the rate history of a
well that is producing under transient flow conditions for
15 hours. Given the following data:

i = 5000 psi, h =20 ft, B, =1.1bbl/STB
¢ = 15%, o =2.5¢p, 7w =0.31t
¢ =20 x 108 psi7!, s=0, k=40 md

calculate the sand face pressure after 15 hours.

Solution

Step 1. Calculate the pressure drop due to the first flow rate
for the entire flow period:

(162.6) (100—0) (1.1) (2.5)
(40) (20)

: |:log ( (0.15) (2.5()4((;)0%51)06) (0.3)2) 3'23+0}

=319.6 psi

(Ap)g, 0=

Step 2. Calculate the additional pressure change due to the
change of the flow rate from 100 to 70 STB/day:

(162.6) (70 — 100) (1. 1) (2.5)
(40) (20)

(40) (15-2) _
x [log [(0415)(2.5) (20><10’6>(0.3)2:| 3'23]

(Aap) Q-Q1 =

= —94. 85 psi

Step 3. Calculate the additional pressure change due to the
change of the flow rate from 70 to 150 STB/day:

(162.6) (150 — 70) (1. 1) (2.5)
(40) (20)

(40) (15-5) B
x [log <(0.15) (25) (20x10*6)(o.3)2) 3 23:|

(AD)gy-q, =

= 249.18 psi
Step 4. Calculate the additional pressure change due to the
change of the flow rate from 150 to 85 STB/day:
(162.6) (85 — 150) (1.1) (2.5)

(AP)Q4*Q3 = (40) (20)

(40) (15-10)

x [log [(0.15)(2.5) (20x10’6)(0.3)2} = 23]

= —190. 44 psi

Step 5. Calculate the total pressure drop:
(AD)tota1 = 319.6 + (—94.85) + 249.18 + (—190.44)

= 283.49 psi

Step 6. Calculate the wellbore pressure after 15 hours of
transient flow:

bwi = 5000 — 283.49 = 4716.51 psi

Effects of the reservoir boundary

The superposition theorem can also be extended to pre-
dict the pressure of a well in a bounded res