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Preface

The primary focus of this book is to present the basic
physics of reservoir engineering using the simplest and
most straightforward of mathematical techniques. It is only
through having a complete understanding of physics of
reservoir engineering that the engineer can hope to solve
complex reservoir problems in a practical manner. The book
is arranged so that it can be used as a textbook for senior
and graduate students or as a reference book for practicing
engineers.

Chapter 1 describes the theory and practice of well test-
ing and pressure analysis techniques, which is probably one
of the most important subjects in reservoir engineering.

Chapter 2 discusses various water-influx models along with
detailed descriptions of the computational steps involved in
applying these models. Chapter 3 presents the mathemati-
cal treatment of unconventional gas reservoirs that include
abnormally-pressured reservoirs, coalbed methane, tight
gas, gas hydrates, and shallow gas reservoirs. Chapter 4
covers the basic principle oil recovery mechanisms and the
various forms of the material balance equation. Chapter 5
focuses on illustrating the practical application of the MBE
in predicting the oil reservoir performance under different
scenarios of driving mechanisms. Fundamentals of oil field
economics are discussed in Chapter 6.

Tarek Ahmed and Paul D. McKinney

TLFeBOOK



This page intentionally left blank 

TLFeBOOK



About the Authors

Tarek Ahmed, Ph.D., P.E., is a Senior Staff Advisor with
Anadarko Petroleum Corporation. Before joining Anadarko
in 2002, Dr. Ahmed served as a Professor and Chairman of
the Petroleum Engineering Department at Montana Tech
of the University of Montana. After leaving his teaching
position, Dr Ahmed has been awarded the rank of Pro-
fessor of Emeritus of Petroleum Engineering at Montana
Tech. He has a Ph.D. from the University of Oklahoma,
an M.S. from the University of Missouri-Rolla, and a B.S.
from the Faculty of Petroleum (Egypt) – all degrees in
Petroleum Engineering. Dr. Ahmed is also the author of 29
technical papers and two textbooks that includes “Hydro-
carbon Phase Behavior” (Gulf Publishing Company, 1989)
and “Reservoir Engineering Handbook” (Gulf Professional
Publishing, 1st edition 2000 and 2nd edition 2002). He
taught numerous industry courses and consulted in many
countries including, Indonesia, Algeria, Malaysia, Brazil,

Argentina, and Kuwait. Dr. Ahmed is an active member of
the SPE and serves on the SPE Natural Gas Committee and
ABET.

Paul McKinney is Vice President Reservoir Engineering for
Anadarko Canada Corporation (a wholly owned subsidiary
of Anadarko Petroleum Corporation) overseeing reservoir
engineering studies and economic evaluations associated
with exploration and development activities, A&D, and plan-
ning. Mr. McKinney joined Anadarko in 1983 and has
served in staff and managerial positions with the company
at increasing levels of responsibility. He holds a Bachelor
of Science degree in Petroleum Engineering from Louisiana
Tech University and co-authored SPE 75708, “Applied Reser-
voir Characterization for Maximizing Reserve Growth and
Profitability in Tight Gas Sands: A Paradigm Shift in
Development Strategies for Low-Permeability Reservoirs.”

TLFeBOOK



This page intentionally left blank 

TLFeBOOK



Acknowledgements

As any publication reflects the author’s understanding of the
subject, this textbook reflects our knowledge of reservoir
engineering. This knowledge was acquired over the years
by teaching, experience, reading, study, and most impor-
tantly, by discussion with our colleagues in academics and
the petroleum industry. It is our hope that the information
presented in this textbook will improve the understanding of
the subject of reservoir engineering. Much of the material
on which this book is based was drawn from the publications
of the Society of Petroleum Engineers. Tribute is paid to the
educators, engineers, and authors who have made numer-
ous and significant contributions to the field of reservoir
engineering.

We would like to express our thanks to Anadarko
Petroleum Corporation for granting us the permission to
publish this book and, in particular, to Bob Daniels, Senior
Vice President, Exploration and Production, Anadarko
Petroleum Corporation and Mike Bridges, President,

Anadarko Canada Corporation.
Of those who have offered technical advice, we would

like to acknowledge the assistance of Scott Albertson,
Chief Engineer, Anadarko Canada Corporation, Dr. Keith
Millheim, Manager, Operations Technology and Planning,
Anadarko Petroleum Corporation, Jay Rushing, Engineer-
ing Advisor, Anadarko Petroleum Corporation, P.K. Pande,
Subsurface Manager, Anadarko Petroleum Corporation, Dr.
Tom Blasingame with Texas A&M and Owen Thomson,
Manager, Capital Planning, Anadarko Canada Corporation.
Special thanks to Montana Tech professors; Dr. Gil Cady
and Dr. Margaret Ziaja for their valuable suggestions and
to Dr. Wenxia Zhang for her comments and suggestions on
chapter 1.

This book could not have been completed without the
(most of the time) cheerful typing and retyping by Barbara
Jeanne Thomas; her work ethic and her enthusiastic hard
work are greatly appreciated. Thanks BJ.

TLFeBOOK



This page intentionally left blank 

TLFeBOOK



Contents

1 Well Testing Analysis 1/1
1.1 Primary Reservoir Characteristics 1/2
1.2 Fluid Flow Equations 1/5
1.3 Transient Well Testing 1/44
1.4 Type Curves 1/64
1.5 Pressure Derivative Method 1/72
1.6 Interference and Pulse Tests 1/114
1.7 Injection Well Testing 1/133

2 Water Influx 2/149
2.1 Classification of Aquifers 2/150
2.2 Recognition of Natural Water

Influx 2/151
2.3 Water Influx Models 2/151

3 Unconventional Gas Reservoirs 3/187
3.1 Vertical Gas Well Performance 3/188
3.2 Horizontal Gas Well Performance 3/200
3.3 Material Balance Equation for

Conventional and Unconventional
Gas Reservoirs 3/201

3.4 Coalbed Methane “CBM” 3/217
3.5 Tight Gas Reservoirs 3/233
3.6 Gas Hydrates 3/271
3.7 Shallow Gas Reservoirs 3/286

4 Performance of Oil Reservoirs 4/291
4.1 Primary Recovery Mechanisms 4/292
4.2 The Material Balance Equation 4/298
4.3 Generalized MBE 4/299
4.4 The Material Balance as an Equation

of a Straight Line 4/307
4.5 Tracy’s Form of the MBE 4/322

5 Predicting Oil Reservoir
Performance 5/327

5.1 Phase 1. Reservoir Performance Prediction
Methods 5/328

5.2 Phase 2. Oil Well Performance 5/342
5.3 Phase 3. Relating Reservoir Performance

to Time 5/361

6 Introduction to Oil Field Economics 6/365
6.1 Fundamentals of Economic Equivalence

and Evaluation Methods 6/366
6.2 Reserves Definitions and Classifications 6/372
6.3 Accounting Principles 6/375

References 397

Index 403

TLFeBOOK



This page intentionally left blank 

TLFeBOOK



1 Well Testing
Analysis

Contents
1.1 Primary Reservoir Characteristics 1/2
1.2 Fluid Flow Equations 1/5
1.3 Transient Well Testing 1/44
1.4 Type Curves 1/64
1.5 Pressure Derivative Method 1/72
1.6 Interference and Pulse Tests 1/114
1.7 Injection Well Testing 1/133

TLFeBOOK



1/2 WELL TESTING ANALYSIS

1.1 Primary Reservoir Characteristics

Flow in porous media is a very complex phenomenon and
cannot be described as explicitly as flow through pipes or
conduits. It is rather easy to measure the length and diam-
eter of a pipe and compute its flow capacity as a function of
pressure; however, in porous media flow is different in that
there are no clear-cut flow paths which lend themselves to
measurement.

The analysis of fluid flow in porous media has evolved
throughout the years along two fronts: the experimental and
the analytical. Physicists, engineers, hydrologists, and the
like have examined experimentally the behavior of various
fluids as they flow through porous media ranging from sand
packs to fused Pyrex glass. On the basis of their analyses,
they have attempted to formulate laws and correlations that
can then be utilized to make analytical predictions for similar
systems.

The main objective of this chapter is to present the math-
ematical relationships that are designed to describe the flow
behavior of the reservoir fluids. The mathematical forms of
these relationships will vary depending upon the characteris-
tics of the reservoir. These primary reservoir characteristics
that must be considered include:

● types of fluids in the reservoir;
● flow regimes;
● reservoir geometry;
● number of flowing fluids in the reservoir.

1.1.1 Types of fluids
The isothermal compressibility coefficient is essentially the
controlling factor in identifying the type of the reservoir fluid.
In general, reservoir fluids are classified into three groups:

(1) incompressible fluids;
(2) slightly compressible fluids;
(3) compressible fluids.

The isothermal compressibility coefficient c is described
mathematically by the following two equivalent expressions:
In terms of fluid volume:

c = −1
V

∂V
∂p

[1.1.1]

In terms of fluid density:

c = 1
ρ

∂ρ

∂p
[1.1.2]

where

V= fluid volume
ρ= fluid density
p = pressure, psi−1

c = isothermal compressibility coefficient, �−1

Incompressible fluids
An incompressible fluid is defined as the fluid whose volume
or density does not change with pressure. That is

∂V
∂p

= 0 and
∂ρ

∂p
= 0

Incompressible fluids do not exist; however, this behavior
may be assumed in some cases to simplify the derivation
and the final form of many flow equations.

Slightly compressible fluids
These “slightly” compressible fluids exhibit small changes
in volume, or density, with changes in pressure. Knowing the
volume Vref of a slightly compressible liquid at a reference
(initial) pressure pref , the changes in the volumetric behavior

of this fluid as a function of pressure p can be mathematically
described by integrating Equation 1.1.1, to give:

− c
∫ p

pref

dp =
∫ V

Vref

dV
V

exp [c(pref − p)] = V
V ref

V = Vref exp [c (pref − p)] [1.1.3]

where:

p = pressure, psia
V = volume at pressure p, ft3

pref = initial (reference) pressure, psia
Vref = fluid volume at initial (reference) pressure, psia

The exponential ex may be represented by a series expan-
sion as:

ex = 1 + x + x2

2! + x2

3! + · · · + xn

n! [1.1.4]

Because the exponent x (which represents the term
c (pref − p)) is very small, the ex term can be approximated
by truncating Equation 1.1.4 to:

ex = 1 + x [1.1.5]

Combining Equation 1.1.5 with 1.1.3 gives:

V = Vref [1 + c(pref − p)] [1.1.6]

A similar derivation is applied to Equation 1.1.2, to give:

ρ = ρref [1 − c(pref − p)] [1.1.7]

where:

V = volume at pressure p
ρ = density at pressure p

Vref = volume at initial (reference) pressure pref
ρref = density at initial (reference) pressure pref

It should be pointed out that crude oil and water systems fit
into this category.

Compressible fluids
These are fluids that experience large changes in volume as a
function of pressure. All gases are considered compressible
fluids. The truncation of the series expansion as given by
Equation 1.1.5 is not valid in this category and the complete
expansion as given by Equation 1.1.4 is used.

The isothermal compressibility of any compressible fluid
is described by the following expression:

cg = 1
p

− 1
Z

(
∂Z
∂p

)
T

[1.1.8]

Figures 1.1 and 1.2 show schematic illustrations of the vol-
ume and density changes as a function of pressure for the
three types of fluids.

1.1.2 Flow regimes
There are basically three types of flow regimes that must be
recognized in order to describe the fluid flow behavior and
reservoir pressure distribution as a function of time. These
three flow regimes are:

(1) steady-state flow;
(2) unsteady-state flow;
(3) pseudosteady-state flow.
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Figure 1.1 Pressure–volume relationship.
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Figure 1.2 Fluid density versus pressure for different fluid types.

Steady-state flow
The flow regime is identified as a steady-state flow if the pres-
sure at every location in the reservoir remains constant, i.e.,
does not change with time. Mathematically, this condition is
expressed as:(

∂p
∂t

)
i
= 0 [1.1.9]

This equation states that the rate of change of pressure p with
respect to time t at any location i is zero. In reservoirs, the
steady-state flow condition can only occur when the reservoir
is completely recharged and supported by strong aquifer or
pressure maintenance operations.

Unsteady-state flow
Unsteady-state flow (frequently called transient flow) is
defined as the fluid flowing condition at which the rate of
change of pressure with respect to time at any position in
the reservoir is not zero or constant. This definition suggests
that the pressure derivative with respect to time is essentially

a function of both position i and time t, thus:(
∂p
∂t

)
= f

(
i, t
)

[1.1.10]

Pseudosteady-state flow
When the pressure at different locations in the reservoir
is declining linearly as a function of time, i.e., at a con-
stant declining rate, the flowing condition is characterized
as pseudosteady-state flow. Mathematically, this definition
states that the rate of change of pressure with respect to
time at every position is constant, or:(

∂p
∂t

)
i
= constant [1.1.11]

It should be pointed out that pseudosteady-state flow is com-
monly referred to as semisteady-state flow and quasisteady-
state flow.

Figure 1.3 shows a schematic comparison of the pressure
declines as a function of time of the three flow regimes.
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1/4 WELL TESTING ANALYSIS
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Figure 1.3 Flow regimes.
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Figure 1.4 Ideal radial flow into a wellbore.

1.1.3 Reservoir geometry
The shape of a reservoir has a significant effect on its flow
behavior. Most reservoirs have irregular boundaries and
a rigorous mathematical description of their geometry is
often possible only with the use of numerical simulators.
However, for many engineering purposes, the actual flow
geometry may be represented by one of the following flow
geometries:

● radial flow;
● linear flow;
● spherical and hemispherical flow.

Radial flow
In the absence of severe reservoir heterogeneities, flow into
or away from a wellbore will follow radial flow lines a substan-
tial distance from the wellbore. Because fluids move toward
the well from all directions and coverage at the wellbore,
the term radial flow is used to characterize the flow of fluid
into the wellbore. Figure 1.4 shows idealized flow lines and
isopotential lines for a radial flow system.

Linear flow
Linear flow occurs when flow paths are parallel and the fluid
flows in a single direction. In addition, the cross-sectional

TLFeBOOK
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Figure 1.9 Pressure versus distance in a linear flow.

area to flow must be constant. Figure 1.5 shows an ideal-
ized linear flow system. A common application of linear flow
equations is the fluid flow into vertical hydraulic fractures as
illustrated in Figure 1.6.

Spherical and hemispherical flow
Depending upon the type of wellbore completion config-
uration, it is possible to have spherical or hemispherical
flow near the wellbore. A well with a limited perforated
interval could result in spherical flow in the vicinity of the
perforations as illustrated in Figure 1.7. A well which only
partially penetrates the pay zone, as shown in Figure 1.8,
could result in hemispherical flow. The condition could arise
where coning of bottom water is important.

1.1.4 Number of flowing fluids in the reservoir
The mathematical expressions that are used to predict
the volumetric performance and pressure behavior of a
reservoir vary in form and complexity depending upon the
number of mobile fluids in the reservoir. There are generally
three cases of flowing system:

(1) single-phase flow (oil, water, or gas);
(2) two-phase flow (oil–water, oil–gas, or gas–water);
(3) three-phase flow (oil, water, and gas).

The description of fluid flow and subsequent analysis of pres-
sure data becomes more difficult as the number of mobile
fluids increases.

1.2 Fluid Flow Equations

The fluid flow equations that are used to describe the flow
behavior in a reservoir can take many forms depending upon
the combination of variables presented previously (i.e., types
of flow, types of fluids, etc.). By combining the conserva-
tion of mass equation with the transport equation (Darcy’s
equation) and various equations of state, the necessary flow
equations can be developed. Since all flow equations to be
considered depend on Darcy’s law, it is important to consider
this transport relationship first.

1.2.1 Darcy’s law
The fundamental law of fluid motion in porous media is
Darcy’s law. The mathematical expression developed by
Darcy in 1956 states that the velocity of a homogeneous fluid
in a porous medium is proportional to the pressure gradi-
ent, and inversely proportional to the fluid viscosity. For a
horizontal linear system, this relationship is:

v = q
A

= − k
µ

dp
dx

[1.2.1a]

v is the apparent velocity in centimeters per second and is
equal to q/A, where q is the volumetric flow rate in cubic
centimeters per second and A is the total cross-sectional area
of the rock in square centimeters. In other words, A includes
the area of the rock material as well as the area of the pore
channels. The fluid viscosity, µ, is expressed in centipoise
units, and the pressure gradient, dp/dx, is in atmospheres
per centimeter, taken in the same direction as v and q. The
proportionality constant, k, is the permeability of the rock
expressed in Darcy units.

The negative sign in Equation 1.2.1a is added because the
pressure gradient dp/dx is negative in the direction of flow
as shown in Figure 1.9.
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Figure 1.10 Pressure gradient in radial flow.

For a horizontal-radial system, the pressure gradient is
positive (see Figure 1.10) and Darcy’s equation can be
expressed in the following generalized radial form:

v = qr

Ar
= k

µ

(
∂p
∂r

)
r

[1.2.1b]

where:

qr = volumetric flow rate at radius r
Ar = cross-sectional area to flow at radius r

(∂p/∂r)r = pressure gradient at radius r
v = apparent velocity at radius r

The cross-sectional area at radius r is essentially the sur-
face area of a cylinder. For a fully penetrated well with a net
thickness of h, the cross-sectional area Ar is given by:

Ar = 2πrh

Darcy’s law applies only when the following conditions exist:

● laminar (viscous) flow;
● steady-state flow;
● incompressible fluids;
● homogeneous formation.

For turbulent flow, which occurs at higher velocities, the
pressure gradient increases at a greater rate than does the
flow rate and a special modification of Darcy’s equation
is needed. When turbulent flow exists, the application of
Darcy’s equation can result in serious errors. Modifications
for turbulent flow will be discussed later in this chapter.

1.2.2 Steady-state flow
As defined previously, steady-state flow represents the condi-
tion that exists when the pressure throughout the reservoir
does not change with time. The applications of steady-state
flow to describe the flow behavior of several types of fluid in
different reservoir geometries are presented below. These
include:

● linear flow of incompressible fluids;
● linear flow of slightly compressible fluids;
● linear flow of compressible fluids;
● radial flow of incompressible fluids;
● radial flow of slightly compressible fluids;

dx

L

p1 p2

Figure 1.11 Linear flow model.

● radial flow of compressible fluids;
● multiphase flow.

Linear flow of incompressible fluids
In a linear system, it is assumed that the flow occurs through
a constant cross-sectional area A, where both ends are
entirely open to flow. It is also assumed that no flow crosses
the sides, top, or bottom as shown in Figure 1.11. If an incom-
pressible fluid is flowing across the element dx, then the
fluid velocity v and the flow rate q are constants at all points.
The flow behavior in this system can be expressed by the
differential form of Darcy’s equation, i.e., Equation 1.2.1a.
Separating the variables of Equation 1.2.1a and integrating
over the length of the linear system:

q
A

∫ L

0
dx = − k

u

∫ p2

p1

dp

which results in:

q = kA(p1 − p2)

µL

It is desirable to express the above relationship in customary
field units, or:

q = 0. 001127kA(p1 − p2)

µL
[1.2.2]

where:

q = flow rate, bbl/day
k = absolute permeability, md
p = pressure, psia
µ= viscosity, cp
L = distance, ft
A= cross-sectional area, ft2

Example 1.1 An incompressible fluid flows in a linear
porous media with the following properties:

L = 2000 ft,
k = 100 md,
p1 = 2000 psi,

h = 20 ft,
φ = 15%,
p2 = 1990 psi

width = 300 ft
µ = 2 cp

Calculate:

(a) flow rate in bbl/day;
(b) apparent fluid velocity in ft/day;
(c) actual fluid velocity in ft/day.

Solution Calculate the cross-sectional area A:

A = (h)(width) = (20)(100) = 6000 ft2

TLFeBOOK



WELL TESTING ANALYSIS 1/7

(a) Calculate the flow rate from Equation 1.2.2:

q = 0. 001127kA(p1 − p2)

µL

= (0. 001127)(100)(6000)(2000 − 1990)
(2)(2000)

= 1. 6905 bbl/day
(b) Calculate the apparent velocity:

v = q
A

= (1. 6905)(5. 615)
6000

= 0. 0016 ft/day

(c) Calculate the actual fluid velocity:

v = q
φA

= (1. 6905)(5. 615)
(0. 15)(6000)

= 0. 0105 ft/day

The difference in the pressure (p1–p2) in Equation 1.2.2
is not the only driving force in a tilted reservoir. The gravita-
tional force is the other important driving force that must be
accounted for to determine the direction and rate of flow. The
fluid gradient force (gravitational force) is always directed
vertically downward while the force that results from an
applied pressure drop may be in any direction. The force
causing flow would then be the vector sum of these two. In
practice we obtain this result by introducing a new parame-
ter, called “fluid potential,” which has the same dimensions
as pressure, e.g., psi. Its symbol is �. The fluid potential at
any point in the reservoir is defined as the pressure at that
point less the pressure that would be exerted by a fluid head
extending to an arbitrarily assigned datum level. Letting �zi
be the vertical distance from a point i in the reservoir to this
datum level:
�i = pi −

( ρ

144

)
�zi [1.2.3]

where ρ is the density in lb/ft3.
Expressing the fluid density in g/cm3 in Equation 1.2.3

gives:
�i = pi − 0. 433γ�z [1.2.4]
where:

�i= fluid potential at point i, psi
pi = pressure at point i, psi

�zi = vertical distance from point i to the selected
datum level

ρ = fluid density under reservoir conditions, lb/ft3

γ= fluid density under reservoir conditions, g/cm3;
this is not the fluid specific gravity

The datum is usually selected at the gas–oil contact, oil–
water contact, or the highest point in formation. In using
Equations 1.2.3 or 1.2.4 to calculate the fluid potential �i at
location i, the vertical distance zi is assigned as a positive
value when the point i is below the datum level and as a
negative value when it is above the datum level. That is:

If point i is above the datum level:

�i = pi +
( ρ

144

)
�zi

and equivalently:
�i = pi + 0. 433γ�zi

If point i is below the datum level:

�i = pi −
( ρ

144

)
�zi

and equivalently:
�i = pi − 0. 433γ�zi

Applying the above-generalized concept to Darcy’s equation
(Equation 1.2.2) gives:

q = 0. 001127kA (�1 − �2)

µL
[1.2.5]

174.3′

p1 = 2000

p2 = 1990

2000′

5°

Figure 1.12 Example of a tilted layer.

It should be pointed out that the fluid potential drop (�1–�2)
is equal to the pressure drop (p1–p2) only when the flow
system is horizontal.

Example 1.2 Assume that the porous media with the
properties as given in the previous example are tilted with a
dip angle of 5◦ as shown in Figure 1.12. The incompressible
fluid has a density of 42 lb/ft3. Resolve Example 1.1 using
this additional information.

Solution

Step 1. For the purpose of illustrating the concept of fluid
potential, select the datum level at half the vertical
distance between the two points, i.e., at 87.15 ft, as
shown in Figure 1.12.

Step 2. Calculate the fluid potential at point 1 and 2.
Since point 1 is below the datum level, then:

�1 = p1 −
( ρ

144

)
�z1 = 2000 −

(
42

144

)
(87. 15)

= 1974. 58 psi
Since point 2 is above the datum level, then:

�2 = p2 +
( ρ

144

)
�z2 = 1990 +

(
42

144

)
(87. 15)

= 2015. 42 psi
Because �2 > �1, the fluid flows downward from
point 2 to point 1. The difference in the fluid
potential is:

�� = 2015. 42 − 1974. 58 = 40. 84 psi
Notice that, if we select point 2 for the datum level,
then:

�1 = 2000 −
(

42
144

)
(174. 3) = 1949. 16 psi

�2 = 1990 +
(

42
144

) (
0
) = 1990 psi

The above calculations indicate that regardless of
the position of the datum level, the flow is downward
from point 2 to 1 with:

�� = 1990 − 1949. 16 = 40. 84 psi
Step 3. Calculate the flow rate:

q = 0. 001127kA (�1 − �2)

µL

= (0. 001127)(100)(6000)(40. 84)
(2)(2000)

= 6. 9 bbl/day
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1/8 WELL TESTING ANALYSIS

Step 4. Calculate the velocity:

Apparent velocity = (6. 9)(5. 615)
6000

= 0. 0065 ft/day

Actual velocity = (6. 9)(5. 615)
(0. 15)(6000)

= 0. 043 ft/day

Linear flow of slightly compressible fluids
Equation 1.1.6 describes the relationship that exists between
pressure and volume for a slightly compressible fluid, or:

V = Vref [1 + c(pref − p)]
This equation can be modified and written in terms of flow
rate as:

q = qref [1 + c(pref − p)] [1.2.6]

where qref is the flow rate at some reference pressure
pref . Substituting the above relationship in Darcy’s equation
gives:

q
A

= qref [1 + c(pref − p)]
A

= −0. 001127
k
µ

dp
dx

Separating the variables and arranging:

qref

A

∫ L

0
dx = −0. 001127

k
µ

∫ p2

p1

[
dp

1 + c(pref − p)

]

Integrating gives:

qref =
[

0. 001127kA
µcL

]
ln
[

1 + c(pref − p2)
1 + c(pref − p1)

]
[1.2.7]

where:

qref = flow rate at a reference pressure pref , bbl/day
p1 = upstream pressure, psi
p2 = downstream pressure, psi
k = permeability, md
µ= viscosity, cp
c = average liquid compressibility, psi−1

Selecting the upstream pressure p1 as the reference pressure
pref and substituting in Equation 1.2.7 gives the flow rate at
point 1 as:

q1 =
[

0. 001127kA
µcL

]
ln [1 + c(p1 − p2)] [1.2.8]

Choosing the downstream pressure p2 as the reference
pressure and substituting in Equation 1.2.7 gives:

q2 =
[

0. 001127kA
µcL

]
ln
[

1
1 + c(p2 − p1)

]
[1.2.9]

where q1 and q2 are the flow rates at point 1 and 2,
respectively.

Example 1.3 Consider the linear system given in
Example 1.1 and, assuming a slightly compressible liquid,
calculate the flow rate at both ends of the linear system. The
liquid has an average compressibility of 21 × 10−5 psi−1.

Solution Choosing the upstream pressure as the reference
pressure gives:

q1 =
[

0. 001127kA
µcL

]
ln [1 + c(p1 − p2)]

=
[(

0. 001127
) (

100
) (

6000
)

(
2
) (

21 × 10−5
) (

2000
)
]

× ln
[
1 + 21×10−5 (2000 − 1990

)] = 1. 689 bbl/day

Choosing the downstream pressure gives

q2 =
[

0. 001127kA
µcL

]
ln
[

1
1 + c(p2 − p1)

]

=
[(

0. 001127
) (

100
) (

6000
)

(
2
) (

21 × 10−5
) (

2000
)
]

× ln

[
1

1 + (21 × 10−5
) (

1990 − 2000
)
]

= 1. 692 bbl/day

The above calculations show that q1 and q2 are not largely
different, which is due to the fact that the liquid is slightly
incompressible and its volume is not a strong function of
pressure.

Linear flow of compressible fluids (gases)
For a viscous (laminar) gas flow in a homogeneous linear sys-
tem, the real-gas equation of state can be applied to calculate
the number of gas moles n at the pressure p, temperature T ,
and volume V :

n = pV
ZRT

At standard conditions, the volume occupied by the above
n moles is given by:

Vsc = nZscRTsc

psc

Combining the above two expressions and assuming Zsc =
1 gives:

pV
ZT

= pscVsc

Tsc

Equivalently, the above relation can be expressed in terms
of the reservoir condition flow rate q, in bbl/day, and surface
condition flow rate Qsc, in scf/day, as:

p(5. 615q)
ZT

= pscQsc

Tsc

Rearranging:(
psc

Tsc

)(
ZT
p

)(
Qsc

5. 615

)
= q [1.2.10]

where:

q = gas flow rate at pressure p in bbl/day
Qsc = gas flow rate at standard conditions, scf/day

Z = gas compressibility factor
Tsc, psc = standard temperature and pressure in ◦R and

psia, respectively.

Dividing both sides of the above equation by the cross-
sectional area A and equating it with that of Darcy’s law, i.e.,
Equation 1.2.1a, gives:

q
A

=
(

psc

Tsc

)(
ZT
p

)(
Qsc

5. 615

)(
1
A

)
= −0. 001127

k
µ

dp
dx

The constant 0.001127 is to convert Darcy’s units to field
units. Separating variables and arranging yields:[

QscpscT
0. 006328kTscA

] ∫ L

0
dx = −

∫ p2

p1

p
Zµg

dp

Assuming that the product of Zµg is constant over the spec-
ified pressure range between p1 and p2, and integrating,
gives: [

QscpscT
0. 006328kTscA

] ∫ L

0
dx = − 1

Zµg

∫ p2

p1

p dp
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or:

Qsc = 0. 003164TscAk
(
p2

1 − p2
2

)
pscT (Zµg )L

where:

Qsc= gas flow rate at standard conditions, scf/day
k = permeability, md
T = temperature, ◦R

µg = gas viscosity, cp
A = cross-sectional area, ft2

L = total length of the linear system, ft

Setting psc = 14. 7 psi and Tsc = 520◦R in the above expres-
sion gives:

Qsc = 0. 111924Ak
(
p2

1 − p2
2

)
TLZµg

[1.2.11]

It is essential to notice that those gas properties Z and µg
are very strong functions of pressure, but they have been
removed from the integral to simplify the final form of the gas
flow equation. The above equation is valid for applications
when the pressure is less than 2000 psi. The gas proper-
ties must be evaluated at the average pressure p as defined
below:

p =
√

p2
1 + p2

2

2
[1.2.12]

Example 1.4 A natural gas with a specific gravity of 0.72
is flowing in linear porous media at 140◦F. The upstream
and downstream pressures are 2100 psi and 1894.73 psi,
respectively. The cross-sectional area is constant at 4500 ft2.
The total length is 2500 ft with an absolute permeability of
60 md. Calculate the gas flow rate in scf/day (psc = 14. 7
psia, Tsc = 520◦R).

Solution

Step 1. Calculate average pressure by using Equation 1.2.12:

p =
√

21002 + 1894. 732

2
= 2000 psi

Step 2. Using the specific gravity of the gas, calculate its
pseudo-critical properties by applying the following
equations:

Tpc = 168 + 325γg − 12. 5γ 2
g

= 168 + 325(0. 72) − 12. 5(0. 72)2 = 395. 5◦R

ppc = 677 + 15. 0γg − 37. 5γ 2
g

= 677 + 15. 0(0. 72) − 37. 5(0. 72)2 = 668. 4 psia

Step 3. Calculate the pseudo-reduced pressure and
temperature:

ppr = 2000
668. 4

= 2. 99

Tpr = 600
395. 5

= 1. 52

Step 4. Determine the Z -factor from a Standing–Katz chart
to give:

Z = 0. 78

Step 5. Solve for the viscosity of the gas by applying the Lee–
Gonzales–Eakin method and using the following

sequence of calculations:

Ma = 28. 96γg

= 28. 96(0. 72) = 20. 85

ρg = pMa

ZRT

= (2000)(20. 85)
(0. 78)(10. 73)(600)

= 8. 30 lb/ft3

K = (9. 4 + 0. 02Ma)T 1.5

209 + 19Ma + T

=
[
9. 4 + 0. 02(20. 96)

]
(600)1.5

209 + 19(20. 96) + 600
= 119. 72

X = 3. 5 + 986
T

+ 0. 01Ma

= 3. 5 + 986
600

+ 0. 01(20. 85) = 5. 35

Y = 2. 4 − 0. 2X

= 2. 4 − (0. 2)(5. 35) = 1. 33

µg = 10−4K exp
[
X (ρg /62. 4)Y ] = 0. 0173 cp

= 10−4

(
119. 72 exp

[
5. 35

(
8. 3
62. 4

)1.33
])

= 0. 0173

Step 6. Calculate the gas flow rate by applying Equation
1.2.11:

Qsc = 0. 111924Ak
(
p2

1 − p2
2

)
TLZµg

= (0. 111924)
(
4500

) (
60
) (

21002 − 1894. 732
)

(
600
) (

2500
) (

0. 78
) (

0. 0173
)

= 1 224 242 scf/day

Radial flow of incompressible fluids
In a radial flow system, all fluids move toward the producing
well from all directions. However, before flow can take place,
a pressure differential must exist. Thus, if a well is to produce
oil, which implies a flow of fluids through the formation to the
wellbore, the pressure in the formation at the wellbore must
be less than the pressure in the formation at some distance
from the well.

The pressure in the formation at the wellbore of a pro-
ducing well is known as the bottom-hole flowing pressure
(flowing BHP, pwf ).

Consider Figure 1.13 which schematically illustrates the
radial flow of an incompressible fluid toward a vertical well.
The formation is considered to have a uniform thickness h
and a constant permeability k. Because the fluid is incom-
pressible, the flow rate q must be constant at all radii. Due
to the steady-state flowing condition, the pressure profile
around the wellbore is maintained constant with time.

Let pwf represent the maintained bottom-hole flowing pres-
sure at the wellbore radius rw and pe denotes the external
pressure at the external or drainage radius. Darcy’s gener-
alized equation as described by Equation 1.2.1b can be used
to determine the flow rate at any radius r :

v = q
Ar

= 0. 001127
k
µ

dp
dr

[1.2.13]
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pe
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rw

hr

pwf

Center
of the Well

Figure 1.13 Radial flow model.

where:

v = apparent fluid velocity, bbl/day-ft2

q = flow rate at radius r , bbl/day
k = permeability, md
µ = viscosity, cp

0. 001127 = conversion factor to express the equation
in field units

Ar = cross-sectional area at radius r

The minus sign is no longer required for the radial system
shown in Figure 1.13 as the radius increases in the same
direction as the pressure. In other words, as the radius
increases going away from the wellbore the pressure also
increases. At any point in the reservoir the cross-sectional
area across which flow occurs will be the surface area of a
cylinder, which is 2πrh, or:

v = q
Ar

= q
2πrh

= 0. 001127
k
µ

dp
dr

The flow rate for a crude oil system is customarily expressed
in surface units, i.e., stock-tank barrels (STB), rather than
reservoir units. Using the symbol Qo to represent the oil flow
as expressed in STB/day, then:

q = BoQo

where Bo is the oil formation volume factor in bbl/STB. The
flow rate in Darcy’s equation can be expressed in STB/day,
to give:

QoBo

2πrh
= 0. 001127

k
µo

dp
dr

Integrating this equation between two radii, r1 and r2, when
the pressures are p1 and p2, yields:
∫ r2

r1

(
Qo

2πh

)
dr
r

= 0. 001127
∫ P2

P1

(
k

µoBo

)
dp [1.2.14]

For an incompressible system in a uniform formation,
Equation 1.2.14 can be simplified to:

Qo

2πh

∫ r2

r1

dr
r

= 0. 001127k
µoBo

∫ P2

P1

dp

Performing the integration gives:

Qo = 0. 00708kh(p2 − p1)

µoBo ln
(
r2/r1

)
Frequently the two radii of interest are the wellbore radius
rw and the external or drainage radius re. Then:

Qo = 0. 00708kh(pe − pw)

µoBo ln
(
re/rw

) [1.2.15]

where:

Qo= oil flow rate, STB/day
pe = external pressure, psi

pwf = bottom-hole flowing pressure, psi
k = permeability, md

µo = oil viscosity, cp
Bo = oil formation volume factor, bbl/STB
h = thickness, ft
re = external or drainage radius, ft
rw= wellbore radius, ft

The external (drainage) radius re is usually determined from
the well spacing by equating the area of the well spacing with
that of a circle. That is:

πr2
e = 43 560A

or:

re =
√

43 560A
π

[1.2.16]

where A is the well spacing in acres.
In practice, neither the external radius nor the wellbore

radius is generally known with precision. Fortunately, they
enter the equation as a logarithm, so the error in the equation
will be less than the errors in the radii.
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Equation 1.2.15 can be arranged to solve for the pressure
p at any radius r , to give:

p = pwf +
[

QoBoµo

0. 00708kh

]
ln
(

r
rw

)
[1.2.17]

Example 1.5 An oil well in the Nameless Field is pro-
ducing at a stabilized rate of 600 STB/day at a stabilized
bottom-hole flowing pressure of 1800 psi. Analysis of the
pressure buildup test data indicates that the pay zone is
characterized by a permeability of 120 md and a uniform
thickness of 25 ft. The well drains an area of approximately
40 acres. The following additional data is available:

rw = 0. 25 ft, A = 40 acres

Bo = 1. 25 bbl/STB, µo = 2. 5 cp

Calculate the pressure profile (distribution) and list the pres-
sure drop across 1 ft intervals from rw to 1.25 ft, 4 to 5 ft, 19 to
20 ft, 99 to 100 ft, and 744 to 745 ft.

Solution

Step 1. Rearrange Equation 1.2.15 and solve for the pressure
p at radius r :

p = pwf +
[

µoBoQo

0. 00708kh

]
ln
(

r
rw

)

= 1800 +
[ (

2. 5
) (

1. 25
) (

600
)

(
0. 00708

) (
120
) (

25
)
]

ln
( r

0. 25

)

= 1800 + 88. 28 ln
( r

0. 25

)

Step 2. Calculate the pressure at the designated radii:

r (ft) p (psi) Radius Pressure drop
interval

0.25 1800
1.25 1942 0.25–1.25 1942−1800 = 142 psi
4 2045
5 2064 4–5 2064−2045 = 19 psi
19 2182
20 2186 19–20 2186−2182 = 4 psi
99 2328
100 2329 99–100 2329−2328 = 1 psi
744 2506.1
745 2506.2 744–745 2506.2−2506.1 = 0.1 psi

Figure 1.14 shows the pressure profile as a function of
radius for the calculated data.

Results of the above example reveal that the pressure drop
just around the wellbore (i.e., 142 psi) is 7.5 times greater
than at the 4 to 5 interval, 36 times greater than at 19–20 ft,
and 142 times than that at the 99–100 ft interval. The reason
for this large pressure drop around the wellbore is that the
fluid flows in from a large drainage area of 40 acres.

The external pressure pe used in Equation 1.2.15 cannot be
measured readily, but pe does not deviate substantially from
the initial reservoir pressure if a strong and active aquifer is
present.

Several authors have suggested that the average reser-
voir pressure pr , which often is reported in well test results,
should be used in performing material balance calcula-
tions and flow rate prediction. Craft and Hawkins (1959)
showed that the average pressure is located at about 61%
of the drainage radius re for a steady-state flow condition.

Substituting 0.61re in Equation 1.2.17 gives:

p
(
at r = 0. 61re

) = pr = pwf +
[

QoBoµo

0. 00708kh

]
ln
(

0. 61re

rw

)

or in terms of flow rate:

Qo = 0. 00708kh(pr − pwf )

µoBo ln
(
0. 61re/rw

) [1.2.18]

But since ln
(
0. 61re/rw

) = ln
(
re/rw

)− 0. 5, then:

Qo = 0. 00708kh(pr − pwf )

µoBo
[
ln
(
re/rw

)− 0. 5
] [1.2.19]

Golan and Whitson (1986) suggested a method for approxi-
mating the drainage area of wells producing from a common
reservoir. These authors assume that the volume drained
by a single well is proportional to its rate of flow. Assuming
constant reservoir properties and a uniform thickness, the
approximate drainage area of a single well Aw is:

Aw = AT

(
qw

qT

)
[1.2.20]

where:

Aw = drainage area of a well
AT = total area of the field
qT = total flow rate of the field
qw = well flow rate

Radial flow of slightly compressible fluids
Terry and co-authors (1991) used Equation 1.2.6 to express
the dependency of the flow rate on pressure for slightly com-
pressible fluids. If this equation is substituted into the radial
form of Darcy’s law, the following is obtained:

q
Ar

= qref
[
1 + c(pref − p)

]
2πrh

= 0. 001127
k
µ

dp
dr

where qref is the flow rate at some reference pressure pref .
Separating the variables and assuming a constant com-

pressibility over the entire pressure drop, and integrating
over the length of the porous medium:

qrefµ

2πkh

∫ re

rw

dr
r

= 0. 001127
∫ pe

pwf

dp
1 + c(pref − p)

gives:

qref =
[

0. 00708kh
µc ln(re/rw)

]
ln
[

1 + c(pe − pref )

1 + c(pwf − pref )

]

where qref is the oil flow rate at a reference pressure pref .
Choosing the bottom-hole flow pressure pwf as the reference
pressure and expressing the flow rate in STB/day gives:

Qo =
[

0. 00708kh
µoBoco ln(re/rw)

]
ln [1 + co(pe − pwf )] [1.2.21]

where:

co = isothermal compressibility coefficient, psi−1

Qo = oil flow rate, STB/day
k = permeability, md

Example 1.6 The following data is available on a well in
the Red River Field:

pe = 2506 psi, pwf = 1800 psi

re = 745 ft, rw = 0. 25 ft

Bo = 1. 25 bbl/STB, µo = 2. 5 cp

k = 0. 12 darcy, h = 25 ft

co = 25 × 10−6 psi−1
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Figure 1.14 Pressure profile around the wellbore.

Assuming a slightly compressible fluid, calculate the oil flow
rate. Compare the result with that of an incompressible fluid.

Solution For a slightly compressible fluid, the oil flow rate
can be calculated by applying Equation 1.2.21:

Qo =
[

0. 00708kh
µoBoco ln(re/rw)

]
ln[1 + co(pe − pwf )]

=
[ (

0. 00708
) (

120
) (

25
)

(
2. 5
) (

1. 25
) (

25 × 10−6
)

ln
(
745/0. 25

)
]

× ln
[
1 + (25 × 10−6) (2506 − 1800

)] = 595 STB/day

Assuming an incompressible fluid, the flow rate can be
estimated by applying Darcy’s equation, i.e., Equation 1.2.15:

Qo = 0. 00708kh(pe − pw)

µoBo ln
(
re/rw

)

=
(
0. 00708

) (
120
) (

25
) (

2506 − 1800
)

(
2. 5
) (

1. 25
)

ln
(
745/0. 25

) = 600 STB/day

Radial flow of compressible gases
The basic differential form of Darcy’s law for a horizontal
laminar flow is valid for describing the flow of both gas and
liquid systems. For a radial gas flow, Darcy’s equation takes
the form:

qgr = 0. 001127
(
2πrh

)
k

µg

dp
dr

[1.2.22]

where:

qgr = gas flow rate at radius r , bbl/day
r = radial distance, ft
h = zone thickness, ft

µg = gas viscosity, cp
p = pressure, psi

0. 001127 = conversion constant from Darcy units to
field units

The gas flow rate is traditionally expressed in scf/day. Refer-
ring to the gas flow rate at standard (surface) condition as
Qg, the gas flow rate qgr under wellbore flowing condition
can be converted to that of surface condition by applying the

definition of the gas formation volume factor Bg to qgr as:

Qg = qgr

Bg

where:

Bg = psc

5. 615Tsc

ZT
p

bbl/scf

or:(
psc

5. 615Tsc

)(
ZT
p

)
Qg = qgr [1.2.23]

where:

psc = standard pressure, psia
Tsc = standard temperature, ◦R
Qg = gas flow rate, scf/day
qgr = gas flow rate at radius r , bbl/day
p = pressure at radius r , psia
T = reservoir temperature, ◦R
Z = gas compressibility factor at p and T

Zsc = gas compressibility factor at standard
condition ∼= 1.0

Combining Equations 1.2.22 and 1.2.23 yields:(
psc

5. 615Tsc

)(
ZT
p

)
Qg = 0. 001127

(
2πrh

)
k

µg

dp
dr

Assuming that Tsc = 520◦R and psc = 14.7 psia:(
TQg

kh

)
dr
r

= 0. 703
(

2p
µgZ

)
dp [1.2.24]

Integrating Equation 1.2.24 from the wellbore conditions
(rw and pwf ) to any point in the reservoir (r and p) gives:∫ r

rw

(
TQg

kh

)
dr
r

= 0. 703
∫ p

pwf

(
2p

µgZ

)
dp [1.2.25]

Imposing Darcy’s law conditions on Equation 1.2.25, i.e.,
steady-state flow, which requires that Qg is constant at all
radii, and homogeneous formation, which implies that k and
h are constant, gives:(

TQg

kh

)
ln
(

r
rw

)
= 0. 703

∫ p

pwf

(
2p

µgZ

)
dp

The term: ∫ p

pwf

(
2p
µgz

)
dp
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ln r / rw

ψ

ψw

Slope = (QgT/0.703kh)

Figure 1.15 Graph of ψ vs. ln(r/rw).

can be expanded to give:
∫ p

pwf

(
2p

µgZ

)
dp =

∫ p

0

(
2p

µgZ

)
dp −

∫ pwf

0

(
2p

µgZ

)
dp

Replacing the integral in Equation 1.2.24 with the above
expanded form yields:
(

TQg

kh

)
ln
(

r
rw

)
=0.703

[∫ p

0

(
2p

µgZ

)
dp−

∫ pwf

0

(
2p

µgZ

)
dp
]

[1.2.26]

The integral
∫ p

o 2p/
(
µgZ

)
dp is called the “real-gas pseudo-

potential” or “real-gas pseudopressure” and it is usually
represented by m(p) or ψ . Thus:

m(p) = ψ =
∫ p

0

(
2p

µgZ

)
dp [1.2.27]

Equation 1.2.27 can be written in terms of the real-gas
pseudopressure as:(

TQg

kh

)
ln
(

r
rw

)
= 0. 703(ψ − ψw)

or:

ψ = ψw + QgT
0. 703kh

ln
(

r
rw

)
[1.2.28]

Equation 1.2.28 indicates that a graph of ψ vs. ln(r/rw) yields
a straight line with a slope of QgT/0. 703kh and an intercept
value of ψw as shown in Figure 1.15. The exact flow rate is
then given by:

Qg = 0. 703kh(ψ − ψw)

T ln(r/rw)
[1.2.29]

In the particular case when r = re, then:

Qg = 0. 703kh (ψe − ψw)

T ln(re/rw)
[1.2.30]

where:

ψe = real-gas pseudopressure as evaluated from 0 to pe,
psi2/cp

ψw= real-gas pseudopressure as evaluated from 0 to pwf ,
psi2/cp

k = permeability, md
h= thickness, ft

re = drainage radius, ft
rw = wellbore radius, ft
Qg = gas flow rate, scf/day

Because the gas flow rate is commonly expressed in
Mscf/day, Equation 1.2.30 can be expressed as:

Qg = kh(ψe − ψw)

1422T ln(re/rw)
[1.2.31]

where:

Qg= gas flow rate, Mscf/day

Equation 1.2.31 can be expressed in terms of the average
reservoir pressure pr instead of the initial reservoir pressure
pe as:

Qg = kh(ψr − ψw)

1422T
[
ln
(
re/rw

)− 0. 5
] [1.2.32]

To calculate the integral in Equation 1.2.31, the values of
2p/µgZ are calculated for several values of pressure p. Then
2p/µgZ vs. p is plotted on a Cartesian scale and the area
under the curve is calculated either numerically or graph-
ically, where the area under the curve from p = 0 to any
pressure p represents the value of ψ corresponding to p.
The following example will illustrate the procedure.

Example 1.7 The PVT data from a gas well in the
Anaconda Gas Field is given below:

p (psi) µg (cp) Z

0 0.0127 1.000
400 0.01286 0.937
800 0.01390 0.882
1200 0.01530 0.832
1600 0.01680 0.794
2000 0.01840 0.770
2400 0.02010 0.763
2800 0.02170 0.775
3200 0.02340 0.797
3600 0.02500 0.827
4000 0.02660 0.860
4400 0.02831 0.896

The well is producing at a stabilized bottom-hole flowing
pressure of 3600 psi. The wellbore radius is 0.3 ft. The
following additional data is available:

k = 65 md, h = 15 ft, T = 600◦R

pe = 4400 psi, re = 1000 ft

Calculate the gas flow rate in Mscf/day.

Solution

Step 1. Calculate the term 2p/µgZ for each pressure as
shown below:

p (psi) µg (cp) Z 2p/µgZ (psia/cp)

0 0.0127 1.000 0
400 0.01286 0.937 66 391
800 0.01390 0.882 130 508
1200 0.01530 0.832 188 537
1600 0.01680 0.794 239 894
2000 0.01840 0.770 282 326
2400 0.02010 0.763 312 983
2800 0.02170 0.775 332 986
3200 0.02340 0.797 343 167
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Figure 1.16 Real-gas pseudopressure data for Example 1.7 (After Donohue and Erekin, 1982).

p (psi) µg (cp) Z 2p/µgZ (psia/cp)

3600 0.02500 0.827 348 247
4000 0.02660 0.860 349 711
4400 0.02831 0.896 346 924

Step 2. Plot the term 2p/µgZ versus pressure as shown in
Figure 1.16.

Step 3. Calculate numerically the area under the curve for
each value of p. These areas correspond to the real-
gas pseudopressure ψ at each pressure. These ψ

values are tabulated below; notice that 2p/µgZ vs.
p is also plotted in the figure.

p (psi) ψ(psi2/cp)

400 13. 2 × 106

800 52. 0 × 106

1200 113. 1 × 106

1600 198. 0 × 106

2000 304. 0 × 106

2400 422. 0 × 106

2800 542. 4 × 106

3200 678. 0 × 106

3600 816. 0 × 106

4000 950. 0 × 106

4400 1089. 0 × 106

Step 4. Calculate the flow rate by applying Equation 1.2.30:

At pw = 3600 psi: gives ψw = 816. 0 × 106 psi2/cp

At pe = 4400 psi: gives ψe = 1089 × 106 psi2/cp

Qg = 0. 703kh(ψe − ψw)

T ln(re/rw)

=
(
65
) (

15
) (

1089 − 816
)

106(
1422

) (
600
)

ln
(
1000/0. 25

)

= 37 614 Mscf/day

In the approximation of the gas flow rate, the exact gas
flow rate as expressed by the different forms of Darcy’s law,
i.e., Equations 1.2.25 through 1.2.32, can be approximated by
moving the term 2/µgZ outside the integral as a constant. It
should be pointed out that the product of Zµg is considered
constant only under a pressure range of less than 2000 psi.
Equation 1.2.31 can be rewritten as:

Qg =
[

kh
1422T ln(re/rw)

] ∫ pe

pwf

(
2p

µgZ

)
dp

Removing the term 2/µgZ and integrating gives:

Qg = kh
(
p2

e − p2
wf

)
1422T

(
µgZ

)
avg ln

(
re/rw

) [1.2.33]
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where:

Qg = gas flow rate, Mscf/day
k = permeability, md

The term (µgZ )avg is evaluated at an average pressure p
that is defined by the following expression:

p =
√

p2
wf + p2

e

2

The above approximation method is called the pressure-
squared method and is limited to flow calculations when the
reservoir pressure is less that 2000 psi. Other approximation
methods are discussed in Chapter 2.

Example 1.8 Using the data given in Example 1.7, re-
solve the gas flow rate by using the pressure-squared
method. Compare with the exact method (i.e., real-gas
pseudopressure solution).

Solution

Step 1. Calculate the arithmetic average pressure:

p =
√

44002 + 36002

2
= 4020 psi

Step 2. Determine the gas viscosity and gas compressibility
factor at 4020 psi:

µg = 0. 0267

Z = 0. 862

Step 3. Apply Equation 1.2.33:

Qg = kh
(
p2

e − p2
wf

)
1422T

(
µgZ

)
avg ln

(
re/rw

)

=
(
65
) (

15
) [

44002 − 36002
]

(
1422

) (
600
) (

0. 0267
) (

0. 862
)

ln
(
1000/0. 25

)

= 38 314 Mscf/day

Step 4. Results show that the pressure-squared method
approximates the exact solution of 37 614 with an
absolute error of 1.86%. This error is due to the lim-
ited applicability of the pressure-squared method to
a pressure range of less than 2000 psi.

Horizontal multiple-phase flow
When several fluid phases are flowing simultaneously in a
horizontal porous system, the concept of the effective perme-
ability of each phase and the associated physical properties
must be used in Darcy’s equation. For a radial system, the
generalized form of Darcy’s equation can be applied to each
reservoir as follows:

qo = 0. 001127
(

2πrh
µo

)
ko

dp
dr

qw = 0. 001127
(

2πrh
µw

)
kw

dp
dr

qg = 0. 001127
(

2πrh
µg

)
kg

dp
dr

where:

ko, kw, kg = effective permeability to oil, water,
and gas, md

µo, µw, µg = viscosity of oil, water, and gas, cp
qo, qw, qg = flow rates for oil, water, and gas, bbl/day

k = absolute permeability, md

The effective permeability can be expressed in terms of
the relative and absolute permeability as:

ko = krok

kw = krwk

kg = krgk
Using the above concept in Darcy’s equation and expressing
the flow rate in standard conditions yields:

Qo = 0. 00708(rhk)
(

kro

µoBo

)
dp
dr

[1.2.34]

Qw = 0. 00708(rhk)
(

krw

µwBw

)
dp
dr

[1.2.35]

Qg = 0. 00708(rhk)
(

krg

µgBg

)
dp
dr

[1.2.36]

where:

Qo, Qw = oil and water flow rates, STB/day
Bo, Bw = oil and water formation volume factor,

bbl/STB
Qg = gas flow rate, scf/day
Bg = gas formation volume factor, bbl/scf

k = absolute permeability, md

The gas formation volume factor Bg is expressed by

Bg = 0. 005035
ZT
p

bbl/scf

Performing the regular integration approach on Equations,
1.2.34 through 1.2.36 yields:

Oil phase:

Qo = 0. 00708
(
kh
) (

kro
)
(pe − pwf )

µoBo ln
(
re/rw

) [1.2.37]

Water phase:

Qw = 0. 00708
(
kh
) (

krw
)
(pe − pwf )

µwBw ln
(
re/rw

) [1.2.38]

Gas phase:

Qg =
(
kh
)

krg (ψe − ψw)

1422T ln
(
re/rw

) in terms of the real-gas
potential [1.2.39]

Qg =
(
kh
)

krg
(
p2

e − p2
wf

)
1422

(
µgZ

)
avg T ln

(
re/rw

) in terms of the pressure
squared [1.2.40]

where:

Qg = gas flow rate, Mscf/day
k = absolute permeability, md
T = temperature, ◦R

In numerous petroleum engineering calculations, it is con-
venient to express the flow rate of any phase as a ratio of
other flowing phases. Two important flow ratios are the
“instantaneous” water–oil ratio (WOR) and the “instanta-
neous” gas–oil ratio (GOR). The generalized form of Darcy’s
equation can be used to determine both flow ratios.

The water–oil ratio is defined as the ratio of the water flow
rate to that of the oil. Both rates are expressed in stock-tank
barrels per day, or:

WOR = Qw

Qo

Dividing Equation 1.2.34 by 1.2.36 gives:

WOR =
(

krw

kro

)(
µoBo

µwBw

)
[1.2.41]
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Figure 1.17 Pressure disturbance as a function of time.

where:

WOR = water–oil ratio, STB/STB

The instantaneous GOR, as expressed in scf/STB, is defined
as the total gas flow rate, i.e., free gas and solution gas,
divided by the oil flow rate, or:

GOR = QoRs + Qg

Qo

or:

GOR = Rs + Qg

Qo
[1.2.42]

where:

GOR = “instantaneous” gas–oil ratio, scf/STB
Rs = gas solubility, scf/STB
Qg = free gas flow rate, scf/day
Qo = oil flow rate, STB/day

Substituting Equations 1.2.34 and 1.2.36 into 1.2.42 yields:

GOR = Rs +
(

krg

kro

)(
µoBo

µgBg

)
[1.2.43]

where Bg is the gas formation volume factor expressed in
bbl/scf.

A complete discussion of the practical applications of the
WOR and GOR is given in the subsequent chapters.

1.2.3 Unsteady-state flow
Consider Figure 1.17(a) which shows a shut-in well that is
centered in a homogeneous circular reservoir of radius re
with a uniform pressure pi throughout the reservoir. This ini-
tial reservoir condition represents the zero producing time.

If the well is allowed to flow at a constant flow rate of q, a
pressure disturbance will be created at the sand face. The
pressure at the wellbore, i.e., pwf , will drop instantaneously
as the well is opened. The pressure disturbance will move
away from the wellbore at a rate that is determined by:

● permeability;
● porosity;
● fluid viscosity;
● rock and fluid compressibilities.

Figure 1.17(b) shows that at time t1, the pressure distur-
bance has moved a distance r1 into the reservoir. Notice
that the pressure disturbance radius is continuously increas-
ing with time. This radius is commonly called the radius of
investigation and referred to as rinv . It is also important to
point out that as long as the radius of investigation has not
reached the reservoir boundary, i.e., re, the reservoir will be
acting as if it is infinite in size. During this time we say that
the reservoir is infinite acting because the outer drainage
radius re, can be mathematically infinite, i.e., re = ∞. A sim-
ilar discussion to the above can be used to describe a well
that is producing at a constant bottom-hole flowing pressure.
Figure 1.17(c) schematically illustrates the propagation of
the radius of investigation with respect to time. At time t4, the
pressure disturbance reaches the boundary, i.e., rinv = re.
This causes the pressure behavior to change.

Based on the above discussion, the transient (unsteady-
state) flow is defined as that time period during which the
boundary has no effect on the pressure behavior in the reser-
voir and the reservoir will behave as if it is infinite in size.
Figure 1.17(b) shows that the transient flow period occurs
during the time interval 0 < t < tt for the constant flow
rate scenario and during the time period 0 < t < t4 for the
constant pwf scenario as depicted by Figure 1.17(c).
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Figure 1.18 Illustration of radial flow.

1.2.4 Basic transient flow equation
Under the steady-state flowing condition, the same quantity
of fluid enters the flow system as leaves it. In the unsteady-
state flow condition, the flow rate into an element of volume
of a porous medium may not be the same as the flow rate
out of that element and, accordingly, the fluid content of the
porous medium changes with time. The other controlling
variables in unsteady-state flow additional to those already
used for steady-state flow, therefore, become:

● time t;
● porosity φ;
● total compressibility ct .

The mathematical formulation of the transient flow equa-
tion is based on combining three independent equa-
tions and a specifying set of boundary and initial con-
ditions that constitute the unsteady-state equation. These
equations and boundary conditions are briefly described
below.

Continuity equation: The continuity equation is essentially
a material balance equation that accounts for every pound
mass of fluid produced, injected, or remaining in the
reservoir.
Transport equation: The continuity equation is combined
with the equation for fluid motion (transport equation) to
describe the fluid flow rate “in” and “out” of the reservoir.
Basically, the transport equation is Darcy’s equation in its
generalized differential form.
Compressibility equation: The fluid compressibility equation
(expressed in terms of density or volume) is used in for-
mulating the unsteady-state equation with the objective of
describing the changes in the fluid volume as a function of
pressure.
Initial and boundary conditions: There are two boundary con-
ditions and one initial condition is required to complete the

formulation and the solution of the transient flow equation.
The two boundary conditions are:

(1) the formation produces at a constant rate into the well-
bore;

(2) there is no flow across the outer boundary and the
reservoir behaves as if it were infinite in size, i.e., re = ∞.

The initial condition simply states that the reservoir is at a
uniform pressure when production begins, i.e., time = 0.

Consider the flow element shown in Figure 1.18. The ele-
ment has a width of dr and is located at a distance of r from
the center of the well. The porous element has a differen-
tial volume of dV . According to the concept of the material
balance equation, the rate of mass flow into an element minus
the rate of mass flow out of the element during a differen-
tial time �t must be equal to the mass rate of accumulation
during that time interval, or:
 mass entering

volume element
during interval �t


−


 mass leaving

volume element
during interval �t




=

 rate of mass

accumulation
during interval �t


 [1.2.44]

The individual terms of Equation 1.2.44 are described below:
Mass, entering the volume element during time interval �t
Here:
(Mass)in = �t[Aνρ]r+dr [1.2.45]
where:

ν = velocity of flowing fluid, ft/day
ρ = fluid density at (r + dr), lb/ft3

A = area at (r + dr)
�t = time interval, days
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The area of the element at the entering side is:

Ar+dr = 2π(r + dr)h [1.2.46]

Combining Equations 1.2.46 with 1.2.35 gives:

[Mass]in = 2π�t(r + dr)h(νρ)r+dr [1.2.47]

Mass leaving the volume element Adopting the same
approach as that of the leaving mass gives:

[Mass]out = 2π�trh(νρ)r [1.2.48]

Total accumulation of mass The volume of some element
with a radius of r is given by:

V = πr2h

Differentiating the above equation with respect to r gives:
dV
dr

= 2πrh

or:

dV = (2πrh) dr [1.2.49]

Total mass accumulation during �t = dV [(φρ)t+�t −(φρ)t].
Substituting for dV yields:

Total mass accumulation = (2πrh)dr[(φρ)t+�t − (φρ)t]
[1.2.50]

Replacing the terms of Equation 1.2.44 with those of the
calculated relationships gives:

2πh(r + dr)�t(φρ)r+dr − 2πhr�t(φρ)r

= (2πrh)dr[(φρ)t+�t − (φρ)t]
Dividing the above equation by (2πrh)dr and simplifying
gives:

1
(r)dr

[(
r + dr

)
(υρ)r+dr − r(vρ)r

] = 1
�t
[
(φρ)t+�t − (φρ)t

]

or:
1
r

∂

∂r
[r(υρ)] = ∂

∂t
(φρ) [1.2.51]

where:

φ = porosity
ρ = density, lb/ft3

V = fluid velocity, ft/day

Equation 1.2.51 is called the continuity equation and it
provides the principle of conservation of mass in radial
coordinates.

The transport equation must be introduced into the conti-
nuity equation to relate the fluid velocity to the pressure gra-
dient within the control volume dV . Darcy’s law is essentially
the basic motion equation, which states that the velocity is
proportional to the pressure gradient ∂p/∂r . From Equation
1.2.13:

ν = (5. 615
) (

0. 001127
) k

µ

∂p
∂r

= (0. 006328
) k

µ

∂p
∂r

[1.2.52]

where:

k = permeability, md
v = velocity, ft/day

Combining Equation 1.2.52 with 1.2.51 results in:
0. 006328

r
∂

∂r

(
k
µ

(ρr)
∂p
∂r

)
= ∂

∂t
(φρ) [1.2.53]

Expanding the right-hand side by taking the indicated deriva-
tives eliminates the porosity from the partial derivative term

on the right-hand side:
∂

∂t
(φρ) = φ

∂ρ

∂t
+ ρ

∂φ

∂t
[1.2.54]

The porosity is related to the formation compressibility by
the following:

cf = 1
φ

∂φ

∂p
[1.2.55]

Applying the chain rule of differentiation to ∂φ/∂t:
∂φ

∂t
= ∂φ

∂p
∂p
∂t

Substituting Equation 1.2.55 into this equation:
∂φ

∂t
= φcf

∂p
∂t

Finally, substituting the above relation into Equation 1.2.54
and the result into Equation 1.2.53 gives:
0. 006328

r
∂

∂r

(
k
µ

(ρr)
∂p
∂r

)
= ρφcf

∂p
∂t

+ φ
∂ρ

∂t
[1.2.56]

Equation 1.2.56 is the general partial differential equation
used to describe the flow of any fluid flowing in a radial direc-
tion in porous media. In addition to the initial assumptions,
Darcy’s equation has been added, which implies that the flow
is laminar. Otherwise, the equation is not restricted to any
type of fluid and is equally valid for gases or liquids. How-
ever, compressible and slightly compressible fluids must be
treated separately in order to develop practical equations
that can be used to describe the flow behavior of these two
fluids. The treatments of the following systems are discussed
below:

● radial flow of slightly compressible fluids;
● radial flow of compressible fluids.

1.2.5 Radial flow of slightly compressibility fluids
To simplify Equation 1.2.56, assume that the permeability
and viscosity are constant over pressure, time, and distance
ranges. This leads to:[

0. 006328k
µr

]
∂

∂r

(
rρ

∂p
∂r

)
= ρφcf

∂p
∂t

+ φ
∂ρ

∂t
[1.2.57]

Expanding the above equation gives:

0. 006328
(

k
µ

)[
ρ

r
∂p
∂r

+ ρ
∂2p
∂r2 + ∂p

∂r
∂ρ

∂r

]

= ρφcf

(
∂p
∂t

)
+ φ

(
∂ρ

∂t

)

Using the chain rule in the above relationship yields:

0. 006328
(

k
µ

)[
ρ

r
∂p
∂r

+ ρ
∂2p
∂r2 +

(
∂p
∂r

)2
∂ρ

∂p

]

= ρφcf

(
∂p
∂t

)
+ φ

(
∂p
∂t

)(
∂ρ

∂p

)

Dividing the above expression by the fluid density ρ gives:

0. 006328
(

k
u

)[
1
r

∂p
∂r

+ ∂2p
∂r2 +

(
∂p
∂r

)2 ( 1
ρ

∂ρ

∂p

)]

= φcf

(
∂p
∂t

)
+ φ

∂p
∂t

(
1
ρ

∂ρ

∂p

)

Recalling that the compressibility of any fluid is related to its
density by:

c = 1
ρ

∂ρ

∂p
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combining the above two equations gives:

0. 006328
(

k
µ

)[
∂2p
∂r2 + 1

r
∂p
∂r

+ c
(

∂p
∂r

)2
]

= φcf

(
∂p
∂t

)
+ φc

(
∂p
∂t

)

The term c
(
∂p/∂r

)2 is considered very small and may be
ignored, which leads to:

0. 006328
(

k
µ

)[
∂2p
∂r2 + 1

r
∂p
∂r

]
= φ (cf + c)

∂p
∂t

[1.2.58]

Defining total compressibility, ct , as:
ct = c + cf [1.2.59]
and combining Equation 1.2.57 with 1.2.58 and rearranging
gives:
∂2p
∂r2 + 1

r
∂p
∂r

= φµct

0. 006328k
∂p
∂t

[1.2.60]

where the time t is expressed in days.
Equation 1.2.60 is called the diffusivity equation and is

considered one of the most important and widely used
mathematical expressions in petroleum engineering. The
equation is particularly used in the analysis of well testing
data where the time t is commonly reordered in hours. The
equation can be rewritten as:
∂2p
∂r2 + 1

r
∂p
∂r

= φµct

0. 0002637k
∂p
∂t

[1.2.61]

where:

k= permeability, md
r= radial position, ft

p = pressure, psia
ct = total compressibility, psi−1

t = time, hours
φ = porosity, fraction
µ = viscosity, cp

When the reservoir contains more than one fluid, total
compressibility should be computed as
ct = coSo + cwSw + cgSg + cf [1.2.62]
where co, cw, and cg refer to the compressibility of oil, water,
and gas, respectively, and So, Sw, and Sg refer to the frac-
tional saturation of these fluids. Note that the introduction of
ct into Equation 1.2.60 does not make this equation applica-
ble to multiphase flow; the use of ct , as defined by Equation
1.2.61, simply accounts for the compressibility of any immo-
bile fluids which may be in the reservoir with the fluid that
is flowing.

The term 0. 000264k/φµct is called the diffusivity constant
and is denoted by the symbol η, or:

η = 0. 0002637k
φµct

[1.2.63]

The diffusivity equation can then be written in a more
convenient form as:
∂2p
∂r2 + 1

r
∂p
∂r

= 1
η

∂p
∂t

[1.2.64]

The diffusivity equation as represented by relationship 1.2.64
is essentially designed to determine the pressure as a
function of time t and position r .

Notice that for a steady-state flow condition, the pressure
at any point in the reservoir is constant and does not change
with time, i.e., ∂p/∂t = 0, so Equation 1.2.64 reduces to:
∂2p
∂r2 + 1

r
∂p
∂r

= 0 [1.2.65]

Equation 1.2.65 is called Laplace’s equation for steady-state
flow.

Example 1.9 Show that the radial form of Darcy’s equa-
tion is the solution to Equation 1.2.65.

Solution

Step 1. Start with Darcy’s law as expressed by Equation
1.2.17:

p = pwf +
[

QoBouo

0. 00708kh

]
ln
(

r
rw

)

Step 2. For a steady-state incompressible flow, the term with
the square brackets is constant and labeled as C, or:

p = pwf + [C] ln
(

r
rw

)

Step 3. Evaluate the above expression for the first and
second derivative, to give:

∂p
∂r

= [C]
(

1
r

)

∂2p
∂r2 = [C]

(−1
r2

)

Step 4. Substitute the above two derivatives in Equation
1.2.65:

−1
r2 [C] +

(
1
r

)
[C]

(
1
r

)
= 0

Step 5. Results of step 4 indicate that Darcy’s equation sat-
isfies Equation 1.2.65 and is indeed the solution to
Laplace’s equation.

To obtain a solution to the diffusivity equation (Equation
1.2.64), it is necessary to specify an initial condition and
impose two boundary conditions. The initial condition sim-
ply states that the reservoir is at a uniform pressure pi when
production begins. The two boundary conditions require
that the well is producing at a constant production rate and
the reservoir behaves as if it were infinite in size, i.e., re = ∞.

Based on the boundary conditions imposed on Equation
1.2.64, there are two generalized solutions to the diffusivity
equation. These are:

(1) the constant-terminal-pressure solution
(2) the constant-terminal-rate solution.

The constant-terminal-pressure solution is designed to pro-
vide the cumulative flow at any particular time for a reservoir
in which the pressure at one boundary of the reservoir is held
constant. This technique is frequently used in water influx
calculations in gas and oil reservoirs.

The constant-terminal-rate solution of the radial diffusiv-
ity equation solves for the pressure change throughout the
radial system providing that the flow rate is held constant
at one terminal end of the radial system, i.e., at the pro-
ducing well. There are two commonly used forms of the
constant-terminal-rate solution:

(1) the Ei function solution;
(2) the dimensionless pressure drop pD solution.

Constant-terminal-pressure solution
In the constant-rate solution to the radial diffusivity equation,
the flow rate is considered to be constant at certain radius
(usually wellbore radius) and the pressure profile around
that radius is determined as a function of time and position.
In the constant-terminal-pressure solution, the pressure is
known to be constant at some particular radius and the solu-
tion is designed to provide the cumulative fluid movement
across the specified radius (boundary).

The constant-pressure solution is widely used in water
influx calculations. A detailed description of the solution
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and its practical reservoir engineering applications is appro-
priately discussed in the water influx chapter of the book
(Chapter 5).

Constant-terminal-rate solution
The constant-terminal-rate solution is an integral part of most
transient test analysis techniques, e.g., drawdown and pres-
sure buildup analyses. Most of these tests involve producing
the well at a constant flow rate and recording the flowing
pressure as a function of time, i.e., p(rw, t). There are two
commonly used forms of the constant-terminal-rate solution:

(1) the Ei function solution;
(2) the dimensionless pressure drop pD solution.

These two popular forms of solution to the diffusivity
equation are discussed below.

The Ei function solution
For an infinite-acting reservoir, Matthews and Russell (1967)
proposed the following solution to the diffusivity equation,
i.e., Equation 1.2.55:

p(r , t) = pi +
[

70. 6QoµBo

kh

]
Ei
[−948φµctr2

kt

]
[1.2.66]

where:

p(r , t) = pressure at radius r from the well after t hours
t = time, hours
k = permeability, md

Qo = flow rate, STB/day

The mathematical function, Ei, is called the exponential
integral and is defined by:

Ei(−x) = −
∫ ∞

x

e−udu
u

=
[

ln x − x
1! + x2

2
(
2!) − x3

3
(
3!) + · · ·

]
[1.2.67]

Craft et al. (1991) presented the values of the Ei function
in tabulated and graphical forms as shown in Table 1.1 and
Figure 1.19, respectively.

The Ei solution, as expressed by Equation 1.2.66, is
commonly referred to as the line source solution. The expo-
nential integral “Ei” can be approximated by the following
equation when its argument x is less than 0.01:

Ei(−x) = ln
(
1. 781x

)
[1.2.68]

where the argument x in this case is given by:

x = 948φµctr2

kt

Equation 1.2.68 approximates the Ei function with less than
0.25% error. Another expression that can be used to approx-
imate the Ei function for the range of 0. 01 < x < 3. 0 is
given by:

Ei(−x) = a1 + a2 ln(x) + a3[ln(x)]2 + a4[ln(x)]3 + a5x

+ a6x2 + a7x3 + a8/x [1.2.69]

with the coefficients a1 through a8 having the following
values:

a1 = −0. 33153973 a2 = −0. 81512322

a3 = 5. 22123384 × 10−2 a4 = 5. 9849819 × 10−3

Table 1.1 Values of −Ei(−x) as a function of x
(After Craft et al. 1991)

x −Ei(−x) x −Ei(−x) x −Ei(−x)

0.1 1.82292 3.5 0.00697 6.9 0.00013
0.2 1.22265 3.6 0.00616 7.0 0.00012
0.3 0.90568 3.7 0.00545 7.1 0.00010
0.4 0.70238 3.8 0.00482 7.2 0.00009
0.5 0.55977 3.9 0.00427 7.3 0.00008
0.6 0.45438 4.0 0.00378 7.4 0.00007
0.7 0.37377 4.1 0.00335 7.5 0.00007
0.8 0.31060 4.2 0.00297 7.6 0.00006
0.9 0.26018 4.3 0.00263 7.7 0.00005
1.0 0.21938 4.4 0.00234 7.8 0.00005
1.1 0.18599 4.5 0.00207 7.9 0.00004
1.2 0.15841 4.6 0.00184 8.0 0.00004
1.3 0.13545 4.7 0.00164 8.1 0.00003
1.4 0.11622 4.8 0.00145 8.2 0.00003
1.5 0.10002 4.9 0.00129 8.3 0.00003
1.6 0.08631 5.0 0.00115 8.4 0.00002
1.7 0.07465 5.1 0.00102 8.5 0.00002
1.8 0.06471 5.2 0.00091 8.6 0.00002
1.9 0.05620 5.3 0.00081 8.7 0.00002
2.0 0.04890 5.4 0.00072 8.8 0.00002
2.1 0.04261 5.5 0.00064 8.9 0.00001
2.2 0.03719 5.6 0.00057 9.0 0.00001
2.3 0.03250 5.7 0.00051 9.1 0.00001
2.4 0.02844 5.8 0.00045 9.2 0.00001
2.5 0.02491 5.9 0.00040 9.3 0.00001
2.6 0.02185 6.0 0.00036 9.4 0.00001
2.7 0.01918 6.1 0.00032 9.5 0.00001
2.8 0.01686 6.2 0.00029 9.6 0.00001
2.9 0.01482 6.3 0.00026 9.7 0.00001
3.0 0.01305 6.4 0.00023 9.8 0.00001
3.1 0.01149 6.5 0.00020 9.9 0.00000
3.2 0.01013 6.6 0.00018 10.0 0.00000
3.3 0.00894 6.7 0.00016
3.4 0.00789 6.8 0.00014

a5 = 0. 662318450 a6 = −0. 12333524

a7 = 1. 0832566 × 10−2 a8 = 8. 6709776 × 10−4

The above relationship approximated the Ei values with an
average error of 0.5%.

It should be pointed out that for x > 10. 9, Ei(−x) can be
considered zero for reservoir engineering calculations.

Example 1.10 An oil well is producing at a constant
flow rate of 300 STB/day under unsteady-state flow con-
ditions. The reservoir has the following rock and fluid
properties:

Bo = 1. 25 bbl/STB, µo = 1. 5 cp, ct = 12 × 10−6 psi−1

ko = 60 md, h = 15 ft, pi = 4000 psi

φ = 15%, rw = 0. 25 ft

(1) Calculate the pressure at radii of 0.25, 5, 10, 50, 100,
500, 1000, 1500, 2000, and 2500 ft, for 1 hour. Plot the
results as:

(a) pressure versus the logarithm of radius;
(b) pressure versus radius.
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Figure 1.19 Ei function (After Craft et al., 1991).

(2) Repeat part 1 for t = 12 hours and 24 hours. Plot the
results as pressure versus logarithm of radius.

Solution

Step 1. From Equation 1.2.66:

p(r , t) = 4000 +
[

70. 6
(
300
)(

1. 5
)(

1. 25
)

(
60
)(

15
)

]

× Ei

[
−948

(
1. 5
)(

1. 5
) (

12 × 10−6
)
r2(

60
)
(t)

]

= 4000 + 44. 125Ei
[(−42. 6 × 10−6) r2

t

]

Step 2. Perform the required calculations after 1 hour in the
following tabulated form:

r (ft) x = (−42. 6× Ei (−x) p(r , 12) =
10−6)r2/1 4000 + 44. 125

Ei( − x)

0.25 −2. 6625 × 10−6 −12.26a 3459
5 −0.001065 −6.27a 3723
10 −0.00426 −4.88a 3785
50 −0.1065 −1.76b 3922
100 −0.4260 −0.75b 3967
500 −10.65 0 4000
1000 −42.60 0 4000
1500 −95.85 0 4000
2000 −175.40 0 4000
2500 −266.25 0 4000
aAs calculated from Equation 1.2.17.
bFrom Figure 1.19.
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Figure 1.21 Pressure profiles as a function of time on a semi-log scale.

Step 3. Show the results of the calculation graphically as
illustrated in Figures 1.20 and 1.21.

Step 4. Repeat the calculation for t = 12 and 24 hours, as in
the tables below:

r (ft) x = (42. 6× Ei(−x) p(r , 12) =
10−6)r2/12 4000 + 44. 125

Ei(−x)

0.25 0. 222 × 10−6 −14.74a 3350
5 88. 75 × 10−6 −8.75a 3614
10 355. 0 × 10−6 −7.37a 3675
50 0.0089 −4.14a 3817
100 0.0355 −2.81b 3876
500 0.888 −0.269 3988
1000 3.55 −0.0069 4000
1500 7.99 −3. 77 × 10−5 4000
2000 14.62 0 4000
2500 208.3 0 4000
aAs calculated from Equation 1.2.17.
bFrom Figure 1.19.

r (ft) x = (−42. 6× Ei(−x) p(r , 24) =
10−6)r2/24 4000 + 44. 125

Ei(−x)

0.25 −0. 111 × 10−6 −15.44a 3319
5 −44. 38 × 10−6 −9.45a 3583
10 −177. 5 × 10−6 −8.06a 3644
50 −0.0045 −4.83a 3787
100 −0.0178 −8.458b 3847
500 −0.444 −0.640 3972
1000 −1.775 −0.067 3997
1500 −3.995 −0. 0427 3998
2000 −7.310 8. 24 × 10−6 4000
2500 −104.15 0 4000
aAs calculated from Equation 1.2.17.
bFrom Figure 1.19.

Step 5. Results of step 4 are shown graphically in
Figure 1.21.

Figure 1.21 indicates that as the pressure disturbance
moves radially away from the wellbore, the reservoir
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boundary and its configuration has no effect on the pressure
behavior, which leads to the definition of transient flow as:
“Transient flow is that time period during which the bound-
ary has no effect on the pressure behavior and the well acts
as if it exists in an infinite size reservoir.”

Example 1.10 shows that most of the pressure loss occurs
close to the wellbore; accordingly, near-wellbore condi-
tions will exert the greatest influence on flow behavior.
Figure 1.21 shows that the pressure profile and the drainage
radius are continuously changing with time. It is also impor-
tant to notice that the production rate of the well has no
effect on the velocity or the distance of the pressure dis-
turbance since the Ei function is independent of the flow
rate.

When the Ei parameter x < 0. 01, the log approximation of
the Ei function as expressed by Equation 1.2.68 can be used
in 1.2.66 to give:

p(r , t) = pi − 162. 6QoBoµo

kh

[
log
(

kt
φµctr2

)
− 3. 23

]

[1.2.70]

For most of the transient flow calculations, engineers are
primarily concerned with the behavior of the bottom-hole
flowing pressure at the wellbore, i.e., r = rw. Equation 1.2.70
can be applied at r = rw to yield:

pwf = pi − 162. 6QoBoµo

kh

[
log
(

kt
φµctr2

w

)
− 3. 23

]
[1.2.71]

where:

k = permeability, md
t = time, hours
ct = total compressibility, psi−1

It should be noted that Equations 1.2.70 and 1.2.71 cannot
be used until the flow time t exceeds the limit imposed by
the following constraint:

t > 9. 48 × 104 φµctr2

k
[1.2.72]

where:

k = permeability, md
t = time, hours

Notice that when a well is producing under unsteady-state
(transient) flowing conditions at a constant flow rate, Equa-
tion 1.2.71 can be expressed as the equation of a straight line
by manipulating the equation to give:

pwf = pi − 162. 6QoBoµo

kh

[
log(t) + log

(
k

φµctr2
w

)
− 3. 23

]

or:

pwf = a + m log(t)

The above equation indicates that a plot of pwf vs. t on a
semilogarithmic scale would produce a straight line with an
intercept of a and a slope of m as given by:

a = pi − 162. 6QoBoµo

kh

[
log
(

k
φµctr2

w

)
− 3. 23

]

m = 162. 6QoBoµo

kh

Example 1.11 Using the data in Example 1.10, esti-
mate the bottom-hole flowing pressure after 10 hours of
production.

Solution

Step 1. Equation 1.2.71 can only be used to calculate pwf
at any time that exceeds the time limit imposed by

Equation 1.2.72, or:

t > 9. 48 × 104 φµctr2

k

t = 9. 48
(
104)

(
0. 15

) (
1. 5
) (

12 × 10−6
) (

0. 25
)2

60

= 0. 000267 hours

= 0. 153 seconds

For all practical purposes, Equation 1.2.71 can be
used anytime during the transient flow period to
estimate the bottom-hole pressure.

Step 2. Since the specified time of 10 hours is greater than
0.000267 hours, the value of pwf can be estimated by
applying Equation 1.2.71:

pwf =pi − 162.6QoBoµo

kh

[
log
(

kt
φµctr2

w

)
−3.23

]

=4000− 162.6
(
300
)(

1.25
)(

1.5
)

(
60
)(

15
)

×
[

log

( (
60
)(

10
)

(
0.15

)(
1.5
)(

12×10−6
)(

0.25
)2
)

−3.23

]

=3358 psi

The second form of solution to the diffusivity
equation is called the dimensionless pressure drop
solution and is discussed below.

The dimensionless pressure drop pD solution
To introduce the concept of the dimensionless pressure drop
solution, consider for example Darcy’s equation in a radial
form as given previously by Equation 1.2.15

Qo = 0. 00708kh (pe − pwf )

µoBo ln
(
re/rw

) = kh(pe − pwf )

141. 2µoBo ln
(
re/rw

)
Rearranging the above equation gives:

pe − pwf(
141. 2QoBoµo

kh

) = ln
(

re

rw

)
[1.2.73]

It is obvious that the right-hand side of the above equa-
tion has no units (i.e., it is dimensionless) and, accordingly,
the left-hand side must be dimensionless. Since the left-
hand side is dimensionless, and pe − pwf has the units of
psi, it follows that the term QoBoµo/0. 00708kh has units
of pressure. In fact, any pressure difference divided by
QoBoµo/0. 00708kh is a dimensionless pressure. Therefore,
Equation 1.2.73 can be written in a dimensionless form as:

pD = ln(reD)

where:

pD = pe − pwf(
141. 2QoBoµo

kh

)

reD = re

rw

The dimensionless pressure drop concept can be extended
to describe the changes in the pressure during the unsteady-
state flow condition where the pressure is a function of time
and radius:

p = p(r , t)

TLFeBOOK



1/24 WELL TESTING ANALYSIS

Therefore, the dimensionless pressure during the unsteady-
state flowing condition is defined by:

pD = pi − p(r , t)(
141. 2QoBoµo

kh

) [1.2.74]

Since the pressure p(r , t), as expressed in a dimensionless
form, varies with time and location, it is traditionally pre-
sented as a function of dimensionless time tD and radius rD
as defined below:

tD = 0. 0002637kt
φµctr2

w
[1.2.75a]

Another common form of the dimensionless time tD is based
on the total drainage area A as given by:

tDA = 0. 0002637kt
φµctA

= tA

(
r2

w

A

)
[1.2.75b]

rD = r
rw

[1.2.76]

and:

reD = re

rw
[1.2.77]

where:

pD = dimensionless pressure drop
reD = dimensionless external radius
tD = dimensionless time based on wellbore

radius rw
tDA = dimensionless time based on well drainage

area A
A = well drainage area, i.e., πr2

e , ft2

rD = dimensionless radius
t = time, hours

p(r , t) = pressure at radius r and time t
k = permeability, md
µ = viscosity, cp

The above dimensionless groups (i.e., pD, tD, and rD) can
be introduced into the diffusivity equation (Equation 1.2.64)
to transform the equation into the following dimensionless
form:

∂2pD

∂r2
D

+ 1
rD

∂pD

∂rD
= ∂pD

∂tD
[1.2.78]

Van Everdingen and Hurst (1949) proposed an analytical
solution to the above equation by assuming:

● a perfectly radial reservoir system;
● the producing well is in the center and producing at a

constant production rate of Q;
● uniform pressure pi throughout the reservoir before

production;
● no flow across the external radius re.

Van Everdingen and Hurst presented the solution to Equa-
tion 1.2.77 in a form of an infinite series of exponential terms
and Bessel functions. The authors evaluated this series for
several values of reD over a wide range of values for tD and
presented the solution in terms of dimensionless pressure
drop pD as a function of dimensionless radius reD and dimen-
sionless time tD. Chatas (1953) and Lee (1982) conveniently
tabulated these solutions for the following two cases:

(1) infinite-acting reservoir reD = ∞;
(2) finite-radial reservoir.

Infinite-acting reservoir For an infinite-acting reservoir,
i.e., reD = ∞, the solution to Equation 1.2.78 in terms of

Table 1.2 pD versus tD—infinite radial system,
constant rate at the inner boundary (After Lee, J.,
Well Testing, SPE Textbook Series, permission to
publish by the SPE, copyright SPE, 1982)

tD pD tD pD tD pD

0 0 0.15 0.3750 60.0 2.4758
0.0005 0.0250 0.2 0.4241 70.0 2.5501
0.001 0.0352 0.3 0.5024 80.0 2.6147
0.002 0.0495 0.4 0.5645 90.0 2.6718
0.003 0.0603 0.5 0.6167 100.0 2.7233
0.004 0.0694 0.6 0.6622 150.0 2.9212
0.005 0.0774 0.7 0.7024 200.0 3.0636
0.006 0.0845 0.8 0.7387 250.0 3.1726
0.007 0.0911 0.9 0.7716 300.0 3.2630
0.008 0.0971 1.0 0.8019 350.0 3.3394
0.009 0.1028 1.2 0.8672 400.0 3.4057
0.01 0.1081 1.4 0.9160 450.0 3.4641
0.015 0.1312 2.0 1.0195 500.0 3.5164
0.02 0.1503 3.0 1.1665 550.0 3.5643
0.025 0.1669 4.0 1.2750 600.0 3.6076
0.03 0.1818 5.0 1.3625 650.0 3.6476
0.04 0.2077 6.0 1.4362 700.0 3.6842
0.05 0.2301 7.0 1.4997 750.0 3.7184
0.06 0.2500 8.0 1.5557 800.0 3.7505
0.07 0.2680 9.0 1.6057 850.0 3.7805
0.08 0.2845 10.0 1.6509 900.0 3.8088
0.09 0.2999 15.0 1.8294 950.0 3.8355
0.1 0.3144 20.0 1.9601 1000.0 3.8584

30.0 2.1470
40.0 2.2824
50.0 2.3884

Notes: For tD < 0. 01: pD ∼= 2ztD/x.
For 100 < tD < 0. 25r2

e D: pD ∼= 0. 5
(
ln tD + 0. 80907

)
.

the dimensionless pressure drop pD is strictly a function of
the dimensionless time tD, or:

pD = f (tD)
Chatas and Lee tabulated the pD values for the infinite-acting
reservoir as shown in Table 1.2. The following mathemati-
cal expressions can be used to approximate these tabulated
values of pD.
For tD < 0. 01:

pD = 2

√
tD

π
[1.2.79]

For tD > 100:
pD = 0. 5[ln(tD) + 0. 80907] [1.2.80]
For 0. 02 < tD ≤ 1000:
pD = a1 + a2 ln(tD) + a3[ln(tD)]2 + a4[ln(tD)]3 + a5tD

+ a6(tD)2 + a7(tD)3 + a8/tD [1.2.81]
where the values of the coefficients of the above equations
are:

a1 = 0. 8085064 a2 = 0. 29302022

a3 = 3. 5264177 × 10−2 a4 = −1. 4036304 × 10−3

a5 = −4. 7722225 × 10−4 a6 = 5. 1240532 × 10−7

a7 = −2. 3033017 × 10−10 a8 = −2. 6723117 × 10−3

Finite radial reservoir For a finite radial system, the solution
to Equation 1.2.78 is a function of both the dimensionless
time tD and dimensionless time radius reD, or:

pD = f (tD, reD)
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where:

reD = external radius
wellbore radius

= re

rw
[1.2.82]

Table 1.3 presents pD as a function of tD for 1. 5 < reD < 10.
It should be pointed out that van Everdingen and Hurst
principally applied the pD function solution to model the
performance of water influx into oil reservoirs. Thus, the
authors’ wellbore radius rw was in this case the external
radius of the reservoir and re was essentially the external
boundary radius of the aquifer. Therefore, the ranges of the
reD values in Table 1.3 are practical for this application.

Consider the Ei function solution to the diffusivity equa-
tions as given by Equation 1.2.66:

p(r , t) = pi +
[

70. 6QBµ

kh

]
Ei
[−948φµctr2

kt

]

This relationship can be expressed in a dimensionless form
by manipulating the expression to give:

pi − p(r , t)[
141. 2QoBoµo

kh

] = − 1
2

Ei


 −(r/rw)2

4
(

0. 0002637kt
φµctr2

w

)



From the definition of the dimensionless variables of Equa-
tions 1.2.74 through 1.2.77, i.e., pD, tD, and rD, this relation
is expressed in terms of these dimensionless variables as:

pD = − 1
2

Ei

(
− r2

D

4tD

)
[1.2.83]

Chatas (1953) proposed the following mathematical form for
calculated pD when 25 < tD and 0. 25r2

eD < tD:

pD = 0. 5 + 2tD

r2
eD − 1

− r4
eD

[
3 − 4 ln (reD)

]− 2r2
eD − 1

4
(
r2

eD − 1
)2

There are two special cases of the above equation which arise
when r2

eD � 1 or when tD/r2
eD > 25:

If r2
eD � 1, then:

pD = 2tD

r2
eD

+ ln(reD) − 0. 75

If tD/r2
eD > 25, then:

pD = 1
2

[
ln

tD

r2
D

+ 0. 80907

]
[1.2.84]

The computational procedure of using the pD function to
determine the bottom-hole flowing pressure changing the
transient flow period, i.e., during the infinite-acting behavior,
is summarized in the following steps:
Step 1. Calculate the dimensionless time tD by applying

Equation 1.2.75:

tD = 0. 0002637kt
φµctr2

w

Step 2. Determine the dimensionless radius reD. Note that
for an infinite-acting reservoir, the dimensionless
radius reD = ∞.

Step 3. Using the calculated value of tD, determine the corre-
sponding pressure function pD from the appropriate
table or equations, e.g., Equation 1.2.80 or 1.2.84:
For an infinite-acting pD = 0. 5[ln(tD) + 0. 80907]

reservoir
For a finite reservoir pD = 1

2 [ln(tD/r2
D) + 0. 80907]

Step 4. Solve for the pressure by applying Equation 1.2.74:

p (rw, t) = pi −
(

141. 2QoBoµo

kh

)
pD [1.2.85]

Example 1.12 A well is producing at a constant flow rate
of 300 STB/day under unsteady-state flow conditions. The
reservoir has the following rock and fluid properties (see
Example 1.10):

Bo = 1. 25 bbl/STB, µo = 1. 5 cp, ct = 12 × 10−6 psi−1

k = 60 md, h = 15 ft, pi = 4000 psi

φ = 15%, rw = 0. 25 ft

Assuming an infinite-acting reservoir, i.e., reD = ∞, calculate
the bottom-hole flowing pressure after 1 hour of production
by using the dimensionless pressure approach.

Solution

Step 1. Calculate the dimensionless time tD from Equation
1.2.75:

tD = 0. 0002637kt
φµctr2

w

= 0. 000264
(
60
) (

1
)

(
0. 15

) (
1. 5
) (

12 × 10−6
) (

0. 25
)2 = 93 866. 67

Step 2. Since tD > 100, use Equation 1.2.80 to calculate the
dimensionless pressure drop function:

pD = 0. 5[ln(tD) + 0. 80907]
= 0. 5[ln(93 866. 67) + 0. 80907] = 6. 1294

Step 3. Calculate the bottom-hole pressure after 1 hour by
applying Equation 1.2.85:

p (rw, t) = pi −
(

141. 2QoBoµo

kh

)
pD

p
(
0. 25, 1

) = 4000 −
[

141. 2
(
300
) (

1. 25
) (

1. 5
)

(
60
) (

15
)

]

× (6. 1294) = 3459 psi

This example shows that the solution as given by the pD func-
tion technique is identical to that of the Ei function approach.
The main difference between the two formulations is that the
pD function can only be used to calculate the pressure at radius
r when the flow rate Q is constant and known. In that case,
the pD function application is essentially restricted to the
wellbore radius because the rate is usually known. On the
other hand, the Ei function approach can be used to calculate
the pressure at any radius in the reservoir by using the well
flow rate Q.

It should be pointed out that, for an infinite-acting reser-
voir with tD > 100, the pD function is related to the Ei function
by the following relation:

pD = 0. 5
[
−Ei

(−1
4tD

)]
[1.2.86]

The previous example, i.e., Example 1.12, is not a practical
problem, but it is essentially designed to show the physical
significance of the pD solution approach. In transient flow
testing, we normally record the bottom-hole flowing pres-
sure as a function of time. Therefore, the dimensionless
pressure drop technique can be used to determine one or
more of the reservoir properties, e.g. k or kh, as discussed
later in this chapter.

1.2.6 Radial flow of compressible fluids
Gas viscosity and density vary significantly with pressure
and therefore the assumptions of Equation 1.2.64 are not
satisfied for gas systems, i.e., compressible fluids. In order
to develop the proper mathematical function for describing
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Table 1.3 pD vs. tD—finite radial system, constant rate at the inner boundary (After Lee, J., Well Testing, SPE
Textbook Series, permission to publish by the SPE, copyright SPE, 1982)

reD = 1. 5 reD = 2. 0 reD = 2. 5 reD = 3. 0 reD = 3. 5 reD = 4. 0
tD pD tD pD tD pD tD pD tD pD tD pD

0.06 0.251 0.22 0.443 0.40 0.565 0.52 0.627 1.0 0.802 1.5 0.927
0.08 0.288 0.24 0.459 0.42 0.576 0.54 0.636 1.1 0.830 1.6 0.948
0.10 0.322 0.26 0.476 0.44 0.587 0.56 0.645 1.2 0.857 1.7 0.968
0.12 0.355 0.28 0.492 0.46 0.598 0.60 0.662 1.3 0.882 1.8 0.988
0.14 0.387 0.30 0.507 0.48 0.608 0.65 0.683 1.4 0.906 1.9 1.007
0.16 0.420 0.32 0.522 0.50 0.618 0.70 0.703 1.5 0.929 2.0 1.025
0.18 0.452 0.34 0.536 0.52 0.628 0.75 0.721 1.6 0.951 2.2 1.059
0.20 0.484 0.36 0.551 0.54 0.638 0.80 0.740 1.7 0.973 2.4 1.092
0.22 0.516 0.38 0.565 0.56 0.647 0.85 0.758 1.8 0.994 2.6 1.123
0.24 0.548 0.40 0.579 0.58 0.657 0.90 0.776 1.9 1.014 2.8 1.154
0.26 0.580 0.42 0.593 0.60 0.666 0.95 0.791 2.0 1.034 3.0 1.184
0.28 0.612 0.44 0.607 0.65 0.688 1.0 0.806 2.25 1.083 3.5 1.255
0.30 0.644 0.46 0.621 0.70 0.710 1.2 0.865 2.50 1.130 4.0 1.324
0.35 0.724 0.48 0.634 0.75 0.731 1.4 0.920 2.75 1.176 4.5 1.392
0.40 0.804 0.50 0.648 0.80 0.752 1.6 0.973 3.0 1.221 5.0 1.460
0.45 0.884 0.60 0.715 0.85 0.772 2.0 1.076 4.0 1.401 5.5 1.527
0.50 0.964 0.70 0.782 0.90 0.792 3.0 1.328 5.0 1.579 6.0 1.594
0.55 1.044 0.80 0.849 0.95 0.812 4.0 1.578 6.0 1.757 6.5 1.660
0.60 1.124 0.90 0.915 1.0 0.832 5.0 1.828 7.0 1.727
0.65 1.204 1.0 0.982 2.0 1.215 8.0 1.861
0.70 1.284 2.0 1.649 3.0 1.506 9.0 1.994
0.75 1.364 3.0 2.316 4.0 1.977 10.0 2.127
0.80 1.444 5.0 3.649 5.0 2.398

reD = 4. 5 reD = 5. 0 reD = 6. 0 reD = 7. 0 reD = 8. 0 reD = 9. 0 reD = 10. 0
tD pD tD pD tD pD tD pD tD pD tD pD tD pD

2.0 1.023 3.0 1.167 4.0 1.275 6.0 1.436 8.0 1.556 10.0 1.651 12.0 1.732
2.1 1.040 3.1 1.180 4.5 1.322 6.5 1.470 8.5 1.582 10.5 1.673 12.5 1.750
2.2 1.056 3.2 1.192 5.0 1.364 7.0 1.501 9.0 1.607 11.0 1.693 13.0 1.768
2.3 1.702 3.3 1.204 5.5 1.404 7.5 1.531 9.5 1.631 11.5 1.713 13.5 1.784
2.4 1.087 3.4 1.215 6.0 1.441 8.0 1.559 10.0 1.663 12.0 1.732 14.0 1.801
2.5 1.102 3.5 1.227 6.5 1.477 8.5 1.586 10.5 1.675 12.5 1.750 14.5 1.817
2.6 1.116 3.6 1.238 7.0 1.511 9.0 1.613 11.0 1.697 13.0 1.768 15.0 1.832
2.7 1.130 3.7 1.249 7.5 1.544 9.5 1.638 11.5 1.717 13.5 1.786 15.5 1.847
2.8 1.144 3.8 1.259 8.0 1.576 10.0 1.663 12.0 1.737 14.0 1.803 16.0 1.862
2.9 1.158 3.9 1.270 8.5 1.607 11.0 1.711 12.5 1.757 14.5 1.819 17.0 1.890
3.0 1.171 4.0 1.281 9.0 1.638 12.0 1.757 13.0 1.776 15.0 1.835 18.0 1.917
3.2 1.197 4.2 1.301 9.5 1.668 13.0 1.810 13.5 1.795 15.5 1.851 19.0 1.943
3.4 1.222 4.4 1.321 10.0 1.698 14.0 1.845 14.0 1.813 16.0 1.867 20.0 1.968
3.6 1.246 4.6 1.340 11.0 1.757 15.0 1.888 14.5 1.831 17.0 1.897 22.0 2.017
3.8 1.269 4.8 1.360 12.0 1.815 16.0 1.931 15.0 1.849 18.0 1.926 24.0 2.063
4.0 1.292 5.0 1.378 13.0 1.873 17.0 1.974 17.0 1.919 19.0 1.955 26.0 2.108
4.5 1.349 5.5 1.424 14.0 1.931 18.0 2.016 19.0 1.986 20.0 1.983 28.0 2.151
5.0 1.403 6.0 1.469 15.0 1.988 19.0 2.058 21.0 2.051 22.0 2.037 30.0 2.194
5.5 1.457 6.5 1.513 16.0 2.045 20.0 2.100 23.0 2.116 24.0 2.906 32.0 2.236
6.0 1.510 7.0 1.556 17.0 2.103 22.0 2.184 25.0 2.180 26.0 2.142 34.0 2.278
7.0 1.615 7.5 1.598 18.0 2.160 24.0 2.267 30.0 2.340 28.0 2.193 36.0 2.319
8.0 1.719 8.0 1.641 19.0 2.217 26.0 2.351 35.0 2.499 30.0 2.244 38.0 2.360
9.0 1.823 9.0 1.725 20.0 2.274 28.0 2.434 40.0 2.658 34.0 2.345 40.0 2.401

10.0 1.927 10.0 1.808 25.0 2.560 30.0 2.517 45.0 2.817 38.0 2.446 50.0 2.604
11.0 2.031 11.0 1.892 30.0 2.846 40.0 2.496 60.0 2.806
12.0 2.135 12.0 1.975 45.0 2.621 70.0 3.008
13.0 2.239 13.0 2.059 50.0 2.746 80.0 3.210
14.0 2.343 14.0 2.142 60.0 2.996 90.0 3.412
15.0 2.447 15.0 2.225 70.0 3.246 100.0 3.614

Notes: For tD smaller than values listed in this table for a given reD reservoir is infinite acting.
Find pD in Table 1.2.
For 25 < tD and tD larger than values in table:

pD ∼=
(
1/2+2tD

)
r2
eD

− 3r4
eD−4r4

eD ln reD−2r2
eD−1

4
(

r2
eD−1

)2

For wells in rebounded reservoirs with r2
eD � 1:

pD ∼= 2tD
r2
eD

+ ln reD − 3/4.
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the flow of compressible fluids in the reservoir, the following
two additional gas equations must be considered:

(1) Gas density equation:

ρ = pM
ZRT

(2) Gas compressibility equation:

cg = 1
p

− 1
Z

dZ
dp

Combining the above two basic gas equations with that of
Equation 1.2.56 gives:
1
r

∂

∂r

(
r

p
µZ

∂p
∂r

)
= φµct

0. 000264k
p

µZ
∂p
∂t

[1.2.87]

where:

t= time, hours
k= permeability, md

ct= total isothermal compressibility, psi−1

φ= porosity

Al-Hussainy et al. (1966) linearized the above basic flow
equation by introducing the real-gas pseudopressure m(p)
into Equation 1.2.87. Recalling the previously defined m(p)
equation:

m(p) =
∫ p

0

2p
µZ

dp [1.2.88]

and differentiating this relation with respect to p, gives:
∂m(p)

∂p
= 2p

µZ
[1.2.89]

The following relationships are obtained by applying the
chain rule:
∂m(p)

∂r
= ∂m(p)

∂p
∂p
∂r

[1.2.90]

∂m(p)
∂t

= ∂m(p)
∂p

∂p
∂t

[1.2.91]

Substituting Equation 1.2.89 into 1.2.90 and 1.2.91, gives:
∂p
∂r

= µZ
2p

∂m (p)

∂r
[1.2.92]

and:
∂p
∂t

= µZ
2p

∂m (p)

∂t
[1.2.93]

Combining Equations 1.2.92 and 1.2.93 with 1.2.87, yields:

∂2m (p)

∂r2 + 1
r

∂m (p)

∂r
= φµct

0. 000264k
∂m (p)

∂t
[1.2.94]

Equation 1.2.94 is the radial diffusivity equation for com-
pressible fluids. This differential equation relates the real-
gas pseudopressure (real-gas potential) to the time t and the
radius r . Al-Hussany et al. (1966) pointed out that in gas well
testing analysis, the constant-rate solution has more practi-
cal applications than that provided by the constant-pressure
solution. The authors provided the exact solution to Equa-
tion 1.2.94 that is commonly referred to as the m(p) solution
method. There are also two other solutions that approxi-
mate the exact solution. These two approximation methods
are called the pressure-squared method and the pressure
method. In general, there are three forms of mathematical
solution to the diffusivity equation:

(1) m(p) solution method (exact solution);
(2) pressure-squared method (p2 approximation method);
(3) pressure-method (p approximation method).

These three solution methods are presented below.

First solution: m(p) method (exact solution)
Imposing the constant-rate condition as one of the bound-
ary conditions required to solve Equation 1.2.94, Al-Hussany
et al. (1966) proposed the following exact solution to the
diffusivity equation:

m (pwf ) = m (pi) − 57 895. 3
(

psc

Tsc

)(
QgT
kh

)

×
[

log
(

kt
φµictir2

w

)
− 3. 23

]
[1.2.95]

where:

pwf = bottom-hole flowing pressure, psi
pe = initial reservoir pressure

Qg = gas flow rate, Mscf/day
t = time, hours
k = permeability, md

psc = standard pressure, psi
Tsc = standard temperature, ◦R

T = Reservoir temperature
rw = wellbore radius, ft
h = thickness, ft

µi = gas viscosity at the initial pressure, cp
cti = total compressibility coefficient at pi , psi−1

φ = porosity

Setting psc = 14. 7 psia and Tsc = 520◦R, then Equation
1.2.95 reduces to:

m(pwf ) = m (pi) −
(

1637QgT
kh

)[
log
(

kt
φµictir2

w

)
− 3. 23

]

[1.2.96]

The above equation can be simplified by introducing the
dimensionless time (as defined previously by Equation
1.2.74) into Equation 1.2.96:

tD = 0. 0002637 kt
φµictir2

w

Equivalently, Equation 1.2.96 can be written in terms of the
dimensionless time tD as:

m(pwf ) = m(pi) −
(

1637QgT
kh

)[
log
(

4tD

γ

)]
[1.2.97]

The parameter γ is called Euler’s constant and is given by:

γ = e0.5772 = 1. 781 [1.2.98]

The solution to the diffusivity equation as given by Equa-
tions 1.2.96 and 1.2.97 expresses the bottom-hole real-gas
pseudopressure as a function of the transient flow time t. The
solution as expressed in terms of m(p) is the recommended
mathematical expression for performing gas well pressure
analysis due to its applicability in all pressure ranges.

The radial gas diffusivity equation can be expressed in a
dimensionless form in terms of the dimensionless real-gas
pseudopressure drop ψD. The solution to the dimensionless
equation is given by:

ψD = m(pi) − m(pwf )(
1422QgT/kh

)
or:

m(pwf ) = m (pi) −
(

1422QgT
kh

)
ψD [1.2.99]

where:

Qg = gas flow rate, Mscf/day
k = permeability, md

The dimensionless pseudopressure drop ψD can be deter-
mined as a function of tD by using the appropriate expression
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of Equations 1.2.79 through 1.2.84. When tD > 100, ψD can
be calculated by applying Equation 1.2.70. That is:

ψD = 0. 5[ln(tD) + 0. 80907] [1.2.100]

Example 1.13 A gas well with a wellbore radius of 0.3 ft
is producing at a constant flow rate of 2000 Mscf/day under
transient flow conditions. The initial reservoir pressure
(shut-in pressure) is 4400 psi at 140◦F. The formation per-
meability and thickness are 65 md and 15 ft, respectively.
The porosity is recorded as 15%. Example 1.7 documents the
properties of the gas as well as values of m(p) as a function of
pressures. The table is reproduced below for convenience:

P µg(cp) Z m(p) (psi2/cp)

0 0.01270 1.000 0.000
400 0.01286 0.937 13. 2 × 106

800 0.01390 0.882 52. 0 × 106

1200 0.01530 0.832 113. 1 × 106

1600 0.01680 0.794 198. 0 × 106

2000 0.01840 0.770 304. 0 × 106

2400 0.02010 0.763 422. 0 × 106

2800 0.02170 0.775 542. 4 × 106

3200 0.02340 0.797 678. 0 × 106

3600 0.02500 0.827 816. 0 × 106

4000 0.02660 0.860 950. 0 × 106

4400 0.02831 0.896 1089. 0 × 106

Assuming that the initial total isothermal compressibility is
3 × 10−4 psi−1, calculate the bottom-hole flowing pressure
after 1.5 hours.

Solution

Step 1. Calculate the dimensionless time tD:

tD = 0. 0002637kt
φµictir2

w

=
(
0. 0002637

) (
65
) (

1. 5
)

(
0. 15

) (
0. 02831

) (
3 × 10−4

) (
0. 32

) = 224 498. 6

Step 2. Solve for m(pwf ) by using Equation 1.2.97:

m(pwf ) = m(pi) −
(

1637QgT
kh

)[
log
(

4tD

γ

)]

= 1089 × 106 −
(
1637

) (
2000

) (
600
)

(
65
) (

15
)

×
[

log
(

(4)224498. 6
e0.5772

)]
= 1077. 5 × 106

Step 3. From the given PVT data, interpolate using the value
of m(pwf ) to give a corresponding pwf of 4367 psi.

An identical solution can be obtained by applying the ψD
approach as shown below:

Step 1. Calculate ψD from Equation 1.2.100:

ψD = 0. 5[ln(tD) + 0. 80907]
= 0. 5[ln(224 498. 6) + 0. 8090] = 6. 565

Step 2. Calculate m(pwf ) by using Equation 1.2.99:

m (pwf ) = m (pi) −
(

1422QgT
kh

)
ψD

= 1089 × 106 −
(

1422
(
2000

) (
600
)

(
65
) (

15
)

) (
6. 565

)

= 1077. 5 × 106

By interpolation at m(pwf ) = 1077. 5×106, this gives
a corresponding value of pwf = 4367 psi.

Second solution: pressure-squared method
The first approximation to the exact solution is to move
the pressure-dependent term (µZ ) outside the integral that
defines m(pwf ) and m(pi), to give:

m(pi) − m(pwf ) = 2
µZ

∫ pi

pwf

p dp [1.2.101]

or:

m(pi) − m(pwf ) = p2
i − p2

wf

µZ
[1.2.102]

The bars over µ and Z represent the values of the gas viscos-
ity and deviation factor as evaluated at the average pressure
p. This average pressure is given by:

p =
√

p2
i + p2

wf

2
[1.2.103]

Combining Equation 1.2.102 with 1.2.96, 1.2.97, or 1.2.99,
gives:

p2
wf = p2

i −
(

1637QgTµZ
kh

)[
log
(

kt
φµictir2

w

)
− 3. 23

]

[1.2.104]
or:

p2
wf = p2

i −
(

1637QgTµZ
kh

)[
log
(

4tD

γ

)]
[1.2.105]

Equivalently:

p2
wf = p2

i −
(

1422QgTµZ
kh

)
ψD [1.2.106]

The above approximation solution forms indicate that the
product (µZ ) is assumed constant at the average pressure
p. This effectively limits the applicability of the p2 method to
reservoir pressures of less than 2000. It should be pointed
out that when the p2 method is used to determine pwf it is
perhaps sufficient to set µZ = µiZ .

Example 1.14 A gas well is producing at a constant rate
of 7454.2 Mscf/day under transient flow conditions. The
following data is available:

k = 50 md, h = 10 ft, φ = 20%, pi = 1600 psi

T = 600◦R, rw = 0. 3 ft, cti = 6. 25 × 10−4 psi−1

The gas properties are tabulated below:

P µg (cp) Z m(p) (psi2/cp)

0 0.01270 1.000 0.000
400 0.01286 0.937 13. 2 × 106

800 0.01390 0.882 52. 0 × 106

1200 0.01530 0.832 113. 1 × 106

1600 0.01680 0.794 198. 0 × 106
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Calculate the bottom-hole flowing pressure after 4 hours by
using:

(a) the m(p) method;
(b) the p2 method.

Solution

(a) The m(p) method:

Step 1. Calculate tD:

tD = 0. 000264
(
50
) (

4
)

(
0. 2
) (

0. 0168
) (

6. 25 × 10−4
) (

0. 32
)

= 279 365. 1
Step 2. Calculate ψD:

ψD = 0. 5[ln(tD) + 0. 80907]
= 0. 5

[
ln
(
279 365. 1

)+ 0. 80907
] = 6. 6746

Step 3. Solve for m(pwf ) by applying Equation 1.2.99:

m(pwf )=m(pi)−
(

1422QgT
kh

)
ψD

=(198×106)−
[

1422
(
7454.2

)(
600
)

(
50
)(

10
)

]
6.6746

=113.1×106

The corresponding value of pwf = 1200 psi.

(b) The p2 method:

Step 1. Calculate ψD by applying Equation 1.2.100:
ψD = 0. 5[ln(tD) + 0. 80907]

= 0. 5
[
ln
(
279 365. 1

)+ 0. 80907
] = 6. 6747

Step 2. Calculate p2
wf by applying Equation 1.2.106:

p2
wf =p2

i −
(

1422QgTµZ
kh

)
ψD

=16002 −
[(

1422
)(

7454.2
)(

600
)(

0.0168
)(

0.794
)

(
50
)(

10
)

]
6.6747

=1427491

pwf =1195 psi.
Step 3. The absolute average error is 0.4%.

Third solution: pressure approximation method
The second method of approximation to the exact solution of
the radial flow of gases is to treat the gas as a pseudo-liquid.
Recal that the gas formation volume factor Bg as expressed
in bbl/scf is given by:

Bg =
(

psc

5. 615Tsc

)(
ZT
p

)

or:

Bg = 0. 00504
(

ZT
p

)

Solving the above expression for p/Z gives:
p
Z

=
(

Tpsc

5. 615Tsc

)(
1

Bg

)

The difference in the real-gas pseudopressure is given by:

m (pi) − (pwf ) =
∫ pi

pwf

2p
µZ

dp

Combining the above two expressions gives:

m(pi) − m(pwf ) = 2Tpsc

5. 615Tsc

∫ pi

pwf

(
1

µBg

)
dp [1.2.107]

Pressure
≈ 3000

Figure 1.22 Plot of 1/µBg vs. pressure.

Fetkovich (1973) suggested that at high pressures above
3000 psi (p > 3000), 1/µBg is nearly constant as shown
schematically in Figure 1.22. Imposing Fetkovich’s condition
on Equation 1.2.107 and integrating gives:

m (pi) − m (pwf ) = 2Tpsc

5. 615TscµBg

(
pi − pwf

)
[1.2.108]

Combining Equation 1.2.108 with 1.2.96, 1.2.97, or 1.2.99
gives:

pwf = pi −
(

162. 5 × 103QgµBg

kh

)[
log
(

kt
φµctr2

w

)
− 3. 23

]

[1.2.109]
or:

pwf = pi −
(

(162. 5 × 103)QgµBg

kh

)[
log
(

4tD

γ

)]
[1.2.110]

or, equivalently, in terms of dimensionless pressure drop:

pwf = pi −
(

(141. 2 × 103)QgµBg

kh

)
pD [1.2.111]

where:

Qg = gas flow rate, Mscf/day
k = permeability, md

Bg = gas formation volume factor, bbl/scf
t = time, hours

pD = dimensionless pressure drop
tD = dimensionless

It should be noted that the gas properties, i.e., µ, Bg, and ct ,
are evaluated at pressure p as defined below:

p = pi + pwf

2
[1.2.112]

Again, this method is limited only to applications above
3000 psi. When solving for pwf , it might be sufficient to
evaluate the gas properties at pi .

Example 1.15 The data of Example 1.13 is repeated
below for convenience.

A gas well with a wellbore radius of 0.3 ft is producing
at a constant flow rate of 2000 Mscf/day under transient
flow conditions. The initial reservoir pressure (shut-in pres-
sure) is 4400 psi at 140◦F. The formation permeability and
thickness are 65 md and 15 ft, respectively. The poros-
ity is recorded as 15%. The properties of the gas as well
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as values of m(p) as a function of pressures are tabulated
below:

P µg (cp) Z m(p) (psi2/cp)

0 0.01270 1.000 0.000
400 0.01286 0.937 13. 2 × 106

800 0.01390 0.882 52. 0 × 106

1200 0.01530 0.832 113. 1 × 106

1600 0.01680 0.794 198. 0 × 106

2000 0.01840 0.770 304. 0 × 106

2400 0.02010 0.763 422. 0 × 106

2800 0.02170 0.775 542. 4 × 106

3200 0.02340 0.797 678. 0 × 106

3600 0.02500 0.827 816. 0 × 106

4000 0.02660 0.860 950. 0 × 106

4400 0.02831 0.896 1089. 0 × 106

Assuming that the initial total isothermal compressibility is
3 × 10−4psi−1, calculate, the bottom-hole flowing pressure
after 1.5 hours by using the p approximation method and
compare it with the exact solution.

Solution

Step 1. Calculate the dimensionless time tD:

tD = 0. 0002637kt
φµictir2

w

=
(
0. 000264

) (
65
) (

1. 5
)

(
0. 15

) (
0. 02831

) (
3 × 10−4

) (
0. 32

) = 224 498. 6

Step 2. Calculate Bg at pi :

Bg = 0. 00504
(

ZiT
pi

)

= 0. 00504
(
0. 896

) (
600
)

4400
= 0. 0006158 bbl/scf

Step 3. Calculate the dimensionless pressure pD by applying
Equation 1.2.80:

pD = 0. 5[ln(tD) + 0. 80907]
= 0. 5

[
ln
(
224 498. 6

)+ 0. 80907
] = 6. 565

Step 4. Approximate pwf from Equation 1.2.111:

pwf =pi −
(

(141.2103)QgµBg

kh

)
pD

=4400−
[

141.2×103
(
2000

)(
0.02831

)(
0.0006158

)
(
65
)(

15
)

]
6.565

=4367 psi

The solution is identical to that of the exact solution of
Example 1.13.

It should be pointed out that Examples 1.10 through 1.15
are designed to illustrate the use of different solution meth-
ods. However, these examples are not practical because,
in transient flow analysis, the bottom-hole flowing pressure
is usually available as a function of time. All the previous
methodologies are essentially used to characterize the reser-
voir by determining the permeability k or the permeability
and thickness product (kh).

1.2.7 Pseudosteady state
In the unsteady-state flow cases discussed previously, it was
assumed that a well is located in a very large reservoir
and producing at a constant flow rate. This rate creates a
pressure disturbance in the reservoir that travels through-
out this “infinite-size reservoir.” During this transient flow
period, reservoir boundaries have no effect on the pres-
sure behavior of the well. Obviously, the time period when
this assumption can be imposed is often very short in
length. As soon as the pressure disturbance reaches all
drainage boundaries, it ends the transient (unsteady-state)
flow regime and the beginning of the boundary-dominated
flow condition. This different type of flow regime is called
pseudosteady (semisteady)-State Flow. It is necessary at this
point to impose different boundary conditions on the diffu-
sivity equation and drive an appropriate solution to this flow
regime.

Consider Figure 1.23 which shows a well in a radial sys-
tem that is producing at a constant rate for a long enough
period that eventually affects the entire drainage area. Dur-
ing this semisteady-state flow, the change in pressure with
time becomes the same throughout the drainage area.
Figure 1.23(b) shows that the pressure distributions become
paralleled at successive time periods. Mathematically, this
important condition can be expressed as:(

∂p
∂t

)
r

= constant [1.2.113]

The “constant” referred to in the above equation can be
obtained from a simple material balance using the defini-
tion of the compressibility, assuming no free gas production,
thus:

c = −1
V

dV
dp

Rearranging:
cV dp = −dV

Differentiating with respect to time t:

cV
dp
dt

= − dV
dt

= q

or:
dp
dt

= − q
cV

Expressing the pressure decline rate dp/dt in the above
relation in psi/hr gives:
dp
dt

= − q
24cV

= −QoBo

24cV
[1.2.114]

where:

q = flow rate, bbl/day
Qo = flow rate, STB/day

dp/dt = pressure decline rate, psi/hr
V = pore volume, bbl

For a radial drainage system, the pore volume is given by:

V = πr2
e hφ

5. 615
= Ahφ

5. 615
[1.2.115]

where:

A = drainage area, ft2

Combining Equation 1.2.115 with 1.2.114 gives:
dp
dt

= − 0. 23396q
ct (πr2

e )hφ
= −0. 23396q

ctAhφ
= −0. 23396q

ct (pore volume)
[1.2.116]

Examining Equation 1.2.116 reveals the following important
characteristics of the behavior of the pressure decline rate
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Figure 1.23 Semisteady-state flow regime.

dp/dt during the semisteady-state flow:

● the reservoir pressure declines at a higher rate with
increasing fluid production rate;

● the reservoir pressure declines at a slower rate for
reservoirs with higher total compressibility coefficients;

● the reservoir pressure declines at a lower rate for reser-
voirs with larger pore volumes.

And in the case of water influx with an influx rate of ew
bbl/day, the equation can be modified as:

dp
dt

= −0. 23396q + ew

ct (pore volume)

Example 1.16 An oil well is producing at constant oil flow
rate of 120 STB/day under a semisteady-state flow regime.
Well testing data indicates that the pressure is declining at a
constant rate of 0.04655 psi/hr. The following addition data
is available:

h = 72 ft, φ = 25%,

Bo = 1. 3 bbl/STB, ct = 25 × 10−6 psi−1

Calculate the well drainage area.

Solution Here:
q = QoBo = (120)(1. 3) = 156 bbl/day

Apply Equation 1.2.116 to solve for A:
dp
dt

= − 0. 23396q
ct (πr2

e )hφ
= −0. 23396q

ctAhφ
= −0. 23396q

ct (pore volume)

− 0. 04655 = − 0. 23396(156)(
25 × 10−6

) (
A
) (

72
) (

0. 25
)

A = 1 742 400 ft2

or:

A = 1 742 400/43 560 = 40 acres

Matthews et al. (1954) pointed out that once the reservoir
is producing under the semisteady-state condition, each well
will drain from within its own no-flow boundary indepen-
dently of the other wells. For this condition to prevail, the
pressure decline rate dp/dt must be approximately constant
throughout the entire reservoir, otherwise flow would occur
across the boundaries causing a readjustment in their posi-
tions. Because the pressure at every point in the reservoir is
changing at the same rate, it leads to the conclusion that the
average reservoir pressure is changing at the same rate. This
average reservoir pressure is essentially set equal to the vol-
umetric average reservoir pressure pr . It is the pressure that
is used to perform flow calculations during the semisteady-
state flowing condition. The above discussion indicates that,
in principle, Equation 1.2.116 can be used to estimate the
average pressure in the well drainage area p by replacing
the pressure decline rate dp/dt with (pi − p)/t, or:

pi − p = 0. 23396qt
ct (Ahφ)

or:

p = pi −
[

0. 23396q
ct (Ahφ)

]
t [1.2.117]

Note that the above expression is essentially an equation
of a straight line, with a slope of m\ and intercept of pi , as
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expressed by:

p = a + m\t

m\ = −
[

0. 23396q
ct (Ahφ)

]
= −

[
0. 23396q

ct (pore volume)

]

a = pi

Equation 1.2.117 indicates that the average reservoir pres-
sure, after producing a cumulative oil production of Np STB,
can be roughly approximated by:

p = pi −
[

0. 23396BoNp

ct (Ahφ)

]

It should be noted that when performing material balance
calculations, the volumetric average pressure of the entire
reservoir is used to calculate the fluid properties. This pres-
sure can be determined from the individual well drainage
properties as follows:

pr =
∑

j (pV )j∑
j Vj

in which:

Vj = pore volume of the jth well drainage volume
(p)j = volumetric average pressure within the jth

drainage volume

Figure 1.24 illustrates the concept of the volumetric aver-
age pressure. In practice, the Vi are difficult to determine
and, therefore, it is common to use individual well flow
rates qi in determining the average reservoir pressure from
individual well average drainage pressure:

pr =
∑

j

(
pq
)

j∑
j qj

The flow rates are measured on a routing basis through-
out the lifetime of the field, thus facilitating the calculation
of the volumetric average reservoir pressure p̄r . Alterna-
tively, the average reservoir pressure can be expressed
in terms of the individual well average drainage pressure
decline rates and fluid flow rates by:

pr =
∑

j [(pq)j /(∂p/∂t)j ]∑
j [qj /(∂p/∂t)j ]

[1.2.118]

q1

p1, V1

q2

p2, V2

q4

p4, V4

q3

p3, V3

Figure 1.24 Volumetric average reservoir pressure.

However, since the material balance equation is usually
applied at regular intervals of 3–6 months, i.e., �t = 3–6
months, throughout the lifetime of the field, the average field
pressure can be expressed in terms of the incremental net
change in underground fluid withdrawal �(F) as:

pr =
∑

j pj�(F)j /�pj∑
j �(F)j /�pj

[1.2.119]

where the total underground fluid withdrawal at time t and
t + �t are given by:

Ft =
∫ t

0
[QoBo +QwBw +(Qg −QoRs −QwRsw)Bg]dt

Ft+�t =
∫ t+�t

0
[QoBo +QwBw +(Qg −QoRs −QwRsw)Bg]dt

with:
�(F) = Ft+�t − Ft

and where:

Rs = gas solubility, scf/STB
Rsw = gas solubility in the water, scf/STB
Bg = gas formation volume factor, bbl/scf
Qo = oil flow rate, STB/day
qo = oil flow rate, bbl/day
Qw= water flow rate, STB/day
qw = water flow rate, bbl/day
Qg = gas flow rate, scf/day

The practical applications of using the pseudosteady-state
flow condition to describe the flow behavior of the following
two types of fluids are presented below:

(1) radial flow of slightly compressible fluids;
(2) radial flow of compressible fluids.

1.2.8 Radial flow of slightly compressible fluids
The diffusivity equation as expressed by Equation 1.2.61 for
the transient flow regime is:

∂2p
∂r2 + 1

r
∂p
∂r

=
(

φµct

0. 000264k

)
∂p
∂t

For the semisteady-state flow, the term ∂p/∂t is constant
and is expressed by Equation 1.2.116. Substituting Equation
1.2.116 into the diffusivity equation gives:

∂2p
∂r2 + 1

r
∂p
∂r

=
(

φµct

0. 000264k

)(−0. 23396q
ctAhφ

)

or:
∂2p
∂r2 + 1

r
∂p
∂r

= −887. 22qµ

Ahk
This expression can be expressed as:

1
r

∂

∂r

(
r
∂p
∂r

)
= − 887. 22qµ(

πr2
e

)
hk

Integrating this equation gives:

r
∂p
∂r

= − 887. 22qµ(
πr2

e

)
hk

(
r2

2

)
+ c1

where c1 is the constant of integration and can be evalu-
ated by imposing the outer no-flow boundary condition (i.e.,
(∂p/∂r)re = 0) on the above relation, to give:

c1 = 141. 2qµ

πhk
Combining these two expressions gives:

∂p
∂r

= 141. 2qµ

hk

(
1
r

− r
r2

e

)
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Integrating again:∫ pi

pwf

dp = 141. 2qµ

hk

∫ re

rw

(
1
r

− r
r2

e

)
dr

Performing the above integration and assuming r2
w/r2

e is
negligible gives:

(pi − pwf ) = 141. 2qµ

kh

[
ln
(

re

rw

)
− 1

2

]

A more appropriate form of the above is to solve for the flow
rate as expressed in STB/day, to give:

Q = 0. 00708kh (pi − pwf )

µB
[
ln
(
re/rw

)− 0. 5
] [1.2.120]

where:

Q = flow rate, STB/day
B = formation volume factor, bbl/STB
k = permeability, md

The volumetric average pressure in the well drainage area
p is commonly used in calculating the liquid flow rate under
the semisteady-state flowing condition. Introducing p into
Equation 1.2.120 gives:

Q = 0. 00708kh
(
p − pwf

)
µB
[
ln
(
re/rw

)− 0. 75
] =

(
p − pwf

)
141. 2µB

[
ln
(
re/rw

)− 0. 75
]

[1.2.121]

Note that:

ln
(

re

rw

)
− 0. 75 = ln

(
0. 471re

rw

)

The above observation suggests that the volumetric average
pressure p occur at about 47% of the drainage radius during
the semisteady-state condition. That is:

Q = 0. 00708kh
(
p − pwf

)
µB
[
ln
(
0. 471re/rw

)]
It should be pointed out that the pseudosteady-state flow
occurs regardless of the geometry of the reservoir. Irreg-
ular geometries also reach this state when they have been
produced long enough for the entire drainage area to be
affected.

Rather than developing a separate equation for the geom-
etry of each drainage area, Ramey and Cobb (1971) intro-
duced a correction factor called the shape factor CA which
is designed to account for the deviation of the drainage area
from the ideal circular form. The shape factor, as listed in
Table 1.4, accounts also for the location of the well within
the drainage area. Introducing CA into Equation 1.2.121 and
solving for pwf gives the following two solutions:

(1) In terms of the volumetric average pressure p:

pwf = p − 162. 6QBµ

kh
log
(

2. 2458A
CAr2

w

)
[1.2.122]

(2) In terms of the initial reservoir pressure, pi , recall Equa-
tion 1.2.117 which shows the changes of the average
reservoir pressure p as a function of time and initial
reservoir pressure pi :

p = pi − 0. 23396qt
ctAhφ

Combining this equation with Equation 1.2.122 gives:

pwf =
(

pi − 0. 23396QBt
Ahφct

)
− 162. 6QBµ

kh
log
(

2. 2458A
CAr2

w

)

[1.2.123]

where:

k = permeability, md
A= drainage area, ft2

CA = shape factor
Q = flow rate, STB/day

t= time, hours
ct= total compressibility coefficient, psi−1

Equation 1.2.123 can be slightly rearranged as:

pwf =
[

pi − 162.6QBµ

kh
log
(

2.2458A
CAr2

w

)]
−
(

0.23396QB
Ahφct

)
t

The above expression indicates that under semisteady-
state flow and constant flow rate, it can be expressed as an
equation of a straight line:

pwf = apss + mpsst

with apss and mpss as defined by:

apss =
[

pi − 162. 6QBµ

kh
log
(

2. 2458A
CAr2

w

)]

mpss = −
(

0. 23396QB
ct (Ahφ)

)
= −

(
0. 23396QB

ct (pore volume)

)

It is obvious that during the pseudosteady (semisteady)-state
flow condition, a plot of the bottom-hole flowing pressure pwf
versus time t would produce a straight line with a negative
slope of mpss and intercept of apss.

A more generalized form of Darcy’s equation can be devel-
oped by rearranging Equation 1.2.122 and solving for Q to
give:

Q = kh
(
p − pwf

)
162. 6Bµ log

(
2. 2458A/CAr2

w

) [1.2.124]

It should be noted that if Equation 1.2.124 is applied to a
circular reservoir of radius re, then:

A = πr2
e

and the shape factor for a circular drainage area as given in
Table 1.4 as:

CA = 31. 62

Substituting in Equation 1.2.124, it reduces to:

Q = 0. 00708kh(p − pwf )
Bµ[ln(re/rw) − 0. 75]

This equation is identical to that of Equation 1.2.123.

Example 1.17 An oil well is developed on the center of
a 40 acre square-drilling pattern. The well is producing at a
constant flow rate of 100 STB/day under a semisteady-state
condition. The reservoir has the following properties:

φ = 15%, h = 30 ft, k = 20 md

µ = 1. 5 cp, Bo = 1. 2 bbl/STB, ct = 25 × 10−6 psi−1

pi = 4500 psi, rw = 0. 25 ft, A = 40 acres

(a) Calculate and plot the bottom-hole flowing pressure as
a function of time.

(b) Based on the plot, calculate the pressure decline rate.
What is the decline in the average reservoir pressure
from t = 10 to t = 200 hours?

Solution

(a) For the pwf calculations:

Step 1. From Table 1.4, determine CA:

CA = 30. 8828

TLFeBOOK



Table 1.4 Shape factors for various single-well drainage areas (After Earlougher, R, Advances in Well Test Analysis,
permission to publish by the SPE, copyright SPE, 1977)

In bounded CA ln CA 1
2 ln

(
2.2458

CA

) Exact Less than Use infinite system
reservoirs for tDA > 1% error solution with less

for tDA > than 1% error
for tDA >

60°

} }

1
1/3

43 }}

1

2

1

2

1

2

1

2

1

2

1

1

2

4

1

2

1
4

1
4

1
4

1
4

0.1
1

1

0.2
1

1

0.3
1

1

0.5
1

1

0.7
1

1
1.0

1

1

= x1/xe

31.62 3.4538 −1.3224 0.1 0.06 0.10

31.6 3.4532 −1.3220 0.1 0.06 0.10

27.6 3.3178 −1.2544 0.2 0.07 0.09

27.1 3.2995 −1.2452 0.2 0.07 0.09

21.9 3.0865 −1.1387 0.4 0.12 0.08

0.098 −2.3227 +1.5659 0.9 0.60 0.015

30.8828 3.4302 −1.3106 0.1 0.05 0.09

12.9851 2.5638 −0.8774 0.7 0.25 0.03

10132 1.5070 −0.3490 0.6 0.30 0.025

3.3351 1.2045 −0.1977 0.7
0.25 0.01

21.8369 3.0836 −1.1373 0.3 0.15 0.025

10.8374 2.3830 −0.7870 0.4 0.15 0.025

10141 1.5072 −0.3491 1.5 0.50 0.06

2.0769 0.7309 −0.0391 1.7 0.50 0.02

3.1573 1.1497 −0.1703 0.4 0.15 0.005

0.5813 −0.5425 +0.6758 2.0 0.60 0.02

0.1109 −2.1991 +1.5041 3.0 0.60 0.005

5.3790 1.6825 −0.4367 0.8 0.30 0.01

2.6896 0.9894 −0.0902 0.8 0.30 0.01

0.2318 −1.4619 +1.1355 4.0 2.00 0.03

0.1155 −2.1585 +1.4838 4.0 2.00 0.01

2.3606 0.8589 −0.0249 1.0 0.40 0.025
In vertically fractured reservoirs use (xe/xf )2 in place of A/r2

w, for fractured systems

2.6541 0.9761 −0.0835 0.175 0.08 cannot use

2.0348 0.7104 +0.0493 0.175 0.09 cannot use

1.9986 0.6924 +0.0583 0.175 0.09 cannot use

1.6620 0.5080 +0.1505 0.175 0.09 cannot use

1.3127 0.2721 +0.2685 0.175 0.09 cannot use
In water-drive reservoirs

0.7887 −0.2374 +0.5232 0.175 0.09 cannot use

19.1 2.95 −1.07 – – –
In reservoirs of unknown production character

25.0 3.22 −1.20 – – –

TLFeBOOK



WELL TESTING ANALYSIS 1/35

0
3500

3700

3900

4100

4300

4500

4700

20 40 60 80 100

t, hrs

p w
f, 

ps
i

120 140 160 180 200

Figure 1.25 Bottom-hole flowing pressure as a function of time.

Step 2. Convert the area A from acres to ft2:

A = (40)(43 560) = 1 742 400 ft2

Step 3. Apply Equation 1.2.123:

pwf =
(

pi − 0. 23396QBt
Ahφct

)

− 162. 6QBµ

kh
log
(

2. 2458A
1CAr2

w

)

= 4500 − 0. 143t − 48. 78 log(2 027 436)
or:

pwf = 4192 − 0. 143t
Step 4. Calculate pwf at different assumed times, as

follows:

t (hr) pwf = 4192 − 0. 143t

10 4191
20 4189
50 4185
100 4178
200 4163

Step 5. Present the results of step 4 in graphical form as
shown in Figure 1.25.

(b) It is obvious from Figure 1.25 and the above calculation
that the bottom-hole flowing pressure is declining at a
rate of 0.143 psi/hr, or:

dp
dt

= −0. 143 psi/hr

The significance of this example is that the rate of pres-
sure decline during the pseudosteady state is the same
throughout the drainage area. This means that the aver-
age reservoir pressure, pr , is declining at the same rate of
0.143 psi/hr, therefore the change in pr from 10 to 200
hours is:

�pr = (0. 143
) (

200 − 10
) = 27. 17 psi

Example 1.18 An oil well is producing under a constant
bottom-hole flowing pressure of 1500 psi. The current aver-
age reservoir pressure pr is 3200 psi. The well is developed

in the center of 40 acre square-drilling pattern. Given the
following additional information:

φ = 16%, h = 15 ft, k = 50 md,
µ = 26 cp, Bo = 1. 15 bbl/STB,
ct = 10 × 10−6 psi−1, rw = 0. 25 ft

calculate the flow rate.

Solution
Because the volumetric average pressure is given, solve for
the flow rate by applying Equation 1.2.124:

Q = kh
(
p − pwf

)
162. 6Bµ log

[
2.2458A
CAr2

w

]

= (50)(15)(3200 − 1500)

(162. 6)(1. 15)(2. 6) log
[

2.2458(40)(43 560)
(30.8828)(0.252)

]

= 416 STB/day

It is interesting to note that Equation 1.2.124 can also be
presented in a dimensionless form by rearranging and
introducing the dimensionless time tD and dimensionless
pressure drop pD, to give:

pD = 2π tDA + 1
2

ln
(

2. 3458A
CAr2

w

)
+ s [1.2.125]

with the dimensionless time based on the well drainage given
by Equation 1.2.75a as:

tDA = 0. 0002637kt
φµctA

= tA

(
r2

w

A

)

where:

s = skin factor (to be introduced later in the chapter)
CA = shape factor
tDA = dimensionless time based on the well drainage

area πr2
e .
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Equation 1.2.125 suggests that during the boundary-
dominated flow, i.e., pseudosteady state, a plot of pD vs. tDA on
a Cartesian scale would produce a straight line with a slope
of 2π . That is:
∂pD

∂tDA
= 2π [1.2.126]

For a well located in a circular drainage area with no skin,
i.e., s = 0, and taking the logarithm of both sides of Equation
1.2.125 gives:

log(pD) = log(2π) + log(tDA)

which indicates that a plot of pD vs. tDA on a log–log scale
would produce a 45◦ straight line and an intercept of 2π .

1.2.9 Radial flow of compressible fluids (gases)
The radial diffusivity equation as expressed by Equation
1.2.94 was developed to study the performance of a com-
pressible fluid under unsteady-state conditions. The equa-
tion has the following form:

∂2m(p)
∂r2 + 1

r
∂m(p)

∂r
= φµct

0. 000264k
∂m(p)

∂t

For semisteady-state flow, the rate of change of the real-gas
pseudopressure with respect to time is constant. That is:

∂m(p)
∂t

= constant

Using the same technique identical to that described pre-
viously for liquids gives the following exact solution to the
diffusivity equation:

Qg = kh
[
m(pr) − m(pwf )

]

1422T
[

ln
(

re

rw

)
− 0. 75

] [1.2.127]

where:

Qg = gas flow rate, Mscf/day
T = temperature, ◦R
k = permeability, md

Two approximations to the above solution are widely used.
These are:

(1) the pressure-squared approximation;
(2) the pressure approximation.

Pressure-squared method
As outlined previously, this method provides us with com-
patible results to that of the exact solution approach when
p < 2000 psi. The solution has the following familiar
form:

Qg =
kh
(

p
2
r − p2

wf

)

1422TµZ
(

ln
(

re

rw

)
− 0. 75

) [1.2.128]

The gas properties Z and µ are evaluated at:

p =
√

p
2
r + p2

wf

2

where:

Qg = gas flow rate, Mscf/day
T = temperature, ◦R
k = permeability, md

Pressure approximation method
This approximation method is applicable at p > 3000 psi and
has the following mathematical form:

Qg = kh
(
pr − pwf

)
1422µBg

[
ln
(
re/rw

)− 0. 75
] [1.2.129]

with the gas properties evaluated at:

p = pr + pwf

2
where:

Qg = gas flow rate, Mscf/day
k = permeability, md
Bg = gas formation volume factor at a average

pressure, bbl/scf

The gas formation volume factor is given by the following
expression:

Bg = 0. 00504
ZT
p

In deriving the flow equations, the following two main
assumptions were made:

(1) uniform permeability throughout the drainage area;
(2) laminar (viscous) flow.

Before using any of the previous mathematical solutions to
the flow equations, the solution must be modified to account
for the possible deviation from the above two assump-
tions. Introducing the following two correction factors into
the solution of the flow equation can eliminate these two
assumptions:

(1) skin factor;
(2) turbulent flow factor.

1.2.10 Skin factor
It is not unusual during drilling, completion, or workover
operations for materials such as mud filtrate, cement slurry,
or clay particles to enter the formation and reduce the perme-
ability around the wellbore. This effect is commonly referred
to as “wellbore damage” and the region of altered perme-
ability is called the “skin zone.” This zone can extend from a
few inches to several feet from the wellbore. Many other
wells are stimulated by acidizing or fracturing, which in
effect increases the permeability near the wellbore. Thus,
the permeability near the wellbore is always different from
the permeability away from the well where the formation
has not been affected by drilling or stimulation. A schematic
illustration of the skin zone is shown in Figure 1.26.

Damaged Zone Pressure Profile

Undamaged Zone

k

kskin

rskin

rw

Figure 1.26 Near-wellbore skin effect.
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Figure 1.27 Representation of positive and negative skin effects.

The effect of the skin zone is to alter the pressure distri-
bution around the wellbore. In case of wellbore damage, the
skin zone causes an additional pressure loss in the formation.
In case of wellbore improvement, the opposite to that of well-
bore damage occurs. If we refer to the pressure drop in the
skin zone as �pskin, Figure 1.27 compares the differences in
the skin zone pressure drop for three possible outcomes.

● First outcome: �pskin > 0, which indicates an additional
pressure drop due to wellbore damage, i.e., kskin < k.

● Second outcome: �pskin < 0, which indicates less pressure
drop due to wellbore improvement, i.e., kskin > k.

● Third outcome: �pskin = 0, which indicates no changes in
the wellbore condition, i.e., kskin = k.

Hawkins (1956) suggested that the permeability in the skin
zone, i.e., kskin, is uniform and the pressure drop across the
zone can be approximated by Darcy’s equation. Hawkins
proposed the following approach:

�pskin =
[

�p in skin zone
due to kskin

]
−
[

�p in the skin zone
due to k

]

Applying Darcy’s equation gives:

(�p)skin =
(

QoBoµo

0. 00708hkskin

)
ln
(

rskin

rw

)

−
(

QoBoµo

0. 00708hk

)
ln
(

rskin

rw

)

or:

�pskin =
(

QoBoµo

0. 00708kh

)[
k

kskin
− 1
]

ln
(

rskin

rw

)

where:

k = permeability of the formation, md
kskin = permeability of the skin zone, md

The above expression for determining the additional pres-
sure drop in the skin zone is commonly expressed in the
following form:

�pskin =
(

QoBoµo

0. 00708kh

)
s = 141. 2

(
QoBoµo

kh

)
s [1.2.130]

where s is called the skin factor and defined as:

s =
[

k
kskin

− 1
]

ln
(

rskin

rw

)
[1.2.131]

Depending on the permeability ratio k/kskin and if
ln(rskin/rw) is always positive, there are only three possible
outcomes in evaluating the skin factor s:

(1) Positive skin factor, s > 0: When the damaged zone near
the wellbore exists, kskin is less than k and hence s is a pos-
itive number. The magnitude of the skin factor increases
as kskin decreases and as the depth of the damage rskin
increases.

(2) Negative skin factor, s < 0: When the permeability around
the well kskin is higher than that of the formation k, a
negative skin factor exists. This negative factor indicates
an improved wellbore condition.

(3) Zero skin factor, s = 0: Zero skin factor occurs when no
alternation in the permeability around the wellbore is
observed, i.e., kskin = k.

Equation 1.2.131 indicates that a negative skin factor will
result in a negative value of �pskin. This implies that a stim-
ulated well will require less pressure drawdown to produce
at rate q than an equivalent well with uniform permeability.

The proposed modification of the previous flow equation is
based on the concept that the actual total pressure drawdown
will increase or decrease by an amount �pskin. Assuming that
(�p)ideal represents the pressure drawdown for a drainage
area with a uniform permeability k, then:

(�p)actual = (�p)ideal + (�p)skin

or:

(pi − pwf )actual = (pi − pwf )ideal + �pskin [1.2.132]

The above concept of modifying the flow equation to account
for the change in the pressure drop due the wellbore skin
effect can be applied to the previous three flow regimes:

(1) steady-state flow;
(2) unsteady-state (transient) flow;
(3) pseudosteady (semisteady)-state flow.

Basically, Equation 1.2.132 can be applied as follows.
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Steady state radial flow (accounting for the skin factor)
Substituting Equations 1.2.15 and 1.2.130 into Equation
1.2.132, gives:

(�p)actual = (�p)ideal + (�p)skin

(pi − pwf )actual =
(

QoBoµo

0. 00708kh

)
ln
(

re

rw

)
+
(

QoBoµo

0. 00708kh

)
s

Solving for the flow rate gives:

Qo = 0. 00708kh (pi − pwf )

µoBo

[
ln

re

rw
+ s
] [1.2.133]

where:

Qo = oil flow rate, STB/day
k = permeability, md
h = thickness, ft
s = skin factor

Bo = oil formation volume factor, bbl/STB
µo = oil viscosity, cp
pi = initial reservoir pressure, psi

pwf = bottom-hole flowing pressure, psi

Unsteady-state radial flow (accounting for the skin factor)
For slightly compressible fluids Combining Equations
1.2.71 and 1.2.130 with that of 1.2.132 yields:

(�p)actual = (�p)ideal + (�p)skin

pi − pwf = 162. 6
(

QoBoµo

kh

)[
log

kt
φµctr2

w
− 3. 23

]

+ 141. 2
(

QoBoµo

kh

)
s

or:

pi − pwf = 162. 6
(

QoBoµo

kh

)[
log

kt
φµctr2

w
− 3. 23 + 0. 87s

]

[1.2.134]

For compressible fluids A similar approach to that of the
above gives:

m(pi) − m(pwf ) = 1637QgT
kh

[
log

kt
φµcti r

2
w

− 3. 23 + 0. 87s
]

[1.2.135]

and in terms of the pressure-squared approach, the differ-
ence [m(pi) − m(pwf )] can be replaced with:

m(pi) − m(pwf ) =
∫ pi

pwf

2p
µZ

dp = p2
i − p2

wf

µZ
to give:

p2
i − p2

wf = 1637QgTZµ

kh

[
log

kt
φµictir2

w
− 3. 23 + 0. 87s

]

[1.2.136]

where:

Qg = gas flow rate, Mscf/day
T = temperature, ◦R
k = permeability, md
t = time, hours

Pseudosteady-state flow (accounting for the skin factor)
For slightly compressible fluids Introducing the skin factor
into Equation 1.2.123 gives:

Qo = 0. 00708kh
(
pr − pwf

)

µoBo

[
ln
(

re

rw

)
− 0. 75 + s

] [1.2.137]

For compressible fluids

Qg = kh
[
m(pr) − m(pwf )

]

1422T
[

ln
(

re

rw

)
− 0. 75 + s

] [1.2.138]

or in terms of the pressure-squared approximation:

Qg =
kh
(

p2
r − p2

wf

)

1422TµZ
[

ln
(

re

rw

)
− 0. 75 + s

] [1.2.139]

where :

Qg = gas flow rate, Mscf/day
k = permeability, md

T = temperature, ◦R
µg = gas viscosity at average pressure p, cp
Z g = gas compressibility factor at average pressure p

Example 1.19 Calculate the skin factor resulting from
the invasion of the drilling fluid to a radius of 2 ft. The per-
meability of the skin zone is estimated at 20 md as compared
with the unaffected formation permeability of 60 md. The
wellbore radius is 0.25 ft.

Solution
Apply Equation 1.2.131 to calculate the skin factor:

s =
[

60
20

− 1
]

ln
(

2
0. 25

)
= 4. 16

Matthews and Russell (1967) proposed an alternative treat-
ment to the skin effect by introducing the “effective or
apparent wellbore radius” rwa that accounts for the pressure
drop in the skin. They define rwa by the following equation:
rwa = rwe−s [1.2.140]
All of the ideal radial flow equations can be also modified for
the skin by simply replacing the wellbore radius rw with that
of the apparent wellbore radius rwa. For example, Equation
1.2.134 can be equivalently expressed as:

pi − pwf = 162. 6
(

QoBoµo

kh

)[
log(

kt
φµctr2

wa
) − 3. 23

]

[1.2.141]

1.2.11 Turbulent flow factor
All of the mathematical formulations presented so far are
based on the assumption that laminar flow conditions are
observed during flow. During radial flow, the flow velocity
increases as the wellbore is approached. This increase in
the velocity might cause the development of turbulent flow
around the wellbore. If turbulent flow does exist, it is most
likely to occur with gases and causes an additional pressure
drop similar to that caused by the skin effect. The term “non-
Darcy flow” has been adopted by the industry to describe the
additional pressure drop due to the turbulent (non-Darcy)
flow.

Referring to the additional real-gas pseudopressure drop
due to non-Darcy flow as �ψnon-Darcy, the total (actual) drop
is given by:

(�ψ)actual = (�ψ)ideal + (�ψ)skin + (�ψ)non-Darcy

Wattenbarger and Ramey (1968) proposed the following
expression for calculating (�ψ)non-Darcy:

(�ψ)non-Darcy = 3. 161 × 10−12
[

βTγg

µgwh2rw

]
Q2

g [1.2.142]

This equation can be expressed in a more convenient
form as;
(�ψ)non-Darcy = FQ2

g [1.2.143]
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where F is called the “non-Darcy flow coefficient” and
given by:

F = 3. 161 × 10−12
[

βTγg

µgwh2rw

]
[1.2.144]

where:

Qg = gas flow rate, Mscf/day
µgw = gas viscosity as evaluated at pwf , cp

γg = gas specific gravity
h = thickness, ft
F = non-Darcy flow coefficient, psi2/cp/(Mscf/day)2

β = turbulence parameter

Jones (1987) proposed a mathematical expression for esti-
mating the turbulence parameter β as:

β = 1. 88(10−10)(k)−1.47(φ)−0.53 [1.2.145]

where:

k = permeability, md
φ = porosity, fraction

The term FQ2
g can be included in all the compressible

gas flow equations in the same way as the skin factor.
This non-Darcy term is interpreted as a rate-dependent skin.
The modification of the gas flow equations to account for
the turbulent flow condition is given below for the three flow
regimes:

(1) unsteady-state (transient) flow;
(2) semisteady-state flow;
(3) steady-state flow.

Unsteady-state radial flow
The gas flow equation for an unsteady-state flow is given
by Equation 1.2.135 and can be modified to include the
additional drop in the real-gas potential, as:

m(pi) − m(pwf ) =
(

1637QgT
kh

)[
log
(

kt
φµictir2

w

)

−3. 23 + 0. 87s
]

+ FQ2
g [1.2.146]

Equation 1.2.146 is commonly written in a more convenient
form as:

m(pi) − m(pwf ) =
(

1637QgT
kh

)[
log
(

kt
φµictir2

w

)

−3. 23 + 0. 87s + 0. 87DQg

]
[1.2.147]

where the term DQg is interpreted as the rate-dependent skin
factor. The coefficient D is called the “inertial or turbulent
flow factor” and given by:

D = Fkh
1422T

[1.2.148]

The true skin factor s which reflects the formation damage
or stimulation is usually combined with the non-Darcy rate-
dependent skin and labeled as the apparent or total skin
factor s\. That is:

s\ = s + DQg [1.2.149]

or:

m(pi) − m(pwf ) =
(

1637QgT
kh

)[
log
(

kt
φµictir2

w

)

−3. 23 + 0. 87s\
]

[1.2.150]

Equation 1.2.50 can be expressed in the pressure-squared
approximation form as:

p2
i − p2

wf =
(

1637QgTZµ

kh

)[
log

kt
φµictir2

w
− 3. 23 + 0. 87s\

]

[1.2.151]

where:

Qg = gas flow rate, Mscf/day
t = time, hours
k = permeability, md

µi = gas viscosity as evaluated at pi , cp

Semisteady-state flow
Equation 1.2.138 and 1.2.139 can be modified to account for
the non-Darcy flow as follows:

Qg = kh
[
m
(
pr
)− m(pwf )

]

1422T
[

ln
(

re

rw

)
− 0. 75 + s + DQg

] [1.2.152]

or in terms of the pressure-squared approach:

Qg =
kh
(

p
2
r − p2

wf

)

1422TµZ
[

ln
(

re

rw

)
− 0. 75 + s + DQg

] [1.2.153]

where the coefficient D is defined as:

D = Fkh
1422T

[1.2.154]

Steady-state flow
Similar to the above modification procedure, Equations
1.2.32 and 1.2.33 can be expressed as:

Qg = kh
[
m(pi) − m(pwf )

]

1422T
[

ln
(

re

rw

)
− 0. 5 + s + DQg

] [1.2.155]

Qg = kh
(
p2

e − p2
wf

)

1422TµZ
[

ln
(

re

rw

)
− 0. 5 + s + DQg

] [1.2.156]

Example 1.20 A gas well has an estimated wellbore dam-
age radius of 2 feet and an estimated reduced permeability
of 30 md. The formation has permeability and porosity of
55 md and 12% respectively. The well is producing at a rate
of 20 MMscf/day with a gas gravity of 0.6. The following
additional data is available:

rw = 0. 25, h = 20 ft, T = 140◦F, µgw = 0. 013 cp

Calculate the apparent skin factor.

Solution

Step 1. Calculate skin factor from Equation 1.2.131:

s =
[

k
kskin

− 1
]

ln
(

rskin

rw

)

=
[

55
30

− 1
]

ln
(

2
0. 25

)
= 1. 732

Step 2. Calculate the turbulence parameter β by applying
Equation 1.2.145:

β = 1. 88(10−10)(k)−1.47(φ)−0.53

= 1. 88 × 1010(55)−1.47(0. 12)−0.53

= 159. 904 × 106
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Step 3. Calculate the non-Darcy flow coefficient from Equa-
tion 1.2.144:

F = 3. 161 × 10−12
[

βTγg

µgwh2rw

]

= 3. 1612 × 10−12
[

159. 904 × 106(600)(0. 6)
(0. 013)(20)2(0. 25)

]

= 0. 14
Step 4. Calculate the coefficient D from Equation 1.2.148:

D = Fkh
1422T

= (0. 14)(55)(20)
(1422)(600)

= 1. 805 × 10−4

Step 5. Estimate the apparent skin factor by applying Equa-
tion 1.2.149:

s\ = s + DQg = 1. 732 + (1. 805 × 10−4)(20 000)

= 5. 342

1.2.12 Principle of superposition
The solutions to the radial diffusivity equation as presented
earlier in this chapter appear to be applicable only for describ-
ing the pressure distribution in an infinite reservoir that was
caused by constant production from a single well. Since real
reservoir systems usually have several wells that are operat-
ing at varying rates, a more generalized approach is needed
to study the fluid flow behavior during the unsteady-state
flow period.

The principle of superposition is a powerful concept that
can be applied to remove the restrictions that have been
imposed on various forms of solution to the transient flow
equation. Mathematically the superposition theorem states
that any sum of individual solutions to the diffusivity equa-
tion is also a solution to that equation. This concept can be
applied to account for the following effects on the transient
flow solution:

● effects of multiple wells;
● effects of rate change;
● effects of the boundary;
● effects of pressure change.

Slider (1976) presented an excellent review and discussion
of the practical applications of the principle of superposition
in solving a wide variety of unsteady-state flow problems.

Effects of multiple wells
Frequently, it is desired to account for the effects of more
than one well on the pressure at some point in the reser-
voir. The superposition concept states that the total pressure
drop at any point in the reservoir is the sum of the pressure
changes at that point caused by the flow in each of the wells
in the reservoir. In other words, we simply superimpose one
effect upon another.

Consider Figure 1.28 which shows three wells that are
producing at different flow rates from an infinite-acting reser-
voir, i.e., an unsteady-state flow reservoir. The principle of
superposition states that the total pressure drop observed at
any well, e.g., well 1, is:

(�p)total drop at well 1 = (�p)drop due to well 1

+ (�p)drop due to well 2

+ (�p)drop due to well 3

The pressure drop at well 1 due to its own production is
given by the log approximation to the Ei function solution

Well 2

Well 1

r1 = 400′ r2 = 700′

Well 3

Figure 1.28 Well layout for Example 1.21.

presented by Equation 1.2.134, or:
(
pi − pwf

) = (�p)well1 = 162. 6Qo1Boµo

kh

[
log
(

kt
φµctr2

w

)

− 3. 23 + 0. 87s
]

where:

t = time, hours
s = skin factor
k = permeability, md

Qo1 = oil flow rate from well 1

The additional pressure drops at well 1 due to the production
from wells 2 and 3 must be written in terms of the Ei func-
tion solution, as expressed by Equation 1.2.66, since the log
approximation cannot be applied in calculating the pressure
at a large distance r from the well where x > 0. 1. Therefore:

p(r , t) = pi +
[

70. 6QoµBo

kh

]
Ei
[−948φµoctr2

kt

]

Applying the above expression to calculate the additional
pressure drop due to two wells gives:

(�p)drop due to well 2 = pi − p (r1, t) = −
[

70. 6Qo1µoBo

kh

]

× Ei

[
−948φµoctr2

1

kt

]

(�p)drop due to well 3 = pi − p (r2, t) = −
[

70. 6Qo2µoBo

kh

]

× Ei

[
−948φµoctr2

2

kt

]

The total pressure drop is then given by:

(pi −pwf )total at well 1 =
(

162.6Qo1Boµo

kh

)[
log
(

kt
φµctr2

w

)

−3.23 + 0.87s
]

−
(

70.6Qo2Boµo

kh

)
Ei

[
− 948φµctr2

1

kt

]

−
(

70.6Qo3Boµo

kh

)
Ei

[
− 948φµctr2

2

kt

]

where Qo1, Qo2, and Qo3 refer to the respective producing
rates of wells 1, 2, and 3.

TLFeBOOK



WELL TESTING ANALYSIS 1/41

The above computational approach can be used to calcu-
late the pressure at wells 2 and 3. Further, it can be extended
to include any number of wells flowing under the unsteady-
state flow condition. It should also be noted that if the point
of interest is an operating well, the skin factor s must be
included for that well only.

Example 1.21 Assume that the three wells as shown in
Figure 1.28 are producing under a transient flow condition
for 15 hours. The following additional data is available:

Qo1 = 100 STB/day, Qo2 = 160 STB/day

Qo3 = 200 STB/day, pi = 4500 psi,

Bo = 1. 20 bbl/STB, ct = 20 × 10−6 psi−1,

(s)well1 = −0. 5, h = 20 ft,

φ = 15%, k = 40 md,

rw = 0. 25 ft, µo = 2. 0 cp,

r1 = 400 ft, r2 = 700 ft.

If the three wells are producing at a constant flow rate,
calculate the sand face flowing pressure at well 1.

Solution

Step 1. Calculate the pressure drop at well 1 caused by its
own production by using Equation 1.2.134:

(
pi − pwf

) = (�p)well 1 = 162. 6Qo1Boµo

kh

×
[

log
(

kt
φµctr2

w

)
− 3. 23 + 0. 87s

]

(�p)well 1 =
(
162. 6

) (
100
) (

1. 2
) (

2. 0
)

(
40
) (

20
)

×
[

log
(

(40)(15)
(0. 15)(2)(20 × 10−6)(0. 25)2

)

− 3. 23 + 0. 87(0)
]

= 270. 2 psi

Step 2. Calculate the pressure drop at well 1 due to the
production from well 2:

(�p)drop due to well 2 = pi − p(r1, t)

= −
[

70. 6Qo1µoBo

kh

]
Ei

[
−948φµoctr2

1

kt

]

(�p)due to well 2 = − (70. 6)(160)(1. 2)(2)
(40)(20)

× Ei
[
− (948)(0. 15)(2. 0)(20 × 10−6)(400)2

(40)(15)

]

= 33. 888
[−Ei(−1. 5168)

]

= (33. 888)(0. 13) = 4. 41 psi

Step 3. Calculate the pressure drop due to production from
well 3:

(�p)drop due to well 3 = pi − p (r2, t)

= −
[

70. 6Qo2µoBo

kh

]
Ei

[
−948φµoctr2

2

kt

]

(�p)due to well 3 = − (70. 6)(200)(1. 2)(2)
(40)(20)

Ei
[
− (948)(0. 15)(2. 0)(20 × 10−6)(700)2

(40)(15)

]

= (42. 36
) [−Ei(−4. 645)

]

= (42. 36
)

(1. 84 × 10−3) = 0. 08 psi

Step 4. Calculate the total pressure drop at well 1:

(�p)total at well 1 = 270. 2 + 4. 41 + 0. 08 = 274. 69 psi

Step 5. Calculate pwf at well 1:

Pwf = 4500 − 274. 69 = 4225. 31 psi

Effects of variable flow rates
All of the mathematical expressions presented previously
in this chapter require that the wells produce at a con-
stant rate during the transient flow periods. Practically all
wells produce at varying rates and, therefore, it is impor-
tant that we are able to predict the pressure behavior when
the rate changes. For this purpose, the concept of superpo-
sition states that “Every flow rate change in a well will result
in a pressure response which is independent of the pres-
sure responses caused by the other previous rate changes.”
Accordingly, the total pressure drop that has occurred at
any time is the summation of pressure changes caused
separately by each net flow rate change.

Consider the case of a shut-in well, i.e., Q = 0, that was
then allowed to produce at a series of constant rates for the
different time periods shown in Figure 1.29. To calculate the
total pressure drop at the sand face at time t4, the composite
solution is obtained by adding the individual constant-rate
solutions at the specified rate-time sequence, or:

(�p)total = (�p)due to(Qo1−0) + (�p)due to(Qo2−Qo1)

+ (�p)due to(Qo3−Qo2) + (�p)due to(Qo4−Qo3)

The above expression indicates that there are four contri-
butions to the total pressure drop resulting from the four
individual flow rates:

The first contribution results from increasing the rate from
0 to Q1 and is in effect over the entire time period t4, thus:

(�p)Q1−0 =
[

162. 6
(
Q1 − 0

)
Bµ

kh

]

×
[

log
(

kt4

φµctr2
w

)
− 3. 23 + 0. 87s

]

It is essential to notice the change in the rate, i.e., (new rate –
old rate), that is used in the above equation. It is the change
in the rate that causes the pressure disturbance. Further, it
should be noted that the “time” in the equation represents
the total elapsed time since the change in the rate has been
in effect.

The second contribution results from decreasing the rate
from Q1 to Q2 at t1, thus:

(�p)Q2−Q1
=
[

162. 6
(
Q2 − Q1

)
Bµ

kh

]

×
[

log
(

k (t4 − t1)

φµctr2
w

)
− 3. 23 + 0. 87s

]
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t1

t1 = 2 t2 = 5 t3 = 10 t4 = 15 Time, hr

Flow
Rate

pwf

t2 t3 t4

Figure 1.29 Production and pressure history of a well.

Using the same concept, the two other contributions from
Q2 to Q3 and from Q3 to Q4 can be computed as:

(�p)Q3−Q2
=
[

162. 6
(
Q3 − Q2

)
Bµ

kh

]

×
[

log
(

k (t4 − t2)

φµctr2
w

)
− 3. 23 + 0. 87s

]

(�p)Q4−Q3
=
[

162. 6
(
Q4 − Q3

)
Bµ

kh

]

×
[

log
(

k (t4 − t3)

φµctr2
w

)
− 3. 23 + 0. 87s

]

The above approach can be extended to model a well with
several rate changes. Note, however, that the above approach
is valid only if the well is flowing under the unsteady state
flow condition for the total time elapsed since the well began
to flow at its initial rate.

Example 1.22 Figure 1.29 shows the rate history of a
well that is producing under transient flow conditions for
15 hours. Given the following data:

pi = 5000 psi, h = 20 ft, Bo = 1. 1 bbl/STB
φ = 15%, µo = 2. 5 cp, rw = 0. 3 ft

ct = 20 × 10−6 psi−1, s = 0, k = 40 md

calculate the sand face pressure after 15 hours.

Solution

Step 1. Calculate the pressure drop due to the first flow rate
for the entire flow period:

(�p)Q1−0 =
(
162.6

)(
100−0

)(
1.1
)(

2.5
)

(
40
)(

20
)

×
[

log

( (
40
)(

15
)

(
0.15

)(
2.5
)(

20×10−6
)(

0.3
)2
)

−3.23+0

]

=319.6 psi

Step 2. Calculate the additional pressure change due to the
change of the flow rate from 100 to 70 STB/day:

(�p)Q2−Q1 =
(
162. 6

) (
70 − 100

) (
1. 1
) (

2. 5
)

(
40
) (

20
)

×
[

log
[

(40)(15−2)

(0.15)(2.5)
(

20×10−6
)
(0.3)2

]
− 3. 23

]

= −94. 85 psi

Step 3. Calculate the additional pressure change due to the
change of the flow rate from 70 to 150 STB/day:

(�p)Q3−Q2 =
(
162. 6

) (
150 − 70

) (
1. 1
) (

2. 5
)

(
40
) (

20
)

×
[

log
(

(40)(15−5)

(0.15)(2.5)
(

20×10−6
)
(0.3)2

)
− 3. 23

]

= 249. 18 psi

Step 4. Calculate the additional pressure change due to the
change of the flow rate from 150 to 85 STB/day:

(�p)Q4−Q3 =
(
162. 6

) (
85 − 150

) (
1. 1
) (

2. 5
)

(
40
) (

20
)

×
[

log
[

(40)(15−10)

(0.15)(2.5)
(

20×10−6
)
(0.3)2

]
− 3. 23

]

= −190. 44 psi

Step 5. Calculate the total pressure drop:
(�p)total = 319. 6 + (−94. 85) + 249. 18 + (−190. 44)

= 283. 49 psi
Step 6. Calculate the wellbore pressure after 15 hours of

transient flow:
pwf = 5000 − 283. 49 = 4716. 51 psi

Effects of the reservoir boundary
The superposition theorem can also be extended to pre-
dict the pressure of a well in a bounded reservoir. Consider
Figure 1.30 which shows a well that is located a distance
L from the non-flow boundary, e.g., sealing fault. The no-
flow boundary can be represented by the following pressure
gradient expression:(

∂p
∂L

)
Boundary

= 0

Mathematically, the above boundary condition can be met by
placing an image well, identical to that of the actual well, on
the other side of the fault at exactly distance L. Consequently,
the effect of the boundary on the pressure behavior of a well
would be the same as the effect from an image well located
a distance 2L from the actual well.

In accounting for the boundary effects, the superposition
method is frequently called the method of images. Thus, for
the problem of the system configuration given in Figure 1.30,
the problem reduces to one of determining the effect of the
image well on the actual well. The total pressure drop at the
actual well will be the pressure drop due to its own produc-
tion plus the additional pressure drop caused by an identical
well at a distance of 2L, or:

(�p)total = (�p)actual well + (�p)due to image well
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Figure 1.30 Method of images in solving boundary problems.

or:

(�p)total = 162. 6QoBµ

kh

[
log
(

kt
φµctr2

w

)
− 3. 23 + 0. 87s

]

−
(

70. 6QoBµ

kh

)
Ei

(
− 948φµct

(
2L
)2

kt

)

[1.2.157]

Notice that this equation assumes the reservoir is infinite
except for the indicated boundary. The effect of boundaries is
always to cause a greater pressure drop than those calculated
for infinite reservoirs.

The concept of image wells can be extended to generate
the pressure behavior of a well located within a variety of
boundary configurations.

Example 1.23 Figure 1.31 shows a well located between
two sealing faults at 400 and 600 feet from the two faults.
The well is producing under a transient flow condition at a
constant flow rate of 200 STB/day. Given:

pi = 500 psi, k = 600 md, Bo = 1. 1 bbl/STB
φ = 17%, µo = 2. 0 cp, h = 25 ft
rw = 0. 3 ft, s = 0, ct = 25 × 10−6 psi−1

Calculate the sand face pressure after 10 hours.

Solution

Step 1. Calculate the pressure drop due to the actual well
flow rate:
(
pi − pwf

) = (�p)actual = 162. 6Qo1Boµo

kh

×
[

log
(

kt
φµctr2

w

)
− 3. 23 + 0. 87s

]

(�p)actual =
(
162. 6

) (
200
) (

1. 1
) (

2. 0
)

(60)(25)

×
[

log
(

(60)(10)
(0. 17)(2)(25 × 10−6)(0. 3)2

)
− 3. 23 + 0

]

= 270. 17

Image Well

Image Well

Fault 1

Fault 2

200′

200′

100′

100′

Figure 1.31 Well layout for Example 1.23.

Step 2. Determine the additional pressure drop due to the
first fault (i.e., image well 1):

(�p)image well 1 = pi − p
(
2L1, t

)

= −
[

70. 6Qo2µoBo

kh

]
Ei
[−948φµoct (2L1)2

kt

]

(�p)image well 1 = −
(
70. 6

) (
200
) (

1. 1
) (

2. 0
)

(
60
) (

25
)

× Ei

[
−
(
948
) (

0. 17
) (

2
) (

25 × 10−6
) (

2 × 100
)2

(
60
) (

10
)

]

= 20. 71
[−Ei(−0. 537)

] = 10. 64 psi

Step 3. Calculate the effect of the second fault (i.e., image
well 2):

(�p)image well 2 = pi − p(2L2, t)

= −
[

70. 6Qo2µoBo

kh

]
Ei
[−948φµoct (2L2)2

kt

]
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(�p)image well 2

= 20. 71

[
−Ei

(
−948

(
0. 17

) (
2
) (

25 × 10−6
) (

2 × 200
)2

(
60
) (

10
)

)]

= 20. 71
[−Ei

(−2. 15
)] = 1. 0 psi

Step 4. The total pressure drop is:

(�p)total = 270. 17 + 10. 64 + 1. 0 = 28. 18 psi

Step 5. pwf = 5000 − 281. 8 = 4718. 2 psi.

Accounting for pressure-change effects
Superposition is also used in applying the constant-pressure
case. Pressure changes are accounted for in this solution in
much the same way that rate changes are accounted for in
the constant-rate case. The description of the superposition
method to account for the pressure-change effect is fully
described in Chapter 2 in this book.

1.3 Transient Well Testing

Detailed reservoir information is essential to the petroleum
engineer in order to analyze the current behavior and future
performance of the reservoir. Pressure transient testing is
designed to provide the engineer with a quantitative analy-
sis of the reservoir properties. A transient test is essentially
conducted by creating a pressure disturbance in the reser-
voir and recording the pressure response at the wellbore,
i.e., bottom-hole flowing pressure pwf , as a function of time.
The pressure transient tests most commonly used in the
petroleum industry include:

● pressure drawdown;
● pressure buildup;
● multirate;
● interference;
● pulse;
● drill stem (DST);
● falloff;
● injectivity;
● step rate.

It should be pointed out that when the flow rate is changed
and the pressure response is recorded in the same well, the
test is called a “single-well” test. Drawdown, buildup, injec-
tivity, falloff, and step-rate tests are examples of a single-well
test. When the flow rate is changed in one well and the pres-
sure response is measured in another well(s), the test is
called a “multiple-well” test.

Several of the above listed tests are briefly described in
the following sections.

It has long been recognized that the pressure behavior
of a reservoir following a rate change directly reflects the
geometry and flow properties of the reservoir. Some of the
information that can be obtained from a well test includes:

Drawdown tests Pressure profile
Reservoir behavior
Permeability
Skin
Fracture length
Reservoir limit and shape

Buildup tests Reservoir behavior
Permeability
Fracture length
Skin
Reservoir pressure
Boundaries

DST Reservoir behavior
Permeability
Skin
Fracture length
Reservoir limit
Boundaries

Falloff tests Mobility in various banks
Skin
Reservoir pressure
Fracture length
Location of front
Boundaries

Interference and Communication between wells
pulse tests Reservoir-type behavior

Porosity
Interwell permeability
Vertical permeability

Layered reservoir Horizontal permeability
tests Vertical permeability

Skin
Average layer pressure
Outer boundaries

Step-rate tests Formation parting pressure
Permeability
Skin

There are several excellent technical and reference books
that comprehensively and thoroughly address the subject of
well testing and transient flow analysis, in particular:

● C. S. Matthews and D. G. Russell, Pressure Buildup and
Flow Test in Wells (1967);

● Energy Resources Conservation Board (ERBC), Theory
and Practice of the Testing of Gas Wells (1975);

● Robert Earlougher, Advances in Well Test Analysis (1977);
● John Lee, Well Testing (1982);
● M. A. Sabet, Well Test Analysis (1991);
● Roland Horn, Modern Well Test Analysis (1995).

1.3.1 Drawdown test
A pressure drawdown test is simply a series of bottom-hole
pressure measurements made during a period of flow at con-
stant producing rate. Usually the well is shut in prior to the
flow test for a period of time sufficient to allow the pressure to
equalize throughout the formation, i.e., to reach static pres-
sure. A schematic of the ideal flow rate and pressure history
is shown in Figure 1.32.

The fundamental objectives of drawdown testing are to
obtain the average permeability, k, of the reservoir rock
within the drainage area of the well, and to assess the
degree of damage of stimulation induced in the vicinity
of the wellbore through drilling and completion practices.
Other objectives are to determine the pore volume and to
detect reservoir inhomogeneities within the drainage area
of the well.

When a well is flowing at a constant rate of Qo under
the unsteady-state condition, the pressure behavior of the
well will act as if it exists in an infinite-size reservoir.
The pressure behavior during this period is described by
Equation 1.2.134 as:

pwf = pi − 162. 6QoBoµ

kh

[
log
(

kt
φµctr2

w

)
− 3. 23 + 0. 87s

]

where:

k = permeability, md
t = time, hours

rw = wellbore radius, ft
s = skin factor
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Figure 1.32 Idealized drawdown test.

The above expression can be written as:

pwf = pi − 162. 6QoBoµ

kh

×
[

log (t) + log
(

k
φµctr2

w

)
− 3. 23 + 0. 87s

]
[1.3.1]

This relationship is essentially an equation of a straight line
and can be expressed as:

pwf = a + m log(t)
where:

a = pi − 162. 6QoBoµ

kh

[
log
(

k
φµctr2

w

)
− 3. 23 + 0. 87s

]

and the slope m is given by:

−m = −162. 6QoBoµo

kh
[1.3.2]

Equation 1.3.1 suggests that a plot of pwf versus time t on
semilog graph paper would yield a straight line with a slope
m in psi/cycle. This semilog straight-line portion of the draw-
down data, as shown in Figure 1.33, can also be expressed in
another convenient form by employing the definition of the
slope:

m = pwf − p1 hr

log(t) − log(1)
= pwf − p1 hr

log(t) − 0
or:

pwf = m log(t) + p1 hr

Notice that Equation 1.3.2 can also be rearranged to deter-
mine the capacity kh of the drainage area of the well. If
the thickness is known, then the average permeability is
given by:

k = 162. 6QoBoµo

|m| h
where:

k = average permeability, md
|m| = absolute value of slope, psi/cycle

Clearly, kh/µ or k/µ may also be estimated.

The skin effect can be obtained by rearranging Equa-
tion 1.3.1 as:

s = 1. 151
[

pi − pwf

|m| − log t − log
(

k
φµctr2

w

)
+ 3. 23

]

or, more conveniently, if selecting pwf = p1 hr which is found
on the extension of the straight line at t = 1 hr, then:

s = 1. 151
[

pi − p1 hr

|m| − log
(

k
φµctr2

w

)
+ 3. 23

]
[1.3.3]

where |m| is the absolute value of the slope m.
In Equation 1.2.3, p1 hr must be obtained from the semilog

straight line. If the pressure data measured at 1 hour does not
fall on that line, the line must be extrapolated to 1 hour and
the extrapolated value of p1 hr must be used in Equation 1.3.3.
This procedure is necessary to avoid calculating an incorrect
skin by using a wellbore-storage-influenced pressure. Figure
1.33 illustrates the extrapolation to p1 hr.

Note that the additional pressure drop due to the skin was
expressed previously by Equation 1.2.130 as:

�pskin = 141. 2
(

QoBoµo

kh

)
s

This additional pressure drop can be equivalently written in
terms of the semilog straight-line slope m by combining the
above expression with that of Equation 1.3.3 to give:

�pskin = 0. 87 |m| s
Another physically meaningful characterization of the skin

factor is the flow coefficient E as defined by the ratio of the
well actual or observed productivity index Jactual and its ideal
productivity index Jideal . The ideal productivity index Jideal is
the value obtained with no alternation of permeability around
the wellbore. Mathematically, the flow coefficient is given by:

E = Jactual

Jideal
= p − pwf − �pskin

p − pwf

where p is the average pressure in the well drainage area.
If the drawdown test is long enough, the bottom-hole pres-

sure will deviate from the semilog straight line and make the
transition from infinite acting to pseudosteady state. The rate
of pressure decline during the pseudosteady-state flow is
defined by Equation 1.2.116 as:

dp
dt

= − 0. 23396q
ct (πr2

e )hφ
= −0. 23396q

ct (A)hφ
= −0. 23396q

ct (pore volume)
Under this condition, the pressure will decline at a constant
rate at any point in the reservoir including the bottom-hole
flowing pressure pwf . That is:

dpwf

dt
= m\ = −0. 23396q

ctAhφ

This expression suggests that during the semisteady-state
flow, a plot of pwf vs. t on a Cartesian scale would produce a
straight line with a negative slope of m\ that is defined by:

−m\ = −0. 23396q
ctAhφ

where:

m\= slope of the Cartesian straight line
during the pseudosteady state, psi/hr

q = flow rate, bbl/day
A = drainage area, ft2

Example 1.24a Estimate the oil permeability and skin
factor from the drawdown data of Figure 1.34.

aThis example problem and the solution procedure are given in
Earlougher, R. Advances in Well Test Analysis, Monograph Series,
SPE, Dallas (1997).
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Figure 1.33 Semilog plot of pressure drawdown data.
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Figure 1.34 Earlougher’s semilog data plot for the drawdown test (Permission to publish by the SPE, copyright
SPE, 1977).

The following reservoir data are available:

h = 130 ft, φ = 20 %, rw = 0. 25 ft,

pi = 1154 psi, Qo = 348 STB/D, m = −22 psi/cycle

Bo = 1. 14 bbl/STB, µo = 3. 93 cp, ct = 8. 74 × 10−6 psi−1

Assuming that the wellbore storage effect is not significant,
calculate:

● the permeability;

● the skin factor;
● the additional pressure drop due to the skin.

Solution

Step 1. From Figure 1.34, calculate p1 hr:

p1 hr = 954 psi

Step 2. Determine the slope of the transient flow line:

m = −22 psi/cycle
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Step 3. Calculate the permeability by applying Equation
1.3.2:

k = −162. 6QoBoµo

mh

= − (162. 6
) (

348
) (

1. 14
) (

3. 93
)

(−22
) (

130
) = 89 md

Step 4. Solve for the skin factor s by using Equation 1.3.3:

s = 1. 151
[

pi − p1 hr

|m| − log
(

k
φµctr2

w

)
+ 3. 23

]

= 1. 151
[(

1154 − 954
22

)

− log

(
89(

0. 2
) (

3. 93
) (

8. 74 × 10−6
) (

0. 25
)2
)

+ 3. 2275

]
= 4. 6

Step 5. Calculate the additional pressure drop:
�pskin = 0. 87 |m| s = 0. 87(22)(4. 6) = 88 psi

It should be noted that for a multiphase flow, Equations
1.3.1 and 1.3.3 become:

pwf = pi − 162. 6qt

λth

[
log (t) + log

(
λt

φctr2
w

)
− 3. 23 + 0. 87s

]

s = 1. 151
[

pi − p1 hr

|m| − log
(

λt

φctr2
w

)
+ 3. 23

]

with:

λt = ko

µo
+ kw

µw
+ kg

µg

qt = QoBo + QwBw + (Qg − QoRs)Bg

or equivalently in terms of GOR as:
qt = QoBo + QwBw + (GOR − Rs)QoBg

where:

qt = total fluid voidage rate, bbl/day
Qo = oil flow rate, STB/day
Qw = water flow rate, STB/day
Qg = total gas flow rate, scf/day
Rs = gas solubility, scf/STB
Bg = gas formation volume factor, bbl/scf
λt = total mobility, md/cp
ko = effective permeability to oil, md
kw = effective permeability to water, md
kg = effective permeability to gas, md

The above drawdown relationships indicate that a plot of pwf
vs. t on a semilog scale would produce a straight line with a
slope m that can be used to determine the total mobility λt
from:

λt = 162. 6qt

mh
Perrine (1956) showed that the effective permeability of each
phase, i.e., ko, kw, and kg, can be determined as:

ko = 162. 6QoBoµo

mh

kw = 162. 6QwBwµw

mh

kg = 162. 6(Qg − QoRs)Bgµg

mh
If the drawdown pressure data is available during both the

unsteady-state flow period and the pseudosteady-state flow

period, it is possible to estimate the drainage shape and the
drainage area of the test well. The transient semilog plot
is used to determine its slope m and p1 hr; the Cartesian
straight-line plot of the pseudosteady-state data is used to
determine its slope m\ and its intercept pint . Earlougher
(1977) proposed the following expression to determine the
shape factor CA:

CA = 5. 456
( m

m\
)

exp
[

2. 303(p1 hr − pint )
m

]

where:

m = slope of transient semilog straight line, psi/log
cycle

m\ = slope of the semisteady-state Cartesian
straight line

p1 hr = pressure at t = 1 hour from transient semilog
straight line, psi

pint = pressure at t = 0 from pseudosteady-state
Cartesian straight line, psi

The calculated shape factor from applying the above rela-
tionship is compared with those values listed in Table 1.4
to select the geometry of well drainage with a shape factor
closest to the calculated value. When extending the draw-
down test time with the objective of reaching the drainage
boundary of the test well, the test is commonly called the
“reservoir limit test.”

The reported data of Example 1.24 was extended by
Earlougher to include the pseudosteady-state flow period
and used to determine the geometry of the test well drainage
area as shown in the following example.

Example 1.25 Use the data in Example 1.24 and the
Cartesian plot of the pseudosteady-state flow period, as
shown in Figure 1.35, to determine the geometry and
drainage area of the test well.

Solution

Step 1. From Figure 1.35, determine the slope m\ and
intercept pint :

m\ = −0. 8 psi/hr

pint = 940 psi

Step 2. From Example 1.24:

m = −22 psi/cycle

p1 hr = 954 psi

Step 3. Calculate the shape factor CA from Earlougher’s
equation:

CA = 5. 456
( m

m\
)

exp
[

2. 303(p1 hr − pint )
m

]

= 5. 456
( −22

−0. 8

)
exp

[
2. 303(954 − 940)

−22

]

= 34. 6

Step 4. From Table 1.4, CA = 34. 6 corresponds to a well in
the center of a circle, square, or hexagon:

For a circle: CA = 31. 62
For a square: CA = 30. 88
For a hexagon: CA = 31. 60

Step 5. Calculate the pore volume and drainage area from
Equation 1.2.116:
dp
dt

= m\ = −0. 23396(QoBo)
ct (A)hφ

= −0. 23396(QoBo)
ct (pore volume)
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Figure 1.35 Cartesian plot of the drawdown test data (Permission to publish by the SPE, copyright SPE, 1977).

Solving for the pore volume gives:

Pore volume = −0. 23396q
ctm\ = −0. 23396(348)(1. 4)

(8. 74 × 10−6)(−0. 8)

= 2. 37 MMbbl
and the drainage area:

A = 2. 37 × 106(5. 615)
43460(0. 2)(130)

= 11. 7 acres

The above example indicates that the measured bottom-
hole flowing pressures are 88 psi more than they would be
in the absence of the skin. However, it should be pointed out
that when the concept of positive skin factor +s indicates for-
mation damage, whereas a negative skin factor −s suggests
formation stimulation, this is essentially a misleading inter-
pretation of the skin factor. The skin factor as determined
from any transient well testing analysis represents the com-
posite “total” skin factor that includes the following other
skin factors:

● skin due to wellbore damage or stimulation sd;
● skin due to partial penetration and restricted entry sr ;
● skin due to perforations sp;
● skin due to turbulence flow st ;
● skin due to deviated well sdw.

That is:
s = sd + sr + sp + st + sdw

where s is the skin factor as calculated from transient flow
analysis. Therefore, to determine if the formation is damaged
or stimulated from the skin factor value s obtained from well
test analysis, the individual components of the skin factor in
the above relationship must be known, to give:

sd = s − sr − sp − st − sdw

There are correlations that can be used to separately esti-
mate these individual skin quantities.

Wellbore storage
Basically, well test analysis deals with the interpretation of
the wellbore pressure response to a given change in the flow

rate (from zero to a constant value for a drawdown test, or
from a constant rate to zero for a buildup test). Unfortunately,
the producing rate is controlled at the surface, not at the sand
face. Because of the wellbore volume, a constant surface flow
rate does not ensure that the entire rate is being produced
from the formation. This effect is due to wellbore storage.
Consider the case of a drawdown test. When the well is first
open to flow after a shut-in period, the pressure in the well-
bore drops. This drop in pressure causes the following two
types of wellbore storage:

(1) a wellbore storage effect caused by fluid expansion;
(2) a wellbore storage effect caused by changing fluid level

in the casing–tubing annulus.

As the bottom-hole pressure drops, the wellbore fluid
expands and, thus, the initial surface flow rate is not from the
formation, but basically from the fluid that had been stored
in the wellbore. This is defined as the wellbore storage due to
fluid expansion.

The second type of wellbore storage is due to a change
in the annulus fluid level (falling level during a drawdown
test, rising level during a drawdown test, and rising fluid
level during a pressure buildup test). When the well is open
to flow during a drawdown test, the reduction in pressure
causes the fluid level in the annulus to fall. This annulus fluid
production joins that from the formation and contributes to
the total flow from the well. The falling fluid level is generally
able to contribute more fluid than that by expansion.

The above discussion suggests that part of the flow will be
contributed by the wellbore instead of the reservoir. That is:

q = qf + qwb

where:

q = surface flow rate, bbl/day
qf = formation flow rate, bbl/day

qwb = flow rate contributed by the wellbore, bbl/day

During this period when the flow is dominated by the
wellbore storage, the measured drawdown pressures will
not produce the ideal semilog straight-line behavior that
is expected during transient flow. This indicates that the
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pressure data collected during the duration of the wellbore
storage effect cannot be analyzed by using conventional
methods. As production time increases, the wellbore con-
tribution decreases and the formation rate increases until it
eventually equals the surface flow rate, i.e., q = qf , which
signifies the end of the wellbore storage effect.

The effect of fluid expansion and changing fluid level can
be quantified in terms of the wellbore storage factor C which
is defined as:

C = �Vwb

�p
where:

C = wellbore storage coefficient, bbl/psi
�Vwb = change in the volume of fluid in the wellbore, bbl

The above relationship can be applied to mathematically
represent the individual effect of wellbore fluid expansion
and falling (or rising) fluid level, to give:
Wellbore storage effect caused by fluid expansion

CFE = Vwbcwb

where:

CFE = wellbore storage coefficient due to fluid expansion,
bbl/psi

Vwb = total wellbore fluid volume, bbl
cwb = average compressibility of fluid in the wellbore,

psi−1

Wellbore storage effect due to changing fluid level

CFL = 144Aa

5. 615ρ

with:

Aa = π [(IDC)2 − (ODT )2]
4(144)

where:

CFL = wellbore storage coefficient due to changing
fluid level, bbl/psi

Aa = annulus cross-sectional area, ft2

ODT = outside diameter of the production tubing, inches
IDC = inside diameter of the casing, inches

ρ = wellbore fluid density, lb/ft3

This effect is essentially small if a packer is placed near the
producing zone. The total storage effect is the sum of both
coefficients. That is:

C = CFE + CFL

It should be noted during oil well testing that the fluid
expansion is generally insignificant due to the small com-
pressibility of liquids. For gas wells, the primary storage
effect is due to gas expansion.

To determine the duration of the wellbore storage effect,
it is convenient to express the wellbore storage factor in a
dimensionless form as:

CD = 5. 615C
2πhφctr2

w
= 0. 8936C

φhctr2
w

[1.3.4]

where:

CD = dimensionless wellbore storage factor
C = wellbore storage factor, bbl/psi
ct = total compressibility coefficient, psi−1

rw = wellbore radius, ft
h = thickness, ft

Horn (1995) and Earlougher (1977), among other authors,
have indicated that the wellbore pressure is directly pro-
portional to the time during the wellbore storage-dominated

period of the test and is expressed by:
pD = tD/CD [1.3.5]
where:

pD = dimensionless pressure during wellbore storage
domination time

tD = dimensionless time

Taking the logarithm of both sides of this relationship
gives:

log(pD) = log(tD) − log(CD)
This expression has a characteristic that is diagnostic of well-
bore storage effects. It indicates that a plot of pD vs. tD on a
log–log scale will yield a straight line of a unit slope, i.e., a
straight line with a 45◦ angle, during the wellbore storage-
dominated period. Since pD is proportional to pressure drop
�p and tD is proportional to time t, it is convenient to plot
log(pi − pwf ) versus log(t) and observe where the plot has
a slope of one cycle in pressure per cycle in time. This unit
slope observation is of major value in well test analysis.

The log–log plot is a valuable aid for recognizing wellbore
storage effects in transient tests (e.g., drawdown or buildup
tests) when early-time pressure recorded data is available. It
is recommended that this plot be made a part of the transient
test analysis. As wellbore storage effects become less severe,
the formation begins to influence the bottom-hole pressure
more and more, and the data points on the log–log plot fall
below the unit-slope straight line and signify the end of the
wellbore storage effect. At this point, wellbore storage is no
longer important and standard semilog data-plotting analysis
techniques apply. As a rule of thumb, the time that indicates
the end of the wellbore storage effect can be determined
from the log–log plot by moving 1 to 1 1

2 cycles in time after
the plot starts to deviate from the unit slop and reading the
corresponding time on the x axis. This time may be estimated
from:

tD > (60 + 3. 5s)CD

or:

t >
(200 000 + 12 000s)C

(kh/µ)
where:

t = total time that marks the end of the wellbore
storage effect and the beginning of the
semilog straight line, hours

k = permeability, md
s = skin factor
µ = viscosity, cp
C = wellbore storage coefficient, bbl/psi

In practice, it is convenient to determine the wellbore storage
coefficient C by selecting a point on the log–log unit-slope
straight line and reading the coordinate of the point in terms
of t and �p, to give:

C = qt
24�p

= QBt
24�p

where:

t = time, hours
�p = pressure difference (pi − pwf ), psi

q = flow rate, bbl/day
Q = flow rate, STB/day
B = formation volume factor, bbl/STB

It is important to note that the volume of fluids stored in
the wellbore distorts the early-time pressure response and
controls the duration of wellbore storage, especially in deep
wells with large wellbore volumes. If the wellbore storage
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effects are not minimized or if the test is not continued
beyond the end of the wellbore storage-dominated period,
the test data will be difficult to analyze with current conven-
tional well testing methods. To minimize wellbore storage
distortion and to keep well tests within reasonable lengths
of time, it may be necessary to run tubing, packers, and
bottom-hole shut-in devices.

Example 1.26 The following data is given for an oil well
that is scheduled for a drawdown test:

● volume of fluid in the wellbore = 180 bbl
● tubing outside diameter = 2 inches
● production oil density in the wellbore = 7.675 inches
● average oil density in the wellbore = 45 lb/ft3

h = 50 ft, φ = 15 %,

rw = 0. 25 ft, µo = 2 cp

k = 30 md, s = 0

ct = 20 × 10−6 psi−1, co = 10 × 10−6 psi−1

If this well is placed under a constant production rate, cal-
culate the dimensionless wellbore storage coefficient CD.
How long will it take for wellbore storage effects to end?

Solution

Step 1. Calculate the cross-sectional area of the annulus Aa :

Aa = π [(IDC)2 − (ODT )2]
4(144)

= π [(7. 675)2 − (2)2]
(4)(144)

= 0. 2995 ft2

Step 2. Calculate the wellbore storage factor caused by fluid
expansion:

CFE = Vwbcwb

= (180)(10 × 10−6) = 0. 0018 bbl/psi
Step 3. Determine the wellbore storage factor caused by the

falling fluid level:

CFL = 144Aa

5. 615ρ

= 144(0. 2995)
(5. 615)(45)

= 0. 1707 bbl/psi

Step 4. Calculate the total wellbore storage coefficient:
C = CFE + CFL

= 0. 0018 + 0. 1707 = 0. 1725 bbl/psi

The above calculations show that the effect of fluid expansion
CFE can generally be neglected in crude oil systems.

Step 5. Calculate the dimensionless wellbore storage coeffi-
cient from Equation 1.3.4:

CD = 0. 8936C
φhctr2

w
= 0. 8936(0. 1707)

0. 15(50)(20 × 10−6)(0. 25)2

= 16 271
Step 6. Approximate the time required for wellbore storage

influence to end from:

t = (200 000 + 12 000s)Cµ

kh

= (200 000 + 0)(0. 1725)(2)
(30)(50)

= 46 hours

The straight-line relationship as expressed by Equation
1.3.2 is only valid during the infinite-acting behavior of the

well. Obviously, reservoirs are not infinite in extent, so
the infinite-acting radial flow period cannot last indefinitely.
Eventually the effects of the reservoir boundaries will be felt
at the well being tested. The time at which the boundary
effect is felt is dependent on the following factors:

● permeability k;
● total compressibility ct ;
● porosity φ;
● viscosity µ;
● distance to the boundary;
● shape of the drainage area.

Earlougher (1977) suggested the following mathematical
expression for estimating the duration of the infinite-acting
period:

teia =
[

φµctA
0. 0002637k

]
(tDA)eia

where:

teia = time to the end of infinite-acting period, hours
A = well drainage area, ft2

ct = total compressibility, psi−1

(tDA)eia = dimensionless time to the end of the infinite-
acting period

This expression is designed to predict the time that marks
the end of transient flow in a drainage system of any geome-
try by obtaining the value of tDA from Table 1.4. The last three
columns of the table provide with values of tDA that allow the
engineer to calculate:

● the maximum elapsed time during which a reservoir is
infinite acting;

● the time required for the pseudosteady-state solution to
be applied and predict pressure drawdown within 1%
accuracy;

● the time required for the pseudosteady-state solution
(equations) to be exact and applied.

As an example, for a well centered in a circular reservoir,
the maximum time for the reservoir to remain as an infinite-
acting system can be determined using the entry in the final
column of Table 1.4 to give (tDA)eia = 0. 1, and accordingly:

teia =
[

φµctA
0. 0002637k

]
(tDA)eia =

[
φµctA

0. 0002637k

]
0. 1

or:

teia = 380φµctA
k

For example, for a well that is located in the center of a 40 acre
circular drainage area with the following properties:

k = 60 md, ct = 6 × 10−6 psi−1, µ = 1. 5 cp, φ = 0. 12

the maximum time, in hours, for the well to remain in an
infinite-acting system is:

teia = 380φµctA
k

= 380(0. 12)(1. 4)(6 × 10−6)(40 × 43560)
60

= 11. 1 hours
Similarly, the pseudosteady-state solution can be applied

any time after the semisteady-state flow begins at tpss as
estimated from:

tpss =
[

φµctA
0. 0002637k

]
(tDA)pss

where (tDA)pss can be found from the entry in the fifth column
of the table.

Hence, the specific steps involved in a drawdown test analysis
are:

(1) Plot pi − pwf vs. t on a log–log scale.
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(2) Determine the time at which the unit-slope line ends.
(3) Determine the corresponding time at 1 1

2 log cycle,
ahead of the observed time in step 2. This is the time
that marks the end of the wellbore storage effect and
the start of the semilog straight line.

(4) Estimate the wellbore storage coefficient from:

C = qt
24�p

= QBt
24�p

where t and �p are values read from a point on the
log–log unit-slope straight line and q is the flow rate in
bbl/day.

(5) Plot pwf vs. t on a semilog scale.
(6) Determine the start of the straight-line portion as sug-

gested in step 3 and draw the best line through the
points.

(7) Calculate the slope of the straight line and deter-
mine the permeability k and skin factor s by applying
Equations 1.3.2 and 1.3.3, respectively:

k = −162. 6QoBoµo

mh

s = 1. 151
[

pi − p1 hr

|m| − log
(

k
φµctr2

w

)
+ 3. 23

]

(8) Estimate the time to the end of the infinite-acting (tran-
sient flow) period, i.e., teia , which marks the beginning
of the pseudosteady-state flow.

(9) Plot all the recorded pressure data after teia as a function
of time on a regular Cartesian scale. This data should
form a straight-line relationship.

(10) Determine the slope of the pseudosteady-state line, i.e.,
dp/dt (commonly referred to as m\) and use Equation
1.2.116 to solve for the drainage area A:

A = −0. 23396QB
cthφ(dp/dt)

= −0. 23396QB
cthφm\

where:

m\ = slope of the semisteady-state Cartesian
straight line

Q = fluid flow rate, STB/day
B = formation volume factor, bbl/STB

(11) Calculate the shape factor CA from the expression that
was developed by Earlougher (1977):

CA = 5. 456
( m

m\
)

exp
[

2. 303(p1 hr − pint )
m

]

where:

m = slope of transient semilog straight line,
psi/log cycle

m\ = slope of the pseudosteady-state Cartesian
straight line

p1 hr = pressure at t = 1 hour from transient semilog
straight line, psi

pint = pressure at t = 0 from semisteady-state
Cartesian straight line, psi

(12) Use Table 1.4 to determine the drainage configuration
of the tested well that has a value of the shape factor CA
closest to that of the calculated one, i.e., step 11.

Radius of investigation
The radius of investigation rinv of a given test is the effective
distance traveled by the pressure transients, as measured
from the tested well. This radius depends on the speed with
which the pressure waves propagate through the reservoir
rock, which, in turn, is determined by the rock and fluid
properties, such as:

● porosity;

● permeability;
● fluid viscosity;
● total compressibility.

As time t increases, more of the reservoir is influenced by the
well and the radius of drainage, or investigation, increases
as given by:

rinv = 0. 0325

√
kt

φµct

where:

t = time, hours
k = permeability, md
ct = total compressibility, psi−1

It should be pointed out that the equations developed for
slightly compressible liquids can be extended to describe
the behavior of real gases by replacing the pressure with the
real-gas pseudopressure m(p), as defined by:

m(p) =
∫ p

0

2p
µZ

dp

with the transient pressure drawdown behavior as described
by Equation 1.2.151, or:

m(pwf ) = m(pi) −
[

1637QgT
kh

]

×
[

log
(

kt
φµictir2

w

)
− 3. 23 + 0. 87s\

]

Under constant gas flow rate, the above relation can be
expressed in a linear form as:

m(pwf )=
{

m(pi)−
[

1637QgT
kh

]

×
[

log
(

k
φµictir2

w

)
−3.23+0.87s\

]}
−
[

1637QgT
kh

]
log(t)

or:

m(pwf ) = a + m log(t)

which indicates that a plot of m(pwf ) vs. log(t) would produce
a semilog straight line with a negative slope of:

m = 1637QgT
kh

Similarly, in terms of the pressure-squared approximation
form:

p2
wf = p2

i −
[

1637QgTZµ

kh

]

×
[

log
(

kt
φµictir2

w

)
− 3. 23 + 0. 87s\

]

or:

p2
wf =

{
p2

i −
[

1637QgTZµ

kh

]

×
[

log
(

k
φµictir2

w

)
− 3. 23 + 0. 87s\

]}

−
[

1637QgTZµ

kh

]
log(t)

This equation is an equation of a straight line that can be
simplified to give:

p2
wf = a + m log(t)
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which indicates that a plot of p2
wf vs. log(t) would produce a

semilog straight line with a negative slope of:

m = 1637QgTZµ

kh
The true skin factor s which reflects the formation damage
or stimulation is usually combined with the non-Darcy rate-
dependent skin and labeled as the apparent or total skin
factor:

s\ = s + DQg

with the term DQg interpreted as the rate-dependent skin
factor. The coefficient D is called the inertial or turbulent
flow factor and given by Equation 1.2.148:

D = Fkh
1422T

where:

Qg = gas flow rate, Mscf/day
t = time, hours
k = permeability, md

µi = gas viscosity as evaluated at pi , cp

The apparent skin factor s\ is given by:
For pseudopressure approach:

s\ = 1. 151
[

m(pi) − m(p1 hr)
|m| − log

(
k

φµictir2
w

)
+ 3. 23

]

For pressure-squared approach:

s\ = 1. 151

[
p2

i − p2
1 hr

|m| − log
(

k
φµctr2

w

)
+ 3. 23

]

If the duration of the drawdown test of the gas well is long
enough to reach its boundary, the pressure behavior during
the boundary-dominated period (pseudosteady-state condi-
tion) is described by an equation similar to that of Equation
1.2.125 as:
For pseudopressure approach:

m(pi) − m(pwf )
q

= �m(p)
q

= 711T
kh

(
ln

4A
1. 781CAr2

wa

)

+
[

2. 356T
φ(µgcg)iAh

]
t

and as a linear equation by:

�m(p)
q

= bpss + m\t

This relationship indicates that a plot of �m(p)/q vs. t will
form a straight line with:

Intercept: bpss = 711T
kh

(
ln

4A
1. 781CAr2

wa

)

Slope: m\ = 2. 356T
(µgct )i(φhA)

= 2. 356T
(µgct )i(pore volume)

For pressure-squared approach:

p2
i − p2

wf

q
= �(p2)

q
= 711µZT

kh

(
ln

4A
1. 781CAr2

wa

)

+
[

2. 356 µZT
φ(µgcg)iAh

]
t

and in a linear form as:

�(p2)
q

= bpss + m\t

This relationship indicates that a plot of �(p2)/q vs. t on a
Cartesian scale will form a straight line with:

Intercept: bpss = 711µZT
kh

(
ln

4A
1. 781CAr2

wa

)

Slope: m\ = 2. 356µZT
(µgct )i(φhA)

= 2. 356µZT
(µgct )i(pore volume)

where:

q = flow rate, Mscf/day
A = drainage area, ft2

T = temperature, ◦R
t = flow time, hours

Meunier et al. (1987) suggested a methodology for
expressing the time t and the corresponding pressure p
that allows the use of liquid flow equations without spe-
cial modifications for gas flow. Meunier and his co-authors
introduced the following normalized pseudopressure ppn and
normalized pseudotime tpn

ppn = pi +
[(

µiZi

pi

)∫ p

0

p
µZ

dp
]

tpn = µicti

[∫ t

0

1
µct

dp
]

The subscript “i” on µ, Z , and ct refers to the evaluation of
these parameters at the initial reservoir pressure pi . By using
the Meunier et al. definition of the normalized pseudopres-
sure and normalized pseudotime there is no need to modify
any of the liquid analysis equations. However, care should
be exercised when replacing the liquid flow rate with the gas
flow rate. It should be noted that in all transient flow equa-
tions when applied to the oil phase, the flow rate is expressed
as the product of QoBo in bbl/day; that is, in reservoir bar-
rels/day. Therefore, when applying these equations to the
gas phase, the product of the gas flow rate and gas forma-
tion volume factor QgBg should be given in bbl/day. For
example, if the gas flow rate is expressed in scf/day, the
gas formation volume factor must be expressed in bbl/scf.
The recorded pressure and time are then simply replaced by
the normalized pressure and normalized time to be used in
all the traditional graphical techniques, including pressure
buildup.

1.3.2 Pressure buildup test
The use of pressure buildup data has provided the reservoir
engineer with one more useful tool in the determination of
reservoir behavior. Pressure buildup analysis describes the
buildup in wellbore pressure with time after a well has been
shut in. One of the principal objectives of this analysis is
to determine the static reservoir pressure without waiting
weeks or months for the pressure in the entire reservoir
to stabilize. Because the buildup in wellbore pressure will
generally follow some definite trend, it has been possible to
extend the pressure buildup analysis to determine:

● the effective reservoir permeability;
● the extent of permeability damage around the wellbore;
● the presence of faults and to some degree the distance

to the faults;
● any interference between producing wells;
● the limits of the reservoir where there is not a strong

water drive or where the aquifer is no larger than the
hydrocarbon reservoir.

Certainly all of this information will probably not be available
from any given analysis, and the degree of usefulness of any
of this information will depend on the experience in the area
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Figure 1.36 Idealized pressure buildup test.

and the amount of other information available for correlation
purposes.

The general formulas used in analyzing pressure buildup
data come from a solution of the diffusivity equation. In pres-
sure buildup and drawdown analyses, the following assump-
tions, as regards the reservoir, fluid, and flow behavior, are
usually made:

● Reservoir: homogeneous; isotropic; horizontal of uniform
thickness.

● Fluid: single phase; slightly compressible; constant µo
and Bo.

● Flow: laminar flow; no gravity effects.

Pressure buildup testing requires shutting in a producing
well and recording the resulting increase in the wellbore
pressure as a function of shut-in time. The most common
and simplest analysis techniques require that the well pro-
duce at a constant rate for a flowing time of tp, either from
startup or long enough to establish a stabilized pressure
distribution, before shut in. Traditionally, the shut-in time
is denoted by the symbol �t. Figure 1.36 schematically
shows the stabilized constant flow rate before shut-in and the
ideal behavior of the pressure increase during the buildup
period. The pressure is measured immediately before shut-
in and is recorded as a function of time during the shut-in
period. The resulting pressure buildup curve is then ana-
lyzed to determine reservoir properties and the wellbore
condition.

Stabilizing the well at a constant rate before testing is
an important part of a pressure buildup test. If stabiliza-
tion is overlooked or is impossible, standard data analysis
techniques may provide erroneous information about the
formation.

Two widely used methods are discussed below; these
are:

(1) the Horner plot;
(2) the Miller–Dyes–Hutchinson method.

1.3.3 Horner plot
A pressure buildup test is described mathematically by using
the principle of superposition. Before the shut-in, the well is
allowed to flow at a constant flow rate of Qo STB/day for tp
days. At the end of the flowing period, the well is shut in with
a corresponding change in the flow rate from the “old” rate of
Qo to the “new” flow rate of Qnew = 0, i.e., Qnew −Qold = −Qo.

Calculation of the total pressure change which occurs at
the sand face during the shut-in time is basically the sum of
the pressure changes that are caused by:

● flowing the well at a stabilized flow rate of Qold, i.e., the
flow rate before shut-in Qo, and is in effect over the entire
time of tp + �t;

● the net change in the flow rate from Qo to 0 and is in effect
over �t.

The composite effect is obtained by adding the indi-
vidual constant-rate solutions at the specified rate–time
sequence, as:

pi − pws = (�p)total = (�p)due to(Qo−0)

+ (�p)due to(0−Qo)

where:

pi = initial reservoir pressure, psi
pws = wellbore pressure during shut in, psi

The above expression indicates that there are two contribu-
tions to the total pressure change at the wellbore resulting
from the two individual flow rates.

The first contribution results from increasing the rate from
0 to Qo and is in effect over the entire time period tp + �t,
thus:

(�p)Qo−0 =
[

162. 6(Qo − 0)Boµo

kh

]

×
[

log
(

k(tp + �t)
φµoctr2

w

)
− 3. 23 + 0. 87s

]

The second contribution results from decreasing the rate
from Qo to 0 at tp, i.e., shut-in time, thus:

(�p)0−Qo =
[

162. 6
(
0 − Qo

)
Boµo

kh

]

×
[

log
(

k�t
φµoctr2

w

)
− 3. 23 + 0. 87s

]

The pressure behavior in the well during the shut-in period
is then given by:

pi − pws = 162. 6QoµoBo

kh

[
log

k
(
tp + �t

)
φµoctr2

w
− 3. 23

]

− 162. 6(−Qo)µoBo

kh

[
log

k�t
φµoctr2

w
− 3. 23

]

Expanding this equation and canceling terms gives:

pws = pi − 162. 6QoµoBo

kh

[
log
(

tp + �t
�t

)]
[1.3.6]

where:

pi = initial reservoir pressure, psi
pws = sand face pressure during pressure buildup, psi

tp = flowing time before shut-in, hours
Qo = stabilized well flow rate before shut-in, STB/day
�t = shut-in time, hours

The pressure buildup equation, i.e., Equation 1.3.6 was intro-
duced by Horner (1951) and is commonly referred to as the
Horner equation.

TLFeBOOK



1/54 WELL TESTING ANALYSIS

DEVIATION FROM STRAIGHT LINE
CAUSED BY WELLBORE STORAGE
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Figure 1.37 Horner plot (After Earlougher, R. Advances in Well Test Analysis) (Permission to publish by the SPE,
copyright SPE, 1977).

Equation 1.3.6 is basically an equation of a straight line
that can be expressed as:

pws = pi − m
[

log
(

tp + �t
�t

)]
[1.3.7]

This expression suggests that a plot of pws vs. (tp + �t)/�t
on a semilog scale would produce a straight-line relationship
with intercept pi and slope m, where:

m = 162. 6QoBoµo

kh
[1.3.8]

or:

k = 162. 6QoBoµo

mh
and where:

m = slope of straight line, psi/cycle
k = permeability, md

This plot, commonly referred to as the Horner plot, is illus-
trated in Figure 1.37. Note that on the Horner plot, the scale
of time ratio (tp + �t)/�t increases from right to left. It is
observed from Equation 1.3.6 that pws = pi when the time
ratio is unity. Graphically this means that the initial reservoir
pressure, pi , can be obtained by extrapolating the Horner
plot straight line to (tp + �t)/�t = 1.

The time corresponding to the point of shut-in, tp can be
estimated from the following equation:

tp = 24Np

Qo

where:

Np = well cumulative oil produced before shut in, STB
Qo = stabilized well flow rate before shut in, STB/day
tp = total production time, hours

Earlougher (1977) pointed out that a result of using the
superposition principle is that the skin factor, s, does not
appear in the general pressure buildup equation, Equation
1.3.6. That means the Horner-plot slope is not affected by
the skin factor; however, the skin factor still does affect
the shape of the pressure buildup data. In fact, an early-
time deviation from the straight line can be caused by the
skin factor as well as by wellbore storage, as illustrated in
Figure 1.36. The deviation can be significant for the large
negative skins that occur in hydraulically fractured wells.
The skin factor does affect flowing pressure before shut-in
and its value may be estimated from the buildup test data
plus the flowing pressure immediately before the buildup
test, as given by:

s = 1. 151
[

p1 hr − pwf at�t=0

|m| − log
(

k
φµctr2

w

)
+ 3. 23

]

[1.3.9]

with an additional pressure drop across the altered
zone of:

�pskin = 0. 87 |m| s

where:

pwf at�t=0 = bottom-hole flowing pressure immediately
before shut in, psi
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s = skin factor
|m| = absolute value of the slope in the Horner

plot, psi/cycle
rw = wellbore radius, ft

The value of p1 hr must be taken from the Horner straight
line. Frequently, the pressure data does not fall on the
straight line at 1 hour because of wellbore storage effects or
large negative skin factors. In that case, the semilog line must
be extrapolated to 1 hour and the corresponding pressure is
read.

It should be noted that for a multiphase flow, Equations
1.3.6 and 1.3.9 become:

pws = pi − 162. 6qt

λth

[
log
(

tp + �t
�t

)]

s = 1. 151
[

p1 hr − pwf at�t=0

|m|

− log
(

λt

φctr2
w

)
+ 3. 23

]

with:

λt = ko

µo
+ kw

µw
+ kg

µg

qt = QoBo + QwBw + (Qg − QoRs)Bg

or equivalently in terms of GOR as:
qt = QoBo + QwBw + (GOR − Rs)QoBg

where:

qt = total fluid voidage rate, bbl/day
Qo = oil flow rate, STB/day
Qw = water flow rate, STB/day
Qg = gas flow rate, scf/day
Rs = gas solubility, scf/STB
Bg = gas formation volume factor, bbl/scf
λt = total mobility, md/cp
ko = effective permeability to oil, md
kw = effective permeability to water, md
kg = effective permeability to gas, md

The regular Horner plot would produce a semilog straight
line with a slope m that can be used to determine the total
mobility λt from:

λt = 162. 6qt

mh
Perrine (1956) showed that the effective permeability of each
phase, i.e., ko, kw,and kg, can be determined as:

ko = 162. 6QoBoµo

mh

kw = 162. 6QwBwµw

mh

kg = 162. 6(Qg − QoRs)Bgµg

mh
For gas systems, a plot of m(pws) or p2

ws vs. (tp + �t)/�t on
a semilog scale would produce a straight line relationship
with a slope of m and apparent skin factor s as defined by:
For pseudopressure approach:

m = 1637 QgT
kh

s\ = 1. 151
[

m(p1 hr) − m(pwf at �t=0)
|m|

− log
(

k
φµictir2

w

)
+ 3. 23

]

For pressure-squared approach:

m = 1637 QgZµg

kh

s\ = 1. 151

[
p2

1 hr − p2
wf at �t=0

|m|

− log
(

k
φµictir2

w

)
+ 3. 23

]

where the gas flow rate Qg is expressed in Mscf/day.
It should be pointed out that when a well is shut in for

a pressure buildup test, the well is usually closed at the
surface rather than the sand face. Even though the well
is shut in, the reservoir fluid continues to flow and accu-
mulates in the wellbore until the well fills sufficiently to
transmit the effect of shut-in to the formation. This “after-
flow” behavior is caused by the wellbore storage and it has
a significant influence on pressure buildup data. During the
period of wellbore storage effects, the pressure data points
fall below the semilog straight line. The duration of these
effects may be estimated by making the log–log data plot
described previously of log(pws − pwf ) vs. log(�t) with pwf
as the value recorded immediately before shut-in. When
wellbore storage dominates, that plot will have a unit-slope
straight line; as the semilog straight line is approached, the
log–log plot bends over to a gently curving line with a low
slope.

The wellbore storage coefficient C is, by selecting a
point on the log–log unit-slope straight line and reading the
coordinate of the point in terms of �t and �p:

C = q�t
24�p

= QB�t
24�p

where

�t = shut-in time, hours
�p = pressure difference (pws − pwf ), psi

q = flow rate, bbl/day
Q = flow rate, STB/day
B = formation volume factor, bbl/STB

with a dimensionless wellbore storage coefficient as given
by Equation 1.3.4 as:

CD = 0. 8936C
φhctr2

w

In all the pressure buildup test analyses, the log–log data
plot should be made before the straight line is chosen on
the semilog data plot. This log–log plot is essential to avoid
drawing a semilog straight line through the wellbore storage-
dominated data. The beginning of the semilog line can be
estimated by observing when the data points on the log–log
plot reach the slowly curving low-slope line and adding 1
to 1 1

2 cycles in time after the end of the unit-slope straight
line. Alternatively, the time to the beginning of the semilog
straight line can be estimated from:

�t >
170000 Ce0.14s

(kh/µ)

where:

c = calculated wellbore storage coefficient, bbl/psi
k = permeability, md
s = skin factor
h = thickness, ft
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Table 1.5 Earlougher’s pressure buildup data
(Permission to publish by the SPE, copyright
SPE, 1977.)

�t(hr) tp + �t(hr) tp + �t�t pws (psig)

0.0 – – 2761
0.10 310.30 3101 3057
0.21 310.21 1477 3153
0.31 310.31 1001 3234
0.52 310.52 597 3249
0.63 310.63 493 3256
0.73 310.73 426 3260
0.84 310.84 370 3263
0.94 310.94 331 3266
1.05 311.05 296 3267
1.15 311.15 271 3268
1.36 311.36 229 3271
1.68 311.68 186 3274
1.99 311.99 157 3276
2.51 312.51 125 3280
3.04 313.04 103 3283
3.46 313.46 90.6 3286
4.08 314.08 77.0 3289
5.03 315.03 62.6 3293
5.97 315.97 52.9 3297
6.07 316.07 52.1 3297
7.01 317.01 45.2 3300
8.06 318.06 39.5 3303
9.00 319.00 35.4 3305

10.05 320.05 31.8 3306
13.09 323.09 24.7 3310
16.02 326.02 20.4 3313
20.00 330.00 16.5 3317
26.07 336.07 12.9 3320
31.03 341.03 11.0 3322
34.98 344.98 9.9 3323
37.54 347.54 9.3 3323

Example 1.27a Table 1.5 shows the pressure buildup data
from an oil well with an estimated drainage radius of 2640 ft.
Before shut-in, the well had produced at a stabilized rate of
4900 STB/day for 310 hours. Known reservoir data is:

depth = 10 476 ft, rw = 0. 354 ft, ct = 22. 6 × 10−6 psi−1

Qo = 4900 STB/D, h = 482 ft, pwf (�t = 0) = 2761 psig

µo = 0. 20 cp, Bo = 1. 55 bbl/STB, φ = 0. 09

tp = 310 hours, re = 2640 ft

Calculate:

● the average permeability k;
● the skin factor;
● the additional pressure drop due to skin.

Solution

Step 1. Plot pws vs. (tp +�t)/�t on a semilog scale as shown
in Figure 1.38).

Step 2. Identify the correct straight-line portion of the curve
and determine the slope m:

m = 40 psi/cycle

aThis example problem and the solution procedure are given in
Earlougher, R. Advance Well Test Analysis, Monograph Series, SPE,
Dallas (1977).

Step 3. Calculate the average permeability by using Equa-
tion 1.3.8:

k = 162. 6QoBoµo

mh

= (162. 6)(4900)(1. 55)(0. 22)
(40)(482)

= 12. 8 md

Step 4. Determine pwf after 1 hour from the straight-line
portion of the curve:

p1 hr = 3266 psi

Step 5. Calculate the skin factor by applying Equation 1.3.9

s = 1. 151
[

p1 hr − pwf�t=0

m
− log

(
k

φµctr2
w

)
+ 3. 23

]

= 1. 151
[

3266 − 2761
40

− log

( (
12. 8

)
(
0. 09

) (
0. 20

) (
22. 6 × 10−6

) (
0. 354

)2
)

+ 3. 23

]

= 8. 6

Step 6. Calculate the additional pressure drop by using:

�pskin = 0. 87 |m| s

= 0. 87(40)(8. 6) = 299. 3 psi

It should be pointed out that Equation 1.3.6 assumes the
reservoir to be infinite in size, i.e., re = ∞, which implies
that at some point in the reservoir the pressure would be
always equal to the initial reservoir pressure pi and the
Horner straight-line plot will always extrapolate to pi . How-
ever, reservoirs are finite and soon after production begins,
fluid removal will cause a pressure decline everywhere in
the reservoir system. Under these conditions, the straight
line will not extrapolate to the initial reservoir pressure pi
but, instead, the pressure obtained will be a false pressure as
denoted by p∗. The false pressure, as illustrated by Matthews
and Russell (1967) in Figure 1.39, has no physical meaning
but it is usually used to determine the average reservoir pres-
sure p. It is clear that p∗ will only equal the initial (original)
reservoir pressure pi when a new well in a newly discovered
field is tested. Using the concept of the false pressure p∗,
Horner expressions as given by Equations 1.3.6 and 1.3.7
should be expressed in terms of p∗ instead of pi as:

pws = p∗ − 162. 6QoµoBo

kh

[
log
(

tp + �t
�t

)]

and:

pws = p∗ − m
[

log
(

tp + �t
�t

)]
[1.3.10]

Bossie-Codreanu (1989) suggested that the well drainage
area can be determined from the Horner pressure buildup
plot or the MDH plot, discussed next, by selecting the
coordinates of any three points located on the semilog
straight-line portion of the plot to determine the slope of
the pseudosteady-state line mpss. The coordinates of these
three points are designated as:

● shut-in time �t1 and with a corresponding shut-in pres-
sure pws1;

● shut-in time �t2 and with a corresponding shut-in pres-
sure pws2;

● shut-in time �t3 and with a corresponding shut-in pres-
sure pws3.

The selected shut-in times satisfy �t1 < �t2 < �t3. The
slope of the pseudosteady-state straight-line mpss is then
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Figure 1.38 Earlougher’s semilog data plot for the buildup test (Permission to publish by the SPE, copyright SPE,
1977).
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Figure 1.39 Typical pressure buildup curve for a well in a finite (After Earlougher, R. Advances in Well Test Analysis)
(Permission to publish by the SPE, copyright SPE, 1977).

approximated by:

mpss

= (pws2 − pws1) log(�t3/�t1) − (pws3 − pws1) log[�t2/�t1]
(�t3 − �t1) log(�t2�t1) − (�t2 − �t1) log(�t3/�t1)

[1.3.11]

The well drainage area can be calculated from Equation
1.2.116:

m\ = mpss = 0. 23396QoBo

ctAhφ

Solving for the drainage area gives:

A = 0. 23396QoBo

ctmpsshφ
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Figure 1.40 Miller–Dyes–Hutchinson plot for the buildup test (After Earlougher, R. Advances in Well Test Analysis)
(Permission to publish by the SPE, copyright SPE, 1977).

where:

mpss or m\ = slope of straight line during the
pseudosteady-state flow, psi/hr

Qo = flow rate, bbl/day
A = well drainage area, ft2

1.3.4 Miller–Dyes–Hutchinson method
The Horner plot may be simplified if the well has been pro-
ducing long enough to reach a pseudosteady state. Assuming
that the production time tp is much greater than the total
shut-in time �t, i.e., tp � �t, the term tp + �t � tp and:

log
(

tp + �t
�t

)
∼= log

(
tp

�t

)
= log(tp) − log (�t)

Applying the above mathematical assumption to Equation
1.3.10, gives:

pws = p∗ − m[log(tp) − log(�t)]
or:

pws = [p∗ − m log(tp)] + m log(�t)
This expression indicates that a plot of pws vs. log(�t) would
produce a semilog straight line with a positive slope of +m
that is identical to that obtained from the Horner plot. The
slope is defined mathematically by Equation 1.3.8 as:

m = 162. 6QoBoµo

kh
The semilog straight-line slope m has the same value as

of the Horner plot. This plot is commonly called the Miller–
Dyes–Hutchinson (MDH) plot. The false pressure p∗ may
be estimated from the MDH plot by using:
p∗ = p1 hr + m log(tp + 1) [1.3.12]
where p1 hr is read from the semilog straight-line plot at �t =
1 hour. The MDH plot of the pressure buildup data given in
Table 1.5 in terms of pws vs. log(�t) is shown in Figure 1.40.

Figure 1.40 shows a positive slope of m = 40 psi/cycle
that is identical to the value obtained in Example 1.26 with a
p1 hr = 3266 psig.

As in the Horner plot, the time that marks the beginning of
the MDH semilog straight line may be estimated by making
the log–log plot of (pws −pwf ) vs. �t and observing when the
data points deviate from the 45◦ angle (unit slope). The exact
time is determined by moving 1 to 1 1

5 cycles in time after the
end of the unit-slope straight line.

The observed pressure behavior of the test well following
the end of the transient flow will depend on:

● shape and geometry of the test well drainage area;
● the position of the well relative to the drainage

boundaries;
● length of the producing time tp before shut-in.

If the well is located in a reservoir with no other wells,
the shut-in pressure would eventually become constant (as
shown in Figure 1.38) and equal to the volumetric aver-
age reservoir pressure pr . This pressure is required in many
reservoir engineering calculations such as:

● material balance studies;
● water influx;
● pressure maintenance projects;
● secondary recovery;
● degree of reservoir connectivity.

Finally, in making future predictions of production as a
function of pr , pressure measurements throughout the reser-
voir’s life are almost mandatory if one is to compare such
a prediction to actual performance and make the neces-
sary adjustments to the predictions. One way to obtain this
pressure is to shut in all wells producing from the reser-
voir for a period of time that is sufficient for pressures to
equalize throughout the system to give pr . Obviously, such
a procedure is not practical.
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Figure 1.41 Miller–Dyes–Hutchinson dimensionless pressure for circular and square drainage areas (After Earlougher,
R. Advances in Well Test Analysis) (Permission to publish by the SPE, copyright SPE, 1977).

To use the MDH method to estimate average drainage
region pressure pr for a circular or square system producing
at pseudosteady state before shut-in:

(1) Choose any convenient time on the semilog straight line
�t and read the corresponding pressure pws.

(2) Calculate the dimensionless shut-in time based on the
drainage area A from:

�tDA = 0. 0002637k�t
φµcta

(3) Enter Figure 1.41 with the dimensionless time �tDA and
determine an MDH dimensionless pressure pDMDH from
the upper curve of Figure 1.41.

(4) Estimate the average reservoir pressure in the closed
drainage region from:

pr = pws + mpDMDH

1. 1513
where m is the semilog straight line of the MDH plot.

There are several other methods for determining pr from
a buildup test. Three of these methods are briefly presented
below:

(1) the Matthews–Brons–Hazebroek (MBH) method;
(2) the Ramey-Cobb method;
(3) the Dietz method.

1.3.5 MBH method
As noted previously, the buildup test exhibits a semilog
straight line which begins to bend down and become flat
at the later shut-in times because of the effect of the bound-
aries. Matthews et al. (1954) proposed a methodology for
estimating average pressure from buildup tests in bounded
drainage regions. The MBH method is based on theoreti-
cal correlations between the extrapolated semilog straight
line to the false pressure p∗ and current average drainage
area pressure p. The authors point out that the average pres-
sure in the drainage area of each well can be related to p∗
if the geometry, shape, and location of the well relative to

the drainage boundaries are known. They developed a set
of correction charts, as shown in Figures 1.42 through 1.45,
for various drainage geometries.

The y axis of these figures represents the MBH dimen-
sionless pressure pDMBH that is defined by:

pDMBH = 2. 303(p∗ − p)
|m|

or:

p = p∗ −
( |m|

2. 303

)
pDMBH [1.3.13]

where m is the absolute value of the slope obtained from the
Horner semilog straight-line plot. The MBH dimensionless
pressure is determined at the dimensionless producing time
tpDA that corresponds to the flowing time tp. That is:

tpDA =
[

0. 0002637k
φµctA

]
tp [1.3.14]

where:

tp = flowing time before shut-in, hours
A = drainage area, ft2

k = permeability, md
ct = total compressibility, psi−1

The following steps summarize the procedure for applying
the MBH method:

Step 1. Make a Horner plot.
Step 2. Extrapolate the semilog straight line to the value of

p∗ at (tp + �t)/�t = 1. 0.
Step 3. Evaluate the slope of the semilog straight line m.
Step 4. Calculate the MBH dimensionless producing time

tpDA from Equation 1.3.14:

tpDA =
[

0. 0002637k
φµctA

]
tp

Step 5. Find the closest approximation to the shape of the
well drainage area in Figures 1.41 through 1.44 and
identify the correction curve.
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Figure 1.42 Matthews–Brons–Hazebroek dimensionless pressure for a well in the center of equilateral drainage areas
(After Earlougher, R. Advances in Well Test Analysis) (Permission to publish by the SPE, copyright SPE, 1977).
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area. (After Earlougher, R. Advances in Well Test Analysis) (Permission to publish by the SPE, copyright SPE, 1977).
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Figure 1.44 Matthews–Brons–Hazebroek dimensionless pressure for different well locations in a 2:1 rectangular
drainage area (After Earlougher, R. Advances in Well Test Analysis) (Permission to publish by the SPE, copyright SPE,
1977).
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Figure 1.45 Matthews–Brons–Hazebroek dimensionless pressure for different well locations in 4:1 and 5:1
rectangular drainage areas (After Earlougher, R. Advances in Well Test Analysis) (Permission to publish by the
SPE, copyright SPE, 1977).
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Step 6. Read the value of pDMBH from the correction curve
at tPDA

Step 7. Calculate the value of p from Equation 1.3.13:

p = p∗ −
( |m|

2. 303

)
pDMBH

As in the normal Horner analysis technique, the producing
time tp is given by:

tp = 24Np

Qo

where Np is the cumulative volume produced since the last
pressure buildup test and Qo is the constant flow rate just
before shut-in. Pinson (1972) and Kazemi (1974) indicate
that tp should be compared with the time required to reach
the pseudosteady state, tpss:

tpss =
[

φµctA
0. 0002367k

]
(tDA)pss [1.3.15]

For a symmetric closed or circular drainage area, (tDA)pss =
0. 1 as given in Table 1.4 and listed in the fifth column.

If tp � tpss, then tpss should ideally replace tp in both
the Horner plot and for use with the MBH dimensionless
pressure curves.

The above methodology gives the value of p in the drainage
area of one well, e.g., well i. If a number of wells are producing
from the reservoir, each well can be analyzed separately to
give p for its own drainage area. The reservoir average pres-
sure pr can be estimated from these individual well average
drainage pressures by using one of the relationships given by
Equations 1.2.118 and 1.2.119. That is:

pr =
∑

i(pq)i/(∂p/∂t)i∑
i qi/(∂p/∂t)i

or:

pr =
∑

i[p�(F)/�p]i∑
i [�(F)/�p]i

with:

Ft =
∫ t

0
[QoBo +QwBw +(Qg −QoRs −QwRsw)Bg] dt

Ft+�t =
∫ t+�t

0
[QoBo +QwBw +(Qg −QoRs −QwRsw)Bg] dt

and:

�(F) = Ft+�t − Ft

Similarly, it should be noted that the MBH method and the
Figures 1.41 through 1.44 can be applied for compressible
gases by defining pDMBH as:

For the pseudopressure approach

pDMBH = 2. 303[m(p∗) − m(p)]
|m| [1.3.16]

For the pressure-squared approach

pDMBH = 2. 303[(p∗)2 − (p)2]
|m| [1.3.17]

Example 1.28 Using the information given in Example
1.27 and pressure buildup data listed in Table 1.5, calcu-
late the average pressure in the well drainage area and the
drainage area by applying Equation 1.3.11. The data is listed
below for convenience:

re = 2640 ft, rw = 0. 354 ft, ct = 22. 6 × 10−6 psi−1

Qo = 4, 900 STB/D, h = 482 ft,

pwf at �t=0 = 2761 psig

µo = 0. 20 cp, Bo = 1. 55 bbl/STB, φ = 0. 09

tp = 310 hours, depth = 10 476 ft,

reported average pressure = 3323 psi

Solution

Step 1. Calculate the drainage area of the well:
A = πr2

e = π(2640)2

Step 2. Compare the production time tp, i.e., 310 hours, with
the time required to reach the pseudosteady state
tpss by applying Equation 1.3.15. Estimate tpss using
(tDA)pss = 0. 1 to give:

tpss =
[

φµctA
0. 0002367k

]
(tDA)pss

=
[

(0. 09)(0. 2)(22. 6 × 10−6)(π)(2640)2

(0. 0002637)(12. 8)

]
0. 1

= 264 hours
Thus, we could replace tp by 264 hours in our analy-
sis because tp > tpss. However, since tp is only about
1.2tpss, we use the actual production time of 310
hours in the calculation.

Step 3. Figure 1.38 does not show p∗ since the semilog
straight line is not extended to (tp + �t)/�t = 1. 0.
However, p∗ can be calculated from pws at (tp +
�t)/�t = 10. 0 by extrapolating one cycle. That is:

p∗ = 3325 + (1 cycle)(40 psi/cycle) = 3365 psig
Step 4. Calculate tpDA by applying Equation 1.3.14 to give:

tpDA =
[

0. 0002637k
φµctA

]
tp

=
[

0. 0002637(12. 8)
(0. 09)(0. 2)(22. 6 × 10−6)(π)(2640)2

]
310

= 0. 117
Step 5. From the curve of the circle in Figure 1.42, obtain

the value of pDMBH at tpDA = 0. 117, to give:
pDMBH = 1. 34

Step 6. Calculate the average pressure from Equation 1.3.13:

p = p∗ −
( |m|

2. 303

)
pDMBH

= 3365 −
(

40
2. 303

)
(1. 34) = 3342 psig

This is 19 psi higher than the maximum pressure
recorded of 3323 psig.

Step 7. Select the coordinates of any three points located on
the semilog straight line portion of the Horner plot,
to give:

● (�t1, pws1) = (2. 52, 3280)
● (�t2, pws2) = (9. 00, 3305)
● (�t3, pws3) = (20. 0, 3317)

Step 8. Calculate mpss by applying Equation 1.3.11:

mpss = (pws2 −pws1)log
(
�t3/�t1

)−(pws3 −pws1)log
(
�t2/�t1

)
(�t3 −�t1)log

(
�t2/�t1

)−(�t2 −�t1)log(�t3/�t1)

= (3305−3280)log
(
20/2.51

)−(3317−3280)log
(
9/2.51

)
(20−2.51)log

(
9/2.51

)−(9−2.51)log
(
20/2.51

)

=0.52339 psi/hr
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Step 9. The well drainage area can then be calculated from
Equation 1.2.116:

A = 0. 23396QoBo

ctmpsshφ

= 0. 23396(4900)(1. 55)
(22. 6 × 10−6)(0. 52339)(482)(0. 09)

= 3 462 938 ft2

= 3 363 938
43 560

= 80 acres

The corresponding drainage radius is 1050 ft which dif-
fers considerably from the given radius of 2640 ft. Using the
calculated drainage radius of 1050 ft and repeating the MBH
calculations gives:

tpss =
[

(0. 09)(0. 2)(22. 6 × 10−6)(π)(1050)2

(0. 0002637)(12. 8)

]
0. 1

= 41. 7 hours

tpDA =
[

0. 0002637(12. 8)
(0. 09)(0. 2)(22. 6 × 10−6)(π)(1050)2

]
310 = 0. 743

pDMBH = 3. 15

p = 3365 −
(

40
2. 303

)
(3. 15) = 3311 psig

The value is 12 psi higher than the reported value of average
reservoir pressure.

1.3.6 Ramey–Cobb method
Ramey and Cobb (1971) proposed that the average pressure
in the well drainage area can be read directly from the Horner
semilog straight line if the following data is available:

● shape of the well drainage area;
● location of the well within the drainage area;
● size of the drainage area.

The proposed methodology is based on calculating the
dimensionless producing time tpDA as defined by Equation
1.3.14:

tpDA =
[

0. 0002637k
φµctA

]
tp

where:

tp = producing time since the last shut-in, hours
A = drainage area, ft2

Knowing the shape of the drainage area and well location,
determine the dimensionless time to reach pseudosteady
state (tDA)pss, as given in Table 1.4 in the fifth column.
Compare tpDA with (tDA)pss:

● If tpDA < (tDA)pss, then read the average pressure p from
the Horner semilog straight line at:(

tp + �t
�t

)
= exp (4π tpDA) [1.3.18]

or use the following expression to estimate p:
p = p∗ − m log

[
exp (4π tpDA)

]
[1.3.19]

● If tpDA > (tDA)pss, then read the average pressure p from
the Horner semilog straight-line plot at:(

tp + �t
�t

)
= CAtpDA [1.3.20]

where CA is the shape factor as determined from
Table 1.4.s Equivalently, the average pressure can be

estimated from:

p = p∗ − m log(CAtpDA) [1.3.21]

where:

m = absolute value of the semilog straight-line slope,
psi/cycle

p∗ = false pressure, psia
CA= shape factor, from Table 1.4

Example 1.29 Using the data given in Example 1.27,
recalculate the average pressure using the Ramey and Cobb
method.

Solution

Step 1. Calculate tpDA by applying Equation (1.3.14):

tpDA =
[

0. 0002637k
φµctA

]
tp

=
[

0. 0002637(12. 8)
(0. 09)(0. 2)(22. 6 × 10−6)(π)(2640)2

]
(310)

= 0. 1175

Step 2. Determine CA and (tDA)pss from Table 1.4 for a well
located in the centre of a circle, to give:

CA = 31. 62
(tDA)pss = 0. 1

Step 3. Since tpDA > (tDA)pss, calculate p from Equation
1.3.21:

p = p∗ − m log(CAtpDA )

= 3365 − 40 log[31. 62(0. 1175)] = 3342 psi

This value is identical to that obtained from the MBH
method.

1.3.7 Dietz method
Dietz (1965) indicated that if the test well has been producing
long enough to reach the pseudosteady state before shut-in,
the average pressure can be read directly from the MDH
semilog straight-line plot, i.e., pws vs. log(�t), at the following
shut-in time:

(�t)p = φµctA
0. 0002637CAk

[1.3.22]

where:

�t = shut-in time, hours
A = drainage area, ft2

CA = shape factor
k = permeability, md
ct = total compressibility, psi−1

Example 1.30 Using the Dietz method and the buildup
data given in Example 1.27, calculate the average pressure:

Solution

Step 1. Using the buildup data given in Table 1.5, construct
the MDH plot of pws vs. log(�t) as shown in Figure
1.40. From the plot, read the following values:

m = 40 psi/cycle
p1 hr = 3266 psig
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Step 2. Calculate false pressure p∗ from Equation 1.3.12 to
give:

p∗ = p1 hr + m log(tp + 1)

= 3266 + 40 log(310 + 1) = 3365. 7 psi
Step 3. Calculate the shut-in time (�t)p from Equation

1.3.20:

(�t)p = (0. 09)(0. 2)(22. 6 × 10−6)(π)(2640)2

(0. 0002637)(12. 8)(31. 62)

= 83. 5 hours
Step 4. Since the MDH plot does not extend to 83.5 hours,

the average pressure can be calculated from the
semilog straight-line equation as given by:
p = p1 hr + m log(�t − 1) [1.3.23]
or:

p = 3266 + 40 log(83. 5 − 1) = 3343 psi

As indicated earlier, the skin factor s is used to calculate
the additional pressure drop in the altered permeability area
around the wellbore and to characterize the well through the
calculation of the flow coefficient E. That is:

�pskin = 0. 87 |m| s
and:

E = Jactual

Jideal
= p − pwf − �pskin

p − pwf

where p is the average pressure in the well drainage area.
Lee (1982) suggested that for rapid analysis of the pressure
buildup, the flow efficiency can be approximated by using
the extrapolated straight-line pressure p∗, to give:

E = Jactual

Jideal
≈ p∗ − pwf − �pskin

p − pwf

Earlougher (1977) pointed out that there are a surprising
number of situations where a single pressure point or “spot
pressure” is the only pressure information available about
a well. The average drainage region pressure p can be esti-
mated from the spot pressure reading at shut-in time �t
using:

p = pws at �t + 162. 6QoµoBo

kh

[
log
(

φµctA
0. 0002637kCA�t

)]

For a closed square drainage region CA = 30. 8828 and:

p = pws at �t + 162. 6QoµoBo

kh

[
log
(

122. 8φµctA
k�t

)]

where pws at �t is the spot pressure reading at shut-in time
�t and:

�t = shut-in time, hours
A = drainage area, ft2

CA = shape factor
k = permeability, md
ct = total compressibility, psi−1

It is appropriate at this time to briefly introduce the concept
of type curves and discuss their applications in well testing
analysis.

1.4 Type Curves

The type curve analysis approach was introduced in the
petroleum industry by Agarwal et al. (1970) as a valuable tool
when used in conjunction with conventional semilog plots.
A type curve is a graphical representation of the theoretical
solutions to flow equations. The type curve analysis consists
of finding the theoretical type curve that “matches” the actual

response from a test well and the reservoir when subjected
to changes in production rates or pressures. The match can
be found graphically by physically superposing a graph of
actual test data with a similar graph of type curve(s) and
searching for the type curve that provides the best match.
Since type curves are plots of theoretical solutions to tran-
sient and pseudosteady-state flow equations, they are usually
presented in terms of dimensionless variables (e.g., pD, tD,
rD, and CD) rather than real variables (e.g., �p, t, r , and
C). The reservoir and well parameters, such as permeabil-
ity and skin, can then be calculated from the dimensionless
parameters defining that type curve.

Any variable can be made “dimensionless” by multiplying
it by a group of constants with opposite dimensions, but the
choice of this group will depend on the type of problem to be
solved. For example, to create the dimensionless pressure
drop pD, the actual pressure drop �p in psi is multiplied by
the group A with units of psi−1, or:

pD = A�p

Finding the group A that makes a variable dimension-
less is derived from equations that describe reservoir fluid
flow. To introduce this concept, recall Darcy’s equation
that describes radial, incompressible, steady-state flow as
expressed by:

Q =
[

kh
141. 2Bµ[ln(re/rwa) − 0. 5]

]
�p [1.4.1]

where rwa is the apparent (effective) wellbore radius and
defined by Equation 1.2.140 in terms of the skin factor s as:

rwa = rwe−s

Group A can be defined by rearranging Darcy’s equa-
tion as:

ln
(

re

rwa

)
− 1

2
=
[

kh
141. 2QBµ

]
�p

Because the left-hand slide of this equation is dimensionless,
the right-hand side must be accordingly dimensionless. This
suggests that the term kh/141. 2QBµ is essentially group A
with units of psi−1 that defines the dimensionless variable
pD, or:

pD =
[

kh
141. 2QBµ

]
�p [1.4.2]

Taking the logarithm of both sides of this equation gives:

log(pD) = log(�p) + log
(

kh
141. 2QBµ

)
[1.4.3]

where:

Q = flow rate, STB/day
B = formation, volume factor, bbl/STB
µ = viscosity, cp

For a constant flow rate, Equation 1.4.3 indicates that the
logarithm of dimensionless pressure drop, log(pD), will dif-
fer from the logarithm of the actual pressure drop, log(�p),
by a constant amount of:

log
(

kh
141. 2QBµ

)

Similarly, the dimensionless time tD is given by Equation
1.2.75 as:

tD =
[

0. 0002637k
φµctr2

w

]
t

Taking the logarithm of both sides of this equation gives:

log(tD) = log(t) + log
[

0. 0002637k
φµctr2

w

]
[1.4.4]
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Figure 1.46 Concept of type curves.

where:

t = time, hours
ct = total compressibility coefficient, psi−1

φ = porosity

Hence, a graph of log(�p) vs. log(t) will have an identical
shape (i.e., parallel) to a graph of log(pD) vs. log(tD), although
the curve will be shifted by log[kh/(141. 2QBµ)] vertically in
pressure and log[0. 0002637k/(φµctr2

w)] horizontally in time.
This concept is illustrated in Figure 1.46.

Not only do these two curves have the same shape, but
if they are moved relative to each other until they coincide or
“match”, the vertical and horizontal displacements required
to achieve the match are related to these constants in Equa-
tions 1.4.3 and 1.4.4. Once these constants are determined
from the vertical and horizontal displacements, it is possible
to estimate reservoir properties such as permeability and
porosity. This process of matching two curves through the
vertical and horizontal displacements and determining the
reservoir or well properties is called type curve matching.

As shown by Equation 1.2.83, the solution to the diffusivity
equation can be expressed in terms of the dimensionless
pressure drop as:

pD = − 1
2

Ei

(
− r2

D

4tD

)

Equation 1.2.84 indicates that when tD/r2
D > 25, pD can be

approximated by:

pD = 1
2
[
ln
(
tD/r2

D

)+ 0. 080907
]

Notice that:
tD

r2
D

=
(

0. 0002637k
φµctr2

)
t

Taking the logarithm of both sides of this equation, gives:

log

(
tD

r2
D

)
= log

(
0. 0002637k

φµctr2

)
+ log(t) [1.4.5]

Equations 1.4.3 and 1.4.5 indicate that a graph of log(�p)
vs. log(t) will have an identical shape (i.e., parallel) to a
graph of log(pD) vs. log(tD/r2

D), although the curve will
be shifted by log(kh141. 2/QBµ) vertically in pressure and
log(0. 0002637k/φµctr2) horizontally in time. When these
two curves are moved relative to each other until they coin-
cide or “match,” the vertical and horizontal movements, in
mathematical terms, are given by:(

pD

�p

)
MP

= kh
141. 2QBµ

[1.4.6]

and:(
tD/r2

D

t

)

MP

= 0. 0002637k
φµctr2 [1.4.7]

The subscript “MP” denotes a match point.
A more practical solution then to the diffusivity equation

is a plot of the dimensionless pD vs. tD/r2
D as shown in

Figure 1.47 that can be used to determine the pressure at
any time and radius from the producing well. Figure 1.47 is
basically a type curve that is mostly used in interference tests
when analyzing pressure response data in a shut-in observa-
tion well at a distance r from an active producer or injector
well.

In general, the type curve approach employs the flowing
procedure that will be illustrated by the use of Figure 1.47:

Step 1. Select the proper type curve, e.g., Figure 1.47.
Step 2. Place tracing paper over Figure 1.47 and construct a

log–log scale having the same dimensions as those
of the type curve. This can be achieved by tracing
the major and minor grid lines from the type curve
to the tracing paper.

Step 3. Plot the well test data in terms of �p vs. t on the
tracing paper.

Step 4. Overlay the tracing paper on the type curve and slide
the actual data plot, keeping the x and y axes of
both graphs parallel, until the actual data point curve
coincides or matches the type curve.

Step 5. Select any arbitrary point match point MP, such as an
intersection of major grid lines, and record (�p)MP
and (t)MP from the actual data plot and the corre-
sponding values of (pD)MP and (tD/r2

D)MP from the
type curve.

Step 6. Using the match point, calculate the properties of
the reservoir.

The following example illustrates the convenience of using
the type curve approach in an interference test for 48 hours
followed by a falloff period of 100 hours.

Example 1.31a During an interference test, water was
injected at a 170 bbl/day for 48 hours. The pressure response
in an observation well 119 ft away from the injector is given
below:

t (hrs) p (psig) �pws = pi − p(psi)

0 pi = 0 0
4.3 22 −22
21.6 82 −82
28.2 95 −95
45.0 119 −119
48.0 injection ends
51.0 109 −109
69.0 55 −55
73.0 47 −47
93.0 32 −32
142.0 16 −16
148.0 15 −15

Other given data includes:

pi = 0 psi, Bw = 1. 00 bbl/STB

aThis example problem and the solution procedure are given in
Earlougher, R. Advanced Well Test Analysis, Monograph Series, SPE,
Dallas (1977).
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Figure 1.47 Dimensionless pressure for a single well in an infinite system, no wellbore storage, no skin.
Exponential–integral solution (After Earlougher, R. Advances in Well Test Analysis) (Permission to publish by
the SPE, copyright SPE, 1977).

ct = 9. 0 × 10−6 psi−1, h = 45 ft

µw = 1. 3 cp, q = −170 bbl/day

Calculate the reservoir permeability and porosity.

Solution

Step 1. Figure 1.48 show a plot of the well test data during
the injection period, i.e., 48 hours, in terms of �p vs.
t on tracing paper with the same scale dimensions as
in Figure 1.47. Using the overlay technique with the
vertical and horizontal movements, find the segment
of the type curve that matches the actual data.

Step 2. Select any point on the graph that will be defined as
a match point MP, as shown in Figure 1.48. Record
(�p)MP and (t)MP from the actual data plot and the
corresponding values of (pD)MP and (tD/r2

D)MP from
the type curve, to give:
Type curve match values:

(pD)MP = 0. 96, (tD/r2
D)MP = 0. 94

Actual data match values:

(�p)MP = −100 psig, (t)MP = 10 hours

Step 3. Using Equations 1.4.6 and 1.4.7, solve for the perme-
ability and porosity:

k = 141. 2QBµ

h

(
pD

�p

)
MP

= 141. 2(−170)(1. 0)(1. 0)
45

(
0. 96
−100

)
MP

= 5. 1 md

and:

φ = 0. 0002637k
µctr2[(tD/r2

D)/t}MP

= 0. 0002637(5. 1)
(1. 0)(9. 0 × 10−6)(119)2[0. 94/10]MP

= 0. 11

Equation 1.2.83 shows that the dimensionless pressure is
related to the dimensionless radius and time by:

pD = − 1
2

Ei(− r2
D

4tD
)

At the wellbore radius where r = rw, i.e., rD=1, and p(r , t) =
pwf , the above expression is reduced to:

pD = − 1
2

Ei
(−1

4tD

)

The log approximation as given by Equation 1.2.80 can be
applied to the above solution to give:

pD = 1
2
[ln(tD) + 0. 80901]

and, to account for the skin s, by:

pD = 1
2
[ln(tD) + 0. 80901] + s

or:

pD = 1
2
[ln(tD) + 0. 80901 + 2s]

Notice that the above expressions assume zero wellbore
storage, i.e., dimensionless wellbore storage CD = 0. Sev-
eral authors have conducted detailed studies on the effects
and duration of wellbore storage on pressure drawdown and
buildup data. Results of these studies were presented in the
type curve format in terms of the dimensionless pressure as
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Figure 1.48 Illustration of type curve matching for an interference test using the type curve (After Earlougher, R.
Advances in Well Test Analysis) (Permission to publish by the SPE, copyright SPE, 1977).

a function of dimensionless time, radius, and wellbore stor-
age, i.e., pD = f (tD, rD, CD). The following two methods that
utilize the concept of the type curve approach are briefly
introduced below:

(1) the Gringarten type curve;
(2) the pressure derivative method

1.4.1 Gringarten type curve
During the early-time period where the flow is dominated by
the wellbore storage, the wellbore pressure is described by
Equation 1.3.5 as:

pD = tD

CD

or:

log(pD) = log(tD) − log(CD)

This relationship gives the characteristic signature of well-
bore storage effects on well testing data which indicates that
a plot of pD vs. tD on a log–log scale will yield a straight line of
a unit slope. At the end of the storage effect, which signifies
the beginning of the infinite-acting period, the resulting pres-
sure behavior produces the usual straight line on a semilog
plot as described by:

pD = 1
2
[ln(tD) + 0. 80901 + 2s]

It is convenient when using the type curve approach in well
testing to include the dimensionless wellbore storage coef-
ficient in the above relationship. Adding and subtracting

ln(CD) inside the brackets of the above equation gives:

pD = 1
2
[ln(tD) − ln(CD) + 0. 80901 + ln(CD) + 2s]

or, equivalently:

pD = 1
2

[
ln
(

tD

CD

)
+ 0. 80907 + ln(CDe2s)

]
[1.4.8]

where:

pD = dimensionless pressure
CD = dimensionless wellbore storage coefficient
tD = dimensionless time
s = skin factor

Equation 1.4.8 describes the pressure behavior of a well
with a wellbore storage and a skin in a homogeneous
reservoir during the transient (infinite-acting) flow period.
Gringarten et al. (1979) expressed the above equation in the
graphical type curve format shown in Figure 1.49. In this
figure, the dimensionless pressure pD is plotted on a log–log
scale versus dimensionless time group tD/CD. The resulting
curves, characterized by the dimensionless group CDe2s , rep-
resent different well conditions ranging from damaged wells
to stimulated wells.

Figure 1.49 shows that all the curves merge, in early
time, into a unit-slope straight line corresponding to pure
wellbore storage flow. At a later time with the end of the
wellbore storage-dominated period, curves correspond to
infinite-acting radial flow. The end of wellbore storage and
the start of infinite-acting radial flow are marked on the
type curves of Figure 1.49. There are three dimensionless
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Figure 1.49 Type curves for a well with wellbore storage and skin in a reservoir with homogeneous behavior
(Copyright ©1983 World Oil, Bourdet et al., May 1983).

groups that Gringarten et al. used when developing the type
curve:

(1) dimensionless pressure pD;
(2) dimensionless ratio tD/CD;
(3) dimensionless characterization group CDe2s .

The above three dimensionless parameters are defined
mathematically for both the drawdown and buildup tests as
follows.

For drawdown
Dimensionless pressure pD

pD = kh(pi − pwf )
141. 2QBµ

= kh�p
141. 2QBµ

[1.4.9]

where:

k = permeability, md
pwf = bottom-hole flowing pressure, psi
Q = flow rate, bbl/day
B = formation volume factor, bbl/STB

Taking logarithms of both sides of the above equation gives:

log(pD) = log(pi − pwf ) + log
(

kh
141. 2QBµ

)

log(pD) = log(�p) + log
(

kh
141. 2QBµ

)
[1.4.10]

Dimensionless ratio tD/CD

tD

CD
=
(

0. 0002637kt
φµctr2

w

)(
φhctr2

w

0. 8396C

)

Simplifying gives:
tD

CD
=
(

0. 0002951kh
µC

)
t [1.4.11]

where:

t = flowing time, hours
C = wellbore storage coefficient, bbl/psi

Taking logarithms gives:

log
(

tD

CD

)
= log(t) + log

[
0. 0002951kh

µC

]
[1.4.12]

Equations 1.4.10 and 1.4.12 indicate that a plot of the
actual drawdown data of log(�p) vs. log(t) will produce
a parallel curve that has an identical shape to a plot of
log(pD) vs. log(tD/CD). When displacing the actual plot, ver-
tically and horizontally, to find a dimensionless curve that
coincides or closely fits the actual data, these displacements
are given by the constants of Equations 1.4.9 and 1.4.11 as:(

pD

�p

)
MP

= kh
141. 2QBµ

[1.4.13]

and:(
tD/CD

t

)
MP

= 0. 0002951kh
µC

[1.4.14]

where MP denotes a match point.
Equations 1.4.13 and 1.4.14 can be solved for the perme-

ability k (or the flow capacity kh) and the wellbore storage
coefficient C respectively:

k = 141. 2QBµ

h

(
pD

�p

)
MP

and:

C = 0. 0002951kh

µ
(

tD/CD
t

)
MP

Dimensionless characterization group CDe2s The math-
ematical definition of the dimensionless characterization
group CDe2s as given below is valid for both the drawdown
and buildup tests:

CDe2s =
[

5. 615C
2πφµctr2

w

]
e2s [1.4.15]

where:

φ = porosity
ct = total isothermal compressibility, psi−1

rw = wellbore radius, ft

When the match is achieved, the dimensionless group
CDe2s describing the matched curve is recorded.

For buildup
It should be noted that all type curve solutions are obtained
for the drawdown solution. Therefore, these type curves
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cannot be used for buildup tests without restriction or mod-
ification. The only restriction is that the flow period, i.e., tp,
before shut-in must be somewhat large. However, Agarwal
(1980) empirically found that by plotting the buildup data
pws − pwf at �t = 0 versus “equivalent time” �te instead of
the shut-in time �t, on a log–log scale, the type curve
analysis can be made without the requirement of a long draw-
down flowing period before shut-in. Agarwal introduced the
equivalent time �te as defined by:

�te = �t
1 + (�t/tp

) = [�t/tp + �t
]

tp [1.4.16]

where:

�t = shut-in time, hours
tp = total flowing time since the last shut-in, hours

�te = Agarwal equivalent time, hours

Agarwal’s equivalent time �te is simply designed to
account for the effects of producing time tp on the pressure
buildup test. The concept of �te is that the pressure change
�p = pws − pwf at time �t during a buildup test is the same
as the pressure change �p = pi − pwf at �te during a draw-
down test. Thus, a graph of buildup test in terms of pws −pwf
vs. �te will overlay a graph of pressure change versus flow-
ing time for a drawdown test. Therefore, when applying the
type curve approach in analyzing pressure buildup data, the
actual shut-in time �t is replaced by the equivalent time �te.

In addition to the characterization group CDe2s as defined
by Equation 1.4.15, the following two dimensionless param-
eters are used when applying the Gringarten type curve in
analyzing pressure buildup test data.
Dimensionless pressure pD

pD = kh(pws − pwf )
141. 2QBµ

= kh�p
141. 2QBµ

[1.4.17]

where:

pws = shut-in pressure, psi
pwf = flow pressure just before shut-in, i.e., at �t = 0, psi

Taking the logarithms of both sides of the above equation
gives:

log(pD) = log(�p) + log
(

kh
141. 2QBµ

)
[1.4.18]

Dimensionless ratio tD/CD

tD

CD
=
[

0. 0002951kh
µC

]
�te [1.4.19]

Taking the logarithm of each side of Equation 1.4.9 gives:

log
(

tD

CD

)
= log(�te) + log

(
0. 0002951kh

µC

)
[1.4.20]

Similarly, a plot of actual pressure buildup data of
log(�p) vs. log(�te) would have a shape identical to that
of log(pD) vs. log(tD/CD). When the actual plot is matched
to one of the curves of Figure 1.49, then:

(
pD

�p

)
MP

= kh
141. 2QBµ

which can be solved for the flow capacity kh or the perme-
ability k. That is:

k =
[

141. 2QBµ

h

](
pD

�p

)
MP

[1.4.21]

and:(
tD/CD

�te

)
MP

= 0. 0002951kh
µC

[1.4.22]

Solving for C gives:

C =
[

0. 0002951kh
µ

]
(�te)MP

(tD/CD)MP
[1.4.23]

The recommended procedure for using the Gringarten
type curve is given by the following steps:

Step 1. Using the test data, perform conventional test analy-
sis and determine:

● wellbore storage coefficient C and CD;
● permeability k;
● false pressure p∗;
● average pressure p;
● skin factor s;
● shape factor CA;
● drainage area A.

Step 2. Plot pi −pwf versus flowing time t for a drawdown test
or (pws−pwp) versus equivalent time �te for a buildup
test on log – log paper (tracing paper) with the same
size log cycles as the Gringarten type curve.

Step 3. Check the early-time points on the actual data plot for
the unit-slope (45◦ angle) straight line to verify the
presence of the wellbore storage effect. If a unit-slope
straight line presents, calculate the wellbore storage
coefficient C and the dimensionless CD from any
point on the unit-slope straight line with coordinates
of (�p, t) or (�p, �te), to give:

For drawdown C = QBt
24(pi − pwf )

= QB
24

(
t

�p

)

[1.4.24]

For buildup C = QB�te

24(pws − pwf )
= QB

24

(
�te

�p

)

[1.4.25]
Estimate the dimensionless wellbore storage coeffi-
cient from:

CD =
[

0. 8936
φhctr2

w

]
C [1.4.26]

Step 4. Overlay the graph of the test data on the type
curves and find the type curve that nearly fits most
of the actual plotted data. Record the type curve
dimensionless group (CDe2s)MP.

Step 5. Select a match point MP and record the corre-
sponding values of (pD, �p)MP from the y axis and
(tD/CD, t)MP or (tD/CD, �te)MP from the x axis.

Step 6. From the match, calculate:

k =
[

141. 2QBµ

h

](
pD

�p

)
MP

and:

C =
[

0. 0002951kh
µ

](
t

(tD/CD)

)
MP

for drawdown

or:

C =
[

0. 0002951kh
µ

](
�te

(tD/CD)

)
MP

for buildup

and:

CD =
[

0. 8936
φhctr2

w

]
C

s = 1
2

ln
[

(CDe2s)MP

CD

]
[1.4.27]
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Sabet (1991) used the buildup data presented by Bourdet
et al. (1983) to illustrate the use of Gringarten type curves.
The data is used in the following example:

Example 1.32 Table 1.6 summarizes the pressure
buildup data for an oil well that has been producing at a
constant flow rate of 174 STB/day before shut-in. Additional
pertinent data is given below:

φ = 25%, ct = 4. 2 × 10−6 psi−1

Q = 174 STB/day, tp = 15 hours

B = 1. 06 bbl/STB, rw = 0. 29 ft

µ = 2. 5 cp, h = 107 ft

Perform the conventional the pressure buildup analysis by
using the Horner plot approach and compare the results with
those obtained by using the Gringarten type curve approach.

Table 1.6 Pressure buildup test with afterflow
(After Sabet, M. A. “Well Test Analysis” 1991, Gulf
Publishing Company)

�t(hr) pws (psi) �p (psi)
tp + �t

�t
�te

0.00000 3086.33 0.00 – 0.00000
0.00417 3090.57 4.24 3600.71 0.00417
0.00833 3093.81 7.48 1801.07 0.00833
0.01250 3096.55 10.22 1201.00 0.01249
0.01667 3100.03 13.70 900.82 0.01666
0.02083 3103.27 16.94 721.12 0.02080
0.02500 3106.77 20.44 601.00 0.02496
0.02917 3110.01 23.68 515.23 0.02911
0.03333 3113.25 26.92 451.05 0.03326
0.03750 3116.49 30.16 401.00 0.03741
0.04583 3119.48 33.15 328.30 0.04569
0.05000 3122.48 36.15 301.00 0.04983
0.05830 3128.96 42.63 258.29 0.05807
0.06667 3135.92 49.59 225.99 0.06637
0.07500 3141.17 54.84 201.00 0.07463
0.08333 3147.64 61.31 181.01 0.08287
0.09583 3161.95 75.62 157.53 0.09522
0.10833 3170.68 84.35 139.47 0.10755
0.12083 3178.39 92.06 125.14 0.11986
0.13333 3187.12 100.79 113.50 0.13216
0.14583 3194.24 107.91 103.86 0.14443
0.16250 3205.96 119.63 93.31 0.16076
0.17917 3216.68 130.35 84.72 0.17706
0.19583 3227.89 141.56 77.60 0.19331
0.21250 3238.37 152.04 71.59 0.20953
0.22917 3249.07 162.74 66.45 0.22572
0.25000 3261.79 175.46 61.00 0.24590
0.29167 3287.21 200.88 52.43 0.28611
0.33333 3310.15 223.82 46.00 0.32608
0.37500 3334.34 248.01 41.00 0.36585
0.41667 3356.27 269.94 37.00 0.40541
0.45833 3374.98 288.65 33.73 0.44474
0.50000 3394.44 308.11 31.00 0.48387
0.54167 3413.90 327.57 28.69 0.52279
0.58333 3433.83 347.50 26.71 0.56149
0.62500 3448.05 361.72 25.00 0.60000
0.66667 3466.26 379.93 23.50 0.63830
0.70833 3481.97 395.64 22.18 0.67639
0.75000 3493.69 407.36 21.00 0.71429
0.81250 3518.63 432.30 19.46 0.77075
0.87500 3537.34 451.01 18.14 0.82677
0.93750 3553.55 467.22 17.00 0.88235

Table 1.6 continued

�t (hr) pws (psi) �p (psi)
tp + �t

�t
�te

1.00000 3571.75 485.42 16.00 0.93750
1.06250 3586.23 499.90 15.12 0.99222
1.12500 3602.95 516.62 14.33 1.04651
1.18750 3617.41 531.08 13.63 1.10039
1.25000 3631.15 544.82 13.00 1.15385
1.31250 3640.86 554.53 12.43 1.20690
1.37500 3652.85 566.52 11.91 1.25954
1.43750 3664.32 577.99 11.43 1.31179
1.50000 3673.81 587.48 11.00 1.36364
1.62500 3692.27 605.94 10.23 1.46617
1.75000 3705.52 619.19 9.57 1.56716
1.87500 3719.26 632.93 9.00 1.66667
2.00000 3732.23 645.90 8.50 1.76471
2.25000 3749.71 663.38 7.67 1.95652
2.37500 3757.19 670.86 7.32 2.05036
2.50000 3763.44 677.11 7.00 2.14286
2.75000 3774.65 688.32 6.45 2.32394
3.00000 3785.11 698.78 6.00 2.50000
3.25000 3794.06 707.73 5.62 2.67123
3.50000 3799.80 713.47 5.29 2.83784
3.75000 3809.50 723.17 5.00 3.00000
4.00000 3815.97 729.64 4.75 3.15789
4.25000 3820.20 733.87 4.53 3.31169
4.50000 3821.95 735.62 4.33 3.46154
4.75000 3823.70 737.37 4.16 3.60759
5.00000 3826.45 740.12 4.00 3.75000
5.25000 3829.69 743.36 3.86 3.88889
5.50000 3832.64 746.31 3.73 4.02439
5.75000 3834.70 748.37 3.61 4.15663
6.00000 3837.19 750.86 3.50 4.28571
6.25000 3838.94 752.61 3.40 4.41176
6.75000 3838.02 751.69 3.22 4.65517
7.25000 3840.78 754.45 3.07 4.88764
7.75000 3843.01 756.68 2.94 5.10989
8.25000 3844.52 758.19 2.82 5.32258
8.75000 3846.27 759.94 2.71 5.52632
9.25000 3847.51 761.18 2.62 5.72165
9.75000 3848.52 762.19 2.54 5.90909

10.25000 3850.01 763.68 2.46 6.08911
10.75000 3850.75 764.42 2.40 6.26214
11.25000 3851.76 765.43 2.33 6.42857
11.75000 3852.50 766.17 2.28 6.58879
12.25000 3853.51 767.18 2.22 6.74312
12.75000 3854.25 767.92 2.18 6.89189
13.25000 3855.07 768.74 2.13 7.03540
13.75000 3855.50 769.17 2.09 7.17391
14.50000 3856.50 770.17 2.03 7.37288
15.25000 3857.25 770.92 1.98 7.56198
16.00000 3857.99 771.66 1.94 7.74194
16.75000 3858.74 772.41 1.90 7.91339
17.50000 3859.48 773.15 1.86 8.07692
18.25000 3859.99 773.66 1.82 8.23308
19.00000 3860.73 774.40 1.79 8.38235
19.75000 3860.99 774.66 1.76 8.52518
20.50000 3861.49 775.16 1.73 8.66197
21.25000 3862.24 775.91 1.71 8.79310
22.25000 3862.74 776.41 1.67 8.95973
23.25000 3863.22 776.89 1.65 9.11765
24.25000 3863.48 777.15 1.62 9.26752
25.25000 3863.99 777.66 1.59 9.40994
26.25000 3864.49 778.16 1.57 9.54545
27.25000 3864.73 778.40 1.55 9.67456
28.50000 3865.23 778.90 1.53 9.82759
30.00000 3865.74 779.41 1.50 10.00000

Adapted from Bourdet et al. (1983).
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Figure 1.50 Log–log plot. Data from Table 1.6 (After Sabet, M. A. Well Test Analysis, 1991, Gulf Publishing Company).

Solution

Step 1. Plot �p vs. �te on a log – log scale, as shown in
Figure 1.50. The plot shows that the early data form
a straight line with a 45◦ angle, which indicates the
wellbore storage effect. Determine the coordinates
of a point on the straight line, e.g., �p = 50 and
�te = 0. 06, and calculate C and CD:

C = QB�te

24�p
= (174)(1. 06)(0. 06)

(24)(50)
= 0. 0092 bbl/psi

CD = 0. 8936C
φhctr2

w
= 0. 8936(0. 0092)

(0. 25)(107)(4. 2 × 10−6)(0. 29)2 = 872

Step 2. Make a Horner plot of pws vs. (tp+�t)/�t on semilog
paper, as shown in Figure 1.51, and perform the
conventional well test analysis, to give:

m=65.62 psi/cycle

k= 162.6QBµ

mh
(162.6)(174)(2.5)

(65.62)(107)
=10.1 md

p1 hr =3797 psi

s=1.151
[

p1 hr −pwf

(m)
− log

(
k

φµctr2
w

)
+3.23

]

=1.151
[

3797−3086.33
65.62

−log
(

10.1
(0.25)(2.5)(4.2×10−6)(0.29)2

)
+3.23

]

=7.37

Straight line parameters:
Slope, m      = 65.62 psi/cycle
Intercept, p∗ = 3878 psi
p∆t               = 3797 psi
Results:
kh = 1142 md ft
p∗ = 3878 psi
s   = 7.4

m = 65.62 psi/cycle

(tp + ∆t)/∆t

P
re

ss
ur

e,
 p

si
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3750

3500

1 10 100 1000

Figure 1.51 The Horner plot: data from Table 1.6
(Copyright ©1983 World Oil, Bourdet et al., May 1983).

�pskin =(0.87)(65.62)(7.37)=421 psi

p∗ =3878 psi

Step 3. Plot �p vs. �te, on log–log graph paper with the same
size log cycles as the Gringarten type curve. Overlay
the actual test data plot on the type curve and find
the type curve that matches the test data. As shown
in Figure 1.52, the data matched the curve with the
dimensionless group of CDe2s = 1010 and a match
point of:

(pD)MP = 1. 79
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Figure 1.52 Buildup data plotted on log–log graph paper and matched to type curve by Gringarten et al. (Copyright
© 1983 World Oil, Bourdet et al., May 1983).

(�p)MP = 100

(tD/CD) = 14. 8

(�te) = 1. 0

Step 4. From the match, calculate the following properties:

k =
[

141. 2QBµ

h

](
pD

�p

)
MP

= 141. 2(174)(1. 06)(2. 5)
(107)

(
1. 79
100

)
= 10. 9 md

C =
[

0. 0002951kh
µ

] [
�te

(tD/CD)

]
MP

=
[

0. 0002951(10. 9)(107)
2. 5

] [
1. 0

14. 8

]
= 0. 0093

CD =
[

0. 8936
φhctr2

w

]
C

=
[

0. 8936
(0. 25)(107)(4. 2 × 10−6)(0. 29)2

]
(0. 0093)

= 879

s = 1
2

ln
[

(CDe2s)MP

CD

]
= 1

2
ln
[

1010

879

]
= 8. 12

Results of the example show a good agreement between the
conventional well testing analysis and that of the Gringarten
type curve approach.

Similarly, the Gringarten type curve can also be used for gas
systems by redefining the dimensionless pressure drop and
time as:

For the gas pseudopressure approach pD = kh�[m(p)]
1422QgT

For the pressure-squared approach pD = kh�[p2]
1422QgµiZiT

with the dimensionless time as:

tD =
[

0. 0002637k
φµctr2

w

]
t

where:

Qg = gas flow rate, Mscf/day
T = temperature,◦ R

�[m(p)] = m(pws) − m(pwf at �t=0) for the buildup test
= m(pi) − m(pwf ) for the drawdown test

�[p2] = (pws)2 − (pwf at �t=0)2 for the buildup test
= (pi)2 − (pwf )2 for the drawdown test

and for buildup, the shut-in time �t replaces flowing time t
in the above equation.

1.5 Pressure Derivative Method

The type curve approach for the analysis of well testing
data was developed to allow for the identification of flow
regimes during the wellbore storage-dominated period and
the infinite-acting radial flow. As illustrated through Exam-
ple 1.31, it can be used to estimate the reservoir properties
and wellbore condition. However, because of the similarity
of curves shapes, it is difficult to obtain a unique solution.
As shown in Figure 1.49, all type curves have very similar
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Figure 1.53 Pressure derivative type curve in terms of P\
D(tD/CD) (Copyright ©1983 World Oil, Bourdet et al., May

1983).

shapes for high values of CDe2s which lead to the problem
of finding a unique match by a simple comparison of shapes
and determining the correct values of k, s, and C.

Tiab and Kumar (1980) and Bourdet et al. (1983)
addressed the problem of identifying the correct flow regime
and selecting the proper interpretation model. Bourdet and
his co-authors proposed that flow regimes can have clear
characteristic shapes if the “pressure derivative” rather than
pressure is plotted versus time on the log–log coordinates.
Since the introduction of the pressure derivative type curve,
well testing analysis has been greatly enhanced by its use.
The use of this pressure derivative type curve offers the
following advantages:

● Heterogeneities hardly visible on the conventional plot of
well testing data are amplified on the derivative plot.

● Flow regimes have clear characteristic shapes on the
derivative plot.

● The derivative plot is able to display in a single graph many
separate characteristics that would otherwise require
different plots.

● The derivative approach improves the definition of
the analysis plots and therefore the quality of the
interpretation.

Bourdet et al. (1983) defined the pressure derivative as the
derivative of pD with respect to tD/CD as:

P \
D = d(PD)

d(tD/CD)
[1.5.1]

It has been shown that during the wellbore storage-
dominated period the pressure behavior is described by:

PD = tD

CD

Taking the derivative of pD with respect to tD/CD gives:
d(PD)

d(tD/CD)
= P \

D = 1. 0

Since p\
D = 1, this implies that multiplying p\

D by tD/CD gives
tD/CD, or:

p\
D

(
tD

CD

)
= tD

CD
[1.5.2]

Equation 1.5.2 indicates that a plot of p\
D(tD/CD) vs. tD/CD

in log–log coordinates will produce a unit-slope straight line
during the wellbore storage-dominated flow period.

Similarly, during the radial infinite-acting flow period, the
pressure behavior is given by Equation 1.5.1 as:

pD = 1
2

[
ln
(

tD

CD

)
+ 0. 80907 + ln(CDe2s)

]

Differentiating with respect to tD/CD, gives:
d(pD)

d(tD/CD)
= p\

D = 1
2

[
1

(tD/CD)

]

Simplifying gives:

p\
D

(
tD

CD

)
= 1

2
[1.5.3]

This indicates that a plot of p\
D(tD/CD) vs. tD/CD on a log–

log scale will produce a horizontal line at p\
D(tD/CD) = 1

2
during the transient flow (radial infinite-acting) period. As
shown by Equations 1.5.2 and 1.5.3 the derivative plot of
p\

D(tD/CD) vs. tD/CD for the entire well test data will produce
two straight lines that are characterized by:

● a unit-slope straight line during the wellbore storage-
dominated flow;

● a horizontal line at p\
D(tD/CD) = 0. 5 during the transient

flow period.

The fundamental basis for the pressure derivative
approach is essentially based on identifying these two
straight lines that can be used as reference lines when
selecting the proper well test data interpreting model.

Bourdet et al. replotted the Gringarten type curve in
terms of p\

D(tD/CD) vs. tD/CD on a log–log scale as shown
in Figure 1.53. It shows that at the early time during the
wellbore storage-dominated flow, the curves follow a unit-
slope log–log straight line. When infinite-acting radial flow
is reached, the curves become horizontal at a value of
p\

D(tD/CD) = 0. 5 as indicated by Equation 1.5.3. In addition,
notice that the transition from pure wellbore storage to
infinite-acting behavior gives a “hump” with a height that
characterizes the value of the skin factor s.
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Figure 1.53 illustrates that the effect of skin is only man-
ifested in the curvature between the straight line due to
wellbore storage flow and the horizontal straight line due
to the infinite-acting radial flow. Bourdet et al. indicated
that the data in this curvature portion of the curve is not
always well defined. For this reason, the authors found it
useful to combine their derivative type curves with that of
the Gringarten type curve by superimposing the two type
curves, i.e., Figures 1.49 and 1.53, on the same scale. The
result of superimposing the two sets of type curves on the
same graph is shown in Figure 1.54. The use of the new
type curve allows the simultaneous matching of pressure-
change data and derivative data since both are plotted on the
same scale. The derivative pressure data provides, without
ambiguity, the pressure match and the time match, while the
CDe2s value is obtained by comparing the label of the match
curves for the derivative pressure data and pressure drop
data.

The procedure for analyzing well test data using the
derivative type curve is summarized by the following
steps:

Step 1. Using the actual well test data, calculate the pres-
sure difference �p and the pressure derivative
plotting functions as defined below for drawdown
and buildup tests.

For the drawdown tests, for every recorded draw-
down pressure point, i.e., flowing time t and a
corresponding bottom-hole flowing pressure pwf ,
calculate:

The pressure difference �p = pi − pwf

The derivative function t�p\ = −t
(

d(�p)
d(t)

)

[1.5.4]

For the buildup tests, for every recorded buildup
pressure point, i.e., shut-in time �t and correspond-
ing shut-in pressure pws, calculate:

The pressure difference �p = pws − pwf at �t = 0

The derivative function

�te�p\ = �t
(

tp + �t
�t

)[
d(�p)
d(�t)

]
[1.5.5]

The derivatives included in Equations 1.5.4 and
1.5.5, i.e., [dpwf /dt] and [d(�pws)/d(�t)], can be
determined numerically at any data point i by using
the central difference formula for evenly spaced
time or the three-point weighted average approx-
imation as shown graphically in Figure 1.55 and
mathematically by the following expressions:
Central differences:(

dp
dx

)
i
= pi+1 − pi−1

xi+1 − xi−1
[1.5.6]

Three-point weighted average:(
dp
dx

)
i
= (�p1/�x1)�x2 + (�p2/�x2)�x1

�x1 + �x2
[1.5.7]

It should be pointed out that selection of the
method of numerical differentiation is a problem
that must be considered and examined when apply-
ing the pressure derivative method. There are
many differentiation methods that use only two
points, e.g., backward difference, forward differ-
ence, and central difference formulas, and very
complex algorithms that utilize several pressure

points. It is important to try several different meth-
ods in order to find one which best smoothes the
data.

Step 2. On tracing paper with the same size log cycles
as the Bourdet–Gringarten type curve graph, i.e.,
Figure 1.54, plot:

● (�p) and (t�p\) as a function of the flow-
ing time t when analyzing drawdown test data.
Notice that there are two sets of data on the same
log–log graph as illustrated in Figure 1.56; the
first is the analytical solution and the second is
the actual drawdown test data.

● The pressure difference �p versus the equiv-
alent time �te and the derivative function
(�te�p\) versus the actual shut-in time �t.
Again, there are two sets of data on the same
graph as shown in Figure 1.56.

Step 3. Check the actual early-time pressure points, i.e.,
pressure difference versus time on a log–log scale,
for the unit-slope line. If it exists, draw a line
through the points and calculate the wellbore stor-
age coefficient C by selecting a point on the unit-
slope line as identified with coordinates of (t, �p) or
(�te, �p) and applying Equation 1.4.24 or Equation
1.4.25, as follows:

For drawdown C = QB
24

(
t

�p

)

For buildup C = QB
24

(
�te

�p

)

Step 4. Calculate the dimensionless wellbore storage coef-
ficient CD by applying Equation 1.4.26 and using the
value of C as calculated in Step 3. That is:

CD =
[

0. 8936
φhctr2

w

]
C

Step 5. Check the late-time data points on the actual pres-
sure derivative plot to see if they form a horizontal
line which indicates the occurrence of transient
(unsteady-state) flow. If it exists, draw a horizontal
line through these derivative plot points.

Step 6. Place the actual two sets of plots, i.e., the pres-
sure difference plot and derivative function plot, on
the Gringarten–Bourdet type curve of Figure 1.54,
and force a simultaneous match of the two plots
to Gringarten–Bourdet type curves. The unit-slope
line should overlay the unit slope on the type curve
and the late-time horizontal line should overlay the
horizontal line on the type cure which corresponds
to a value of 0.5. Note that it is convenient to match
both pressure and pressure derivative curves, even
though it is redundant. With the double match, a
high degree of confidence in the results is obtained.

Step 7. From the match of the best fit, select a match point
MP and record the corresponding values of the
following:

● From the Gringarten type curve, determine
(pD, �p)MP and the corresponding (tD/CD, t)MP
or(tD/CD, �te)MP.

● Record the value of the type curve dimension-
less group (CDe2s)MP from the Bourdet type
curves.

Step 8. Calculate the permeability by applying Equation
1.4.21:

k =
[

141. 2QBµ

h

] [
pD

�p

]
MP
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Figure 1.55 Differentiation algorithm using three points.
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Figure 1.56 Type curve matching. Data from Table 1.6 (Copyright ©1983 World Oil, Bourdet et al., May 1983).

Step 9. Recalculate the wellbore storage coefficient C
and CD by applying Equations 1.4.23 and
1.4.26, or:

For drawdown C =
[

0. 0002951kh
µ

]
(t)MP

(tD/CD)MP

For buildup C =
[

0. 0002951kh
µ

]
(�te)MP

(tD/CD)MP

with:

CD =
[

0. 8936
φhctr2

w

]
C

Compare the calculated values of C and CD with
those calculated in steps 3 and 4.
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Step 10. Calculate the skin factor s by applying Equation
1.4.27 and using the value of CD in step 9 and the
value of (CDe2s)MP in step 7, to give:

s = 1
2

ln
[

(CDe2s)MP

CD

]

Example 1.33 Using the same data of Example 1.31, ana-
lyze the given well test data using the pressure derivative
approach.

Solution

Step 1. Calculate the derivative function for every recorded
data point by applying Equation 1.5.5 or the approx-
imation method of Equation 1.5.6 as tabulated
Table 1.7 and shown graphically in Figure 1.57.

Table 1.7 Pressure derivative method. Data of Table 6.6
After Sabet, M.A. “Well Test Analysis” 1991, Gulf
Publishing Company

�t �p Slope �p\ �t�t\
(hr) (psi) (psi/hr) (psi/hr) (tp + �t)tp

0.00000 0.00 1017.52 – –
0.00417 4.24 777.72 897.62 3.74
0.00833 7.48 657.55 717.64 5.98
0.01250 10.22 834.53 746.04 9.33
0.01667 13.70 778.85 806.69 13.46
0.02083 16.94 839.33 809.09 16.88
0.02500 20.44 776.98 808.15 20.24
0.02917 23.68 778.85 777.91 22.74
0.03333 26.92 776.98 777.91 25.99
0.03750 30.16 358.94 567.96 21.35
0.04583 33.15 719.42 539.18 24.79
0.05000 36.15 780.72 750.07 37.63
0.05830 42.63 831.54 806.13 47.18
0.06667 49.59 630.25 730.90 48.95
0.07500 54.84 776.71 703.48 53.02
0.08333 61.31 1144.80 960.76 80.50
0.09583 75.62 698.40 921.60 88.88
0.10833 84.35 616.80 657.60 71.75
0.12083 92.06 698.40 657.60 80.10
0.13333 100.79 569.60 634.00 85.28
0.14583 107.91 703.06 636.33 93.70
0.16250 119.63 643.07 673.07 110.56
0.17917 130.35 672.87 657.97 119.30
0.19583 141.56 628.67 650.77 129.10
0.21250 152.04 641.87 635.27 136.91
0.22917 162.74 610.66 626.26 145.71
0.25000 175.46 610.03 610.34 155.13
0.29167 200.88 550.65 580.34 172.56
0.33333 223.82 580.51 565.58 192.71
0.37500 248.01 526.28 553.40 212.71
0.41667 269.94 449.11 487.69 208.85
0.45833 288.65 467.00 458.08 216.36
0.50000 308.11 467.00 467.00 241.28
0.54167 327.57 478.40 472.70 265.29
0.58333 347.50 341.25 409.82 248.36
0.62500 361.72 437.01 389.13 253.34
0.66667 379.93 377.10 407.05 283.43
0.70833 395.64 281.26 329.18 244.18
0.75000 407.36 399.04 340.15 267.87
0.81250 432.30 299.36 349.20 299.09
0.87500 451.01 259.36 279.36 258.70
0.93750 467.22 291.20 275.28 274.20
1.00000 485.42 231.68 261.44 278.87
1.06250 499.90 267.52 249.60 283.98

Table 1.7 continued

�t �p Slope �p\ �t�t\
(hr) (psi) (psi/hr) (psi/hr) (tp + �t)tp

1.12500 516.62 231.36 249.44 301.67
1.18750 531.08 219.84 225.60 289.11
1.25000 544.82 155.36 187.60 254.04
1.31250 554.53 191.84 173.60 247.79
1.37500 566.52 183.52 187.68 281.72
1.43750 577.99 151.84 167.68 264.14
1.50000 587.48 147.68 149.76 247.10
1.62500 605.94 106.00 126.84 228.44
1.75000 619.19 109.92 107.96 210.97
1.87500 632.93 103.76 106.84 225.37
2.00000 645.90 69.92 86.84 196.84
2.25000 663.38 59.84 64.88 167.88
2.37500 670.66 50.00 54.92 151.09
2.50000 677.11 44.84 47.42 138.31
2.75000 688.32 41.84 43.34 141.04
3.00000 698.78 35.80 38.82 139.75
3.25000 707.73 22.96 29.38 118.17
3.50000 713.47 38.80 30.88 133.30
3.75000 723.17 25.88 32.34 151.59
4.00000 729.64 16.92 21.40 108.43
4.25000 733.87 7.00 11.96 65.23
4.50000 735.62 7.00 7.00 40.95
4.75000 737.37 11.00 9.00 56.29
5.00000 740.12 12.96 11.98 79.87
5.25000 743.36 11.80 12.38 87.74
5.50000 746.31 8.24 10.02 75.32
5.75000 748.37 9.96 9.10 72.38
6.00000 750.86 7.00 8.48 71.23
6.25000 752.51 −1.84 2.58 22.84
6.75000 751.69 5.52 1.84 18.01
7.25000 754.45 4.46 4.99 53.66
7.75000 756.68 3.02 3.74 43.96
8.25000 758.19 3.50 3.26 41.69
8.75000 759.94 2.48 2.99 41.42
9.25000 761.18 2.02 2.25 33.65
9.75000 762.19 2.98 2.50 40.22

10.25000 763.68 1.48 2.23 38.48
10.75000 764.42 2.02 1.75 32.29
11.25000 765.43 1.48 1.75 34.45
11.75000 766.17 2.02 1.75 36.67
12.25000 767.18 1.48 1.75 38.94
12.75000 767.92 1.64 1.56 36.80
13.25000 768.74 0.86 1.25 31.19
13.75000 769.17 1.33 1.10 28.90
14.50000 770.17 1.00 1.17 33.27
15.25000 770.92 0.99 0.99 30.55
16.00000 771.66 1.00 0.99 32.85
16.75000 772.41 0.99 0.99 35.22
17.50000 773.15 0.68 0.83 31.60
18.25000 773.66 0.99 0.83 33.71
19.00000 774.40 0.35 0.67 28.71
19.75000 774.66 0.67 0.51 23.18
20.50000 775.16 1.00 0.83 40.43
21.25000 775.91 0.50 0.75 38.52
22.25000 776.41 0.48 0.49 27.07
23.25000 776.89 0.26 0.37 21.94
24.25000 777.15 0.51 0.38 24.43
25.25000 777.66 0.50 0.50 34.22
26.25000 778.16 0.24 0.37 26.71
27.25000 778.40 0.40a 0.32b 24.56c

28.50000 778.90 0.34 0.37 30.58
30.00000 779.41 25.98 13.16 1184.41
a(778. 9 − 778. 4)/(28. 5 − 27. 25) = 0. 40.
b(0. 40 + 0. 24)/2 = 0. 32.
c27. 25 − 0. 32 − (15 + 27. 25)/15 = 24. 56.
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Figure 1.57 Log–log plot. Data from Table 1.7.

Step 2. Draw a straight line with a 45◦ angle that fits the
early-time test points, as shown in Figure 1.57, and
select the coordinates of a point on the straight line,
to give (0.1, 70). Calculate C and CD:

C = QB�t
24�p

= 1740(1. 06)(0. 1)
(24)(70)

= 0. 00976

CD =
[

0. 8936
φhctr2

w

]
= 0. 8936(0. 00976)

(0. 25)(107)(4. 2 × 10−6)(0. 29)2

= 923

Step 3. Overlay the pressure difference data and pressure
derivative data over the Gringarten–Bourdet type
curve to match the type curve, as shown in Figure
1.57, with the following match points:

(CDe2s)MP = 4 × 109

(pD/�p)MP = 0. 0179
[
(tD/CD)/�t

]
MP = 14. 8

Step 4. Calculate the permeability k:

k =
[

141. 2QBµ

h

](
pD

�p

)
MP

=
[

141. 2(174)(1. 06)(2. 5)
107

]
(0. 0179)

= 10. 9 md

Step 5. Calculate C and CD:

C =
[

0. 0002951kh
µ

]
(�te)MP

(tD/CD)MP

=
[

0. 0002951(10. 9)(107)
2. 5

](
1

14. 8

)

= 0. 0093 bbl/psi

CD = 0. 8936C
φhctr2

w
= 0. 8936(0. 0093)

(0. 25)(107)(4. 2 × 10−6)(0. 29)2

= 879

Step 6. Calculate the skin factor s:

s = 1
2

ln
[

(CDe2s)MP

CD

]
= 1

2
ln
[

4 × 109

879

]
= 7. 7

Notice that the derivative function, as plotted in Figure
1.57, shows an appreciable amount of scatter points and
the horizontal line which signifies the radial infinite-acting
state is not clear. A practical limitation associated with the
use of the pressure derivative approach is the ability to
measure pressure transient data with sufficient frequency
and accuracy so that it can be differentiated. Generally, the
derivative function will show severe oscillations unless the
data is smoothed before taking the derivative.

Smoothing of any time series, such as pressure–time data,
is not an easy task, and unless it is done with care and know-
how, a portion of the data which is representative of the
reservoir (signal) could be lost. Signal filtering, smoothing,
and interpolation is a very advanced subject of science and
engineering, and unless the proper smoothing techniques
are applied to the field data, the results could be utterly
misleading.
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Figure 1.58 Log–log plot of a typical drawdown.

In addition to the reservoir heterogeneity, there are many
inner and outer reservoir boundary conditions that will
cause the transient state plot to deviate from the expected
semilog straight-line behavior during the infinite-acting
behavior of the test well, such as:

● faults and other impermeable flow barriers;
● partial penetration;
● phase separation and packer failures;
● interference;
● stratified layers;
● naturally and hydraulically fractured reservoirs;
● boundary;
● lateral increase in mobility.

The theory which describes the unsteady-state flow data
is based on the ideal radial flow of fluids in a homogeneous
reservoir system of uniform thickness, porosity, and perme-
ability. Any deviation from this ideal concept can cause the
predicted pressure to behave differently from the actual mea-
sured pressure. In addition, a well test response may have dif-
ferent behavior at different times during the test. In general,
the following four different time periods can be identified on
a log–log plot of �p vs. �t as shown in Figure 1.58:

(1) The wellbore storage effect is always the first flow regime
to appear.

(2) Evidence of the well and reservoir heterogeneities effect
will then appear in the pressure behavior response. This
behavior may be a result of multilayered formation, skin,
hydraulic fractures, or fissured formation.

(3) The pressure response exhibits the radial infinite-active
behavior and represents an equivalent homogeneous
system.

(4) The last period represents the boundary effects that may
occur at late time.

Thus, many types of flow regimes can appear before and
after the actual semilog straight line develops, and they

follow a very strict chronology in the pressure response.
Only global diagnosis, with identification of all successive
regimes present, will indicate exactly when conventional
analysis, e.g., the semilog plot technique, is justified. Recog-
nition of the above four different sequences of responses is
perhaps the most important element in well test analysis. The
difficulty arises from the fact that some of these responses
could be missing, overlapping, or undetectable through the
traditional graphical semilog straight-line approach. Selec-
tion of the correct reservoir interpretation model is a prerequi-
site and an important step before analyzing well test data and
interpreting the test results. With proper well test design and
sufficient test length for the response to be detected, most
pressure transient data can provide an unambiguous indi-
cator of the type and the associated characteristics of the
reservoir. However, many well tests cannot or are not run
for sufficient test duration to eliminate ambiguity in select-
ing the proper model to analyze test data. With a sufficient
length of well testing time, the reservoir response during
well testing is then used to identify a well test interpretation
model from which well and reservoir parameters, such as
permeability and skin, can be determined. This model iden-
tification requirement holds for both traditional graphical
analyses as well as for computer-aided techniques.

It should be pointed out that both the semilog and log–log
plots of pressure versus time data are often insensitive to
pressure changes and cannot be solely used as diagnostic
plots to find the interpretation model that best represents
the dynamic behavior of the well and reservoir during the
test. The pressure derivative type curve, however, is the
most definitive of the type curves for identifying the proper
interpretation model. The pressure derivative approach has
been applied with tremendous success as a diagnostic tool
for the following reasons:

● It magnifies small pressure changes.
● Flow regimes have clear characteristic shapes on the

pressure derivative plot.
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Figure 1.59 � p and its derivative vs. elapsed time.

● It clearly differentiates between responses of various
reservoir models; such as:
– dual-porosity behavior;
– naturally and hydraulically fractured reservoirs;
– closed boundary systems;
– constant pressure boundaries;
– faults and impermeable boundaries;
– infinite acting systems

● It identifies various reservoir behavior and conditions that
are not apparent in the traditional well analysis approach.

● It defines a clear recognizable pattern of various flow
periods.

● It improves the overall accuracy of test interpretation.
● It provides an accurate estimation of relevant reservoir

parameters.

Al-Ghamdi and Issaka (2001) pointed out that there are
three major difficulties during the process of identifying the
proper interpretation model:

(1) The limited number of available interpretation models
that is restricted to prespecified setting and idealized
conditions.

(2) The limitation of the majority of existing heterogeneous
reservoir models to one type of heterogeneities and its
ability to accommodate multiple heterogeneities within
the same model.

(3) The non-uniqueness problem where identical responses
are generated by completely different reservoir models
of totally different geological configuration.

Lee (1982) suggested that the best approach of identifying
the correct interpretation model incorporates the following
three plotting techniques:

(1) The traditional log–log type curve plot of pressure
difference �p versus time.

(2) The derivative type curve.

(3) The “specialized graph” such as the Horner plot for a
homogeneous system among other plots.

Based on knowledge of the shape of different flow
regimes, the double plot of pressure and its derivative is used
to diagnose the system and choose a well/reservoir model
to match the well test data. The specialized plots can then be
used to confirm the results of the pressure-derivative type
curve match. Therefore, after reviewing and checking the
quality of the test raw data, the analysis of well tests can be
divided into the following two steps:

(1) The reservoir model identification and various flow
regimes encountered during the tests are determined.

(2) The values of various reservoir and well parameters are
calculated.

1.5.1 Model identification
The validity of the well test interpretation is totally depen-
dent on two important factors, the accuracy of the measured
field data and the applicability of the selected interpreta-
tion model. Identifying the correct model for analyzing the
well test data can be recognized by plotting the data in sev-
eral formats to eliminate the ambiguity in model selection.
Gringarten (1984) pointed out that the interoperation model
consists of three main components that are independent of
each other and dominate at different times during the test
and they follow the chronology of the pressure response.
These are:

(I) Inner boundaries. Identification of the inner boundaries
is performed on the early-time test data. There are only
five possible inner boundaries and flow conditions in
and around the wellbore:
(1) wellbore storage;
(2) skin;
(3) phase separation;
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(4) partial penetration;
(5) fracture.

(II) Reservoir behavior. Identification of the reservoir is
performed on the middle-time data during the infinite
acting behavior and includes two main types:
(1) homogeneous;
(2) heterogeneous.

(III) Outer boundaries. Identification of the outer boundaries
is performed on the late-time data. There are two outer
boundaries:
(1) no-flow boundary;
(2) constant-pressure boundary.

Each of the above three components exhibits a distinctly
different characteristic that can be identified separately, and
described by different mathematical forms.

1.5.2 Analysis of early-time test data
Early-time data is meaningful and can be used to obtain
unparalleled information on the reservoir around the well-
bore. During this early-time period, wellbore storage, frac-
tures, and other inner boundary flow regimes are the
dominant flowing conditions and exhibit a distinct differ-
ent behavior. These inner boundary conditions and their
associated flow regimes are briefly discussed below.

Wellbore storage and skin
The most effective procedure for analyzing and under-
standing the entire recorded transient well test data is by
employing the log–log plot of the pressure difference �p
and its derivative �p\ versus elapsed time. Identification of
the inner boundaries is performed on early-time test data and
starts with the wellbore storage. During this time when the
wellbore storage dominates, �p and its derivative �p\ are
proportional to the elapsed time and produce a 45◦ straight
line on the log–log plot, as shown in Figure 1.59. On the
derivative plot, the transition from the wellbore storage to
the infinite-acting radial flow gives a “hump” with a maximum
that indicates wellbore damage (positive skin). Conversely,
the absence of a maximum indicates a non-damaged or
stimulated well.

Phase separation in tubing
Stegemeier and Matthews (1958), in a study of anomalous
pressure buildup behavior, graphically illustrated and dis-
cussed the effects of several reservoir conditions on the
Horner straight-line plot, as shown in Figure 1.60. The prob-
lem occurs when gas and oil are segregated in the tubing
and annulus during shut-in, which can cause the wellbore
pressure to increase. This increase in the pressure could
exceed the reservoir pressure and force the liquid to flow
back into the formation with a resulting decrease in the well-
bore pressure. Stegemeier and Matthews investigated this
“humping” effect, as shown in Figure 1.60, which means
that bottom-hole pressure builds up to a maximum and
then decreases. They attributed this behavior to the rise of
bubbles of gas and the redistribution of fluids within the
wellbore. Wells which show the humping behavior have the
following characteristics:

● They are completed in moderately permeable formations
with a considerable skin effect or restriction to flow near
the wellbore.

● The annulus is packed off.

The phenomenon does not occur in tighter formations
because the production rate is small and thus there is ample
space for the segregated gas to move into and expand. Simi-
larly, if there is no restriction to flow near the wellbore, fluid
can flow easily back into the formation to equalize the pres-
sure and prevent humping. If the annulus is not packed off,

log [ (t + ∆t)/∆t ]

p W
S

1

Figure 1.60 Phase separation in tubing (After
Stegemeier and Matthews, 1958).

bubble rise in the tubing will simply unload liquid into the
casing–tubing annulus rather than displace the fluid back
into the formation.

Stegemeier and Matthews also showed how leakage
through the wellbore between dually completed zones at dif-
ferent pressure can cause an anomalous hump in measured
pressures. When this leakage this occurs, the pressure dif-
ferential between zones becomes small, allowing fluid to
flow, and causes a hump in the pressure observed in the
other zone.

Effect of partial penetration
Depending on the type of wellbore completion configura-
tion, it is possible to have spherical or hemispherical flow
near the wellbore. If the well penetrates the reservoir for
a short distance below the cap rock, the flow will be hemi-
spherical. When the well is cased through a thick pay zone
and only a small part of the casing is perforated, the flow
in the immediate vicinity of the wellbore will be spherical.
Away from the wellbore, the flow is essentially radial. How-
ever, for a short duration of transient test, the flow will remain
spherical during the test.

In the case of a pressure buildup test of a partially depleted
well, Culham (1974) described the flow by the following
expression:

pi − pws = 2453QBµ

k2/3

[
1√
�t

− 1√
tp + �t

]

This relationship suggests that a plot of (pi − pws) vs.
[1/

√
�t − 1/

√
tp + �t] on a Cartesian scale would be a

straight line that passes through the origin with a slope of
m as given by:

For spherical flow m = 2453QBµ

k2/3

For hemispherical flow m = 1226QBµ

k2/3

with the total skin factor s defined by:

s = 34. 7rew

√
φµct

k

[
(pws)�t − pwf at �t=0

m
+ 1√

�t

]
− 1

TLFeBOOK



1/82 WELL TESTING ANALYSIS

The dimensionless parameter rew is given by:

For spherical flow rew = hp

2 ln(hp/rw)

For hemispherical flow rew = hp

ln(2hp/rw)
where:

(pws)�t = the shut-in pressure at any shut-in time �t,
hours

hp = perforated length, ft
rw = wellbore radius, ft

An important factor in determining the partial penetration
skin factor is the ratio of the horizontal permeability kh to the
vertical permeability kv , i.e., kh/kv . If the vertical permeabil-
ity is small, the well will tend to behave as if the formation
thickness h is equal to the completion thickness hP. When the
vertical permeability is high, the effect of the partial penetra-
tion is to introduce an extra pressure drop near the wellbore.
This extra pressure drop will cause a large positive skin fac-
tor or smaller apparent wellbore radius when analyzing well
test data. Similarly, opening only a few holes in the casing can
also cause additional skin damage. Saidikowski (1979) indi-
cated that the total skin factor s as calculated from a pressure
transient test is related to the true skin factor caused by for-
mation damage sd and skin factor due to partial penetration
sP by the following relationship:

s =
(

h
hP

)
sd + sP

Saidikowski estimated the skin factor due to partial pene-
tration from the following expression:

sP =
(

h
hP

− 1
)
ln


 h

rw

√
kh

kv


− 2




where:

rw = wellbore radius, ft
hp = perforated interval, ft
h = total thickness, ft

kh = horizontal permeability, md
kv = vertical permeability, md

1.5.3 Analysis of middle-time test data
Identification of the basic reservoir characteristics is per-
formed during the reservoir infinite-acting period and by
using the middle-time test data. Infinite-acting flow occurs
after the inner boundary effects have disappeared (e.g.,
wellbore storage, skin, etc.) and before the outer boundary
effects have been felt. Gringarten et al. (1979) suggested
that all reservoir behaviors can be classified as homoge-
neous or heterogeneous systems. The homogeneous sys-
tem is described by only one porous medium that can be
characterized by average rock properties through the con-
ventional well testing approach. Heterogeneous systems are
subclassified into the following two categories:

(1) double porosity reservoirs;
(2) multilayered or double-permeability reservoirs.

A brief discussion of the above two categories is given
below.

Naturally fractured (double-porosity) reservoirs
Naturally fractured reservoirs are typically characterized
by a double-porosity behavior; a primary porosity that rep-
resents the matrix φm and a secondary porosity φf that
represents the fissure system. Basically, “fractures” are cre-
ated hydraulically for well stimulation while “fissures” are

considered natural fractures. The double- or dual-porosity
model assumes two porous regions of distinctly different
porosities and permeabilities within the formation. Only
one, the “fissure system,” has a permeability kf high enough
to produce to the well. The matrix system does not pro-
duce directly to the well but acts as a source of fluid to the
fissure system. A very important characteristic of the double-
porosity system is the nature of the fluid exchange between
the two distinct porous systems. Gringarten (1984) pre-
sented a comprehensive treatment and an excellent review
of the behavior of fissured reservoirs and the appropriate
methodologies of analyzing well test data.

Warren and Root (1963) presented extensive theoreti-
cal work on the behavior of naturally fractured reservoirs.
They assumed that the formation fluid flows from the matrix
system into the fractures under pseudosteady-state condi-
tions with the fractures acting like conduits to the wellbore.
Kazemi (1969) proposed a similar model with the main
assumption that the interporosity flow occurs under tran-
sient flow. Warren and Root indicated that two characteristic
parameters, in addition to permeability and skin, control the
behavior of double-porosity systems. These are:

(1) The dimensionless parameter ω that defines the storativ-
ity of the fractures as a ratio to that of the total reservoir.
Mathematically, it is given by:

ω = (φhct )f

(φhct )f + m
= (φhct )f

(φhct )f + (φhct )m
[1.5.8]

where:

ω = storativity ratio
h = thickness
ct = total compressibility, psi−1

φ = porosity

The subscripts f and m refer to the fissure and matrix
respectively. A typical range of ω is 0.1 to 0.001.

(2) The second parameter λ is the interporosity flow coef-
ficient which describes the ability of the fluid to flow
from the matrix into the fissures and is defined by the
following relationship:

λ = α

(
km

kf

)
r2

w [1.5.9]

where:

λ = interporosity flow coefficient
k = permeability

rw = wellbore radius

The factor α is the block-shape parameter that depends
on the geometry and the characteristic shape of the
matrix–fissures system and has the dimension of a recip-
rocal of the area defined by the following expression:

α = A
Vx

where:

A = surface area of the matrix block, ft2

V = volume of the matrix block
x = characteristic length of the matrix block, ft

Most of the proposed models assume that the matrix–
fissures system can be represented by one the following
four geometries:

(a) Cubic matrix blocks separated by fractures with λ as
given by:

λ = 60
l2
m

(
km

kf

)
r2

w

where lm is the length of a block side.
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Figure 1.61 Pressure drawdown according to the model by Warren and Root (Copyright ©1969 SPE, Kazemi, SPEJ,
Dec. 1969).

(b) Spherical matrix blocks separated by fractures with
λ as given by:

λ = 15
r2

m

(
km

kf

)
r2

w

where rm is the radius of the sphere.
(c) Horizontal strata (rectangular slab) matrix blocks

separated by fractures with λ as given by:

λ = 12
h2

f

(
km

kf

)
r2

w

where hf is the thickness of an individual fracture or
high-permeability layer.

(d) Vertical cylinder matrix blocks separated by frac-
tures with λ as given by:

λ = 8
r2

m

(
km

kf

)
r2

w

where rm is the radius of the each cylinder

In general, the value of the interporosity flow param-
eter ranges between 10−3 and 10−9. Cinco and Samaniego
(1981) identified the following extreme interporosity flow
conditions:

● Restricted interporosity flow which corresponds to a high
skin between the least permeable media (matrix) and the
highest permeable media (fissures) and is mathemati-
cally equivalent to the pseudosteady-state solution, i.e.,
the Warren and Root model.

● Unrestricted interporosity flow that corresponds to zero
skin between the most and highest permeable media and
is described be the unsteady-state (transient) solution.

Warren and Root proposed the first identification method
of the double-porosity system, as shown by the drawdown

semilog plot of Figure 1.61. The curve is characterized by
two parallel straight lines due to the two separate porosities in
the reservoir. Because the secondary porosity (fissures) has
the greater transmissivity and is connected to the wellbore, it
responds first as described by the first semilog straight line.
The primary porosity (matrix), having a much lower trans-
missivity, responds much later. The combined effect of the
two porosities gives rise to the second semilog straight line.
The two straight lines are separated by a transition period
during which the pressure tends to stabilize.

The first straight line reflects the transient radial flow
through the fractures and, thus, its slope is used to deter-
mine the system permeability–thickness product. However,
because the fracture storage is small, the fluid in the frac-
tures is quickly depleted with a combined rapid pressure
decline in the fractures. This pressure drop in the fracture
allows more fluid to flow from the matrix into the fractures,
which causes a slowdown in the pressure decline rate (as
shown in Figure 1.61 by the transition period). As the matrix
pressure approaches the pressure of the fractures, the pres-
sure is stabilized in the two systems and yields the second
semilog straight line. It should be pointed out that the first
semilog straight line may be shadowed by wellbore storage
effects and might not be recognized. Therefore, in practice,
only parameters characterizing the homogeneous behavior
of the total system kf h can be obtained.

Figure 1.62 shows the pressure buildup data for a nat-
urally fractured reservoir. As for the drawdown, wellbore
storage effects may obscure the first semilog straight line.
If both semilog straight lines develop, analysis of the total
permeability–thickness product is estimated from the slope
m of either straight line and the use of Equation 1.3.8, or:

(kf h) = 162. 6QBµ

m
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Figure 1.62 Buildup curve from a fractured reservoir (After Warren and Root, 1963).

The skin factor s and the false pressure p∗ are calculated as
described by using the second straight line. Warren and Root
indicated that the storativity ratio ω can be determined from
the vertical displacement between the two straight lines,
identified as �p in Figures 1.61 and 1.62, by the following
expression:
ω = 10(−�p/m) [1.5.10]

Bourdet and Gringarten (1980) indicated that by drawing
a horizontal line through the middle of the transition curve
to intersect with both semilog straight lines, as shown in
Figures 1.61 and 1.62, the interporosity flow coefficient λ

can be determined by reading the corresponding time at the
intersection of either of the two straight lines, e.g. t1 or t2, and
applying the following relationships:
In drawdown tests:

λ =
[

ω

1 − ω

] [
(φhct )mµr2

w

1. 781kf t1

]
=
[

1
1 − ω

] [
(φhct )mµr2

w

1. 781kf t2

]

[1.5.11]
In buildup tests:

λ =
[

ω

1 − ω

] [
(φhct )mµr2

w

1. 781kf tp

](
tp + �t

�t

)
1

or:

λ =
[

1
1 − ω

] [
(φhct )mµr2

w

1. 781kf tp

](
tp + �t

�t

)
2

[1.5.12]

where:

kf = permeability of the fracture, md
tp = producing time before shut-in, hours
rw = wellbore radius, ft
µ = viscosity, cp

The subscripts 1 and 2 (e.g., t1) refer to the first and second
line time intersection with the horizontal line drawn through
the middle of the transition region pressure response during
drawdown or buildup tests.

The above relationships indicate that the value of λ is
dependent on the value of ω. Since ω is the ratio of fracture
to matrix storage, as defined in terms of the total isother-
mal compressibility coefficients of the matrix and fissures
by Equation 1.5.8, thus:

ω = 1

1 +
[

(φh)m

(φh)f

(ct )m

(ct )f

]

it suggests that ω is also dependent on the PVT properties
of the fluid. It is quite possible for the oil contained in the
fracture to be below the bubble point while the oil contained
in the matrix is above the bubble point. Thus, ω is pressure
dependent and, therefore, λ is greater than 10, so the level
of heterogeneity is insufficient for dual porosity effects to be
of importance and the reservoir can be treated with a single
porosity.

Example 1.34 The pressure buildup data as presented
by Najurieta (1980) and Sabet (1991) for a double-porosity
system is tabulated below:

�t (hr) pws (psi) tp+�t
�t

0.003 6617 31 000 000
0.017 6632 516 668
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Figure 1.63 Semilog plot of the buildup test data (After Sabet, M. A. Well Test Analysis 1991, Gulf Publishing
Company).

�t (hr) pws (psi) tp+�t
�t

0.033 6644 358 334
0.067 6650 129 168
0.133 6654 64 544
0.267 6661 32 293
0.533 6666 16 147
1.067 6669 8 074
2.133 6678 4 038
4.267 6685 2 019
8.533 6697 1 010

17.067 6704 506
34.133 6712 253

The following additional reservoir and fluid properties are
available:

pi = 6789. 5 psi, pwf at �t=0 = 6352 psi,

Qo = 2554 STB/day, Bo = 2. 3 bbl/STB,

µo = 1 cp, tp = 8611 hours

rw = 0. 375 ft, ct = 8. 17 × 10−6 psi−1, φm = 0. 21

km = 0. 1 md, hm = 17 ft

Estimate ω and λ.

Solution

Step 1. Plot pws vs. (tp +�t)/�t on a semilog scale as shown
in Figure 1.63.

Step 2. Figure 1.63 shows two parallel semilog straight lines
with a slope of m = 32 psi/cycle.

Step 3. Calculate (kf h) from the slope m:

(kf h) = 162. 6QoBoµo

m
= 162. 6(2556)(2. 3)(1. 0)

32

= 29 848. 3 md ft

and:

kf = 29848. 3
17

= 1756 md

Step 4. Determine the vertical distance �p between the two
straight lines:

�p = 25 psi

Step 5. Calculate the storativity ratio ω from Equation 1.5.10:

ω = 10−(�p/m) = 10−(25/32) = 0. 165

Step 6. Draw a horizontal line through the middle of the
transition region to intersect with the two semilog
straight lines. Read the corresponding time at the
second intersection, to give:(

tp + �t
�t

)
2

= 20000

Step 7. Calculate λ from Equation 1.5.12:

λ =
[

1
1 − ω

] [
(φhct )mµr2

w

1. 781kf tp

](
tp + �t

�t

)
2

=
[

1
1 − 0. 165

]

×
[

(0. 21)(17)(8. 17 × 10−6)(1)(0. 375)2

1. 781(1756)(8611)

]
(20000)

= 3. 64 × 10−9

It should be noted that pressure behavior in a naturally
fractured reservoir is similar to that obtained in a layered
reservoir with no crossflow. In fact, in any reservoir system
with two predominant rock types, the pressure buildup
behavior is similar to that of Figure 1.62.

Gringarten (1987) pointed out that the two straight lines
on the semilog plot may or may not be present depending
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derivative plot.

on the condition of the well and duration of the test. He
concluded that the semilog plot is not an efficient or suf-
ficient tool for identifying double-porosity behavior. In the
log–log plot, as shown in Figure 1.62, the double-porosity
behavior yields an S-shaped curve. The initial portion of the
curve represents the homogeneous behavior resulting from
depletion in the most permeable medium, e.g., fissures. A
transition period follows and corresponds to the interporos-
ity flow. Finally, the last portion represents the homogeneous
behavior of both media when recharge from the least per-
meable medium (matrix) is fully established and pressure
is equalized. The log–log analysis represents a significant
improvement over conventional semilog analysis for identi-
fying double-porosity behavior. However, S-shape behavior
is difficult to see in highly damaged wells and well behav-
ior can then be erroneously diagnosed as homogeneous.

Furthermore, a similar S-shape behavior may be found in
irregularly bounded well drainage systems.

Perhaps the most efficient means for identifying double-
porosity systems is the use of the pressure derivative plot.
It allows unambiguous identification of the system, provided
that the quality of the pressure data is adequate and, more
importantly, an accurate methodology is used in calculating
pressure derivatives. As discussed previously, the pressure
derivative analysis involves a log–log plot of the derivative
of the pressure with respect to time versus elapsed time.
Figure 1.64 shows the combined log–log plot of pressure
and derivative versus time for a dual-porosity system. The
derivative plot shows a “minimum” or a “dip” on the pressure
derivative curve caused by the interporosity flow during the
transition period. The “minimum” is between two horizon-
tal lines; the first represents the radial flow controlled by
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Figure 1.65 Type curve matching (Copyright ©1984 World Oil, Bourdet et al., April 1984).

the fissures and the second describes the combined behav-
ior of the double-porosity system. Figure 1.64 shows, at early
time, the typical behavior of wellbore storage effects with the
deviation from the 45◦ straight line to a maximum represent-
ing a wellbore damage. Gringarten (1987) suggested that
the shape of the minimum depends on the double-porosity
behavior. For a restricted interporosity flow, the minimum
takes a V-shape, whereas unrestricted interporosity yields
an open U-shaped minimum.

Based on Warren and Root’s double-porosity theory
and the work of Mavor and Cinco (1979), Bourdet and
Gringarten (1980) developed specialized pressure type
curves that can be used for analyzing well test data in dual-
porosity systems. They showed that double-porosity behav-
ior is controlled by the following independent variables:

● pD
● tD/CD
● CDe2s

● ω
● λe−2s

with the dimensionless pressure pD and time tD as defined
below:

pD =
[

kf h
141. 2QBµ

]
�p

tD = 0. 0002637kf t
[(φµct )f + (φµct )m]µr2

w
= 0. 0002637kf t

(φµct )f + mµr2
w

where:

k = permeability, md
t = time, hours
µ = viscosity, cp

rw = wellbore radius, ft

and subscripts:

f = fissure
m = matrix

f + m = total system
D = dimensionless

Bourdet et al. (1984) extended the practical applications
of these curves and enhanced their use by introducing the
pressure derivative type curves to the solution. They devel-
oped two sets of pressure derivative type curves as shown
in Figures 1.65 and 1.66. The first set, i.e., Figure 1.65, is
based on the assumption that the interporosity flow obeys
the pseudosteady-state flowing condition and the other set
(Figure 1.66) assumes transient interporosity flow. The use
of either set involves plotting the pressure difference �p and
the derivative function, as defined by Equation 1.5.4 for draw-
down tests or Equation 1.5.5 for buildup tests, versus time
with same size log cycles as the type curve. The controlling
variables in each of the two type curve sets are given below.
First type curve set: pseudo steady-state interporosity
flow The actual pressure response, i.e., pressure difference
�p, is described by the following three component
curves:

(1) At early times, the flow comes from the fissures (most
permeable medium) and the actual pressure difference
plot, i.e., �p curve, matches one of the homogeneous
curves that is labeled (CDe2s) with a corresponding value
of (CDe2s)f that describes the fissure flow. This value is
designated as [(CDe2s)f ]M .

(2) As the pressure difference response reaches the tran-
sition regime, �p deviates from the CDe2s curve and
follows one of the transition curves that describes this
flow regime by λe−2s , designated as [λe−2s]M .

(3) Finally, the pressure difference response leaves the tran-
sition curve and matches a new CDe2s curve below
the first one with a corresponding value of (CDe2s)f + m
that describes the total system behavior, i.e., matrix and
fissures. This value is recorded as [(CDe2s)f + m]M .

On the pressure derivative response, the storativity ratio
ω defines the shape of the derivative curve during the
transition regime that is described by a “depression” or a
“minimum.” The duration and depth of the depression are
linked by the value of ω; a small ω produces a long and
therefore deep transition. The interporosity coefficient λ is
the second parameter defining the position of the time axis
of the transition regime. A decrease of λ value moves the
depression to the right side of the plot.
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Figure 1.66 Type curve matching (Copyright ©1984 World Oil, Bourdet et al., April 1984).

As shown in Figure 1.65, the pressure derivative plots
match on four component curves:

(1) The derivative curve follows the fissure flow curve
[(CDe2s)f ]M .

(2) The derivative curve reaches an early transition period,
expressed by a depression and described by an early
transition curve [λ(CD)f + m/ω(1 − ω)]M .

(3) The derivative pressure curve then matches a late
transition curve labeled [λ(CD)f + m/(1 − ω)]M .

(4) The total system behavior is reached on the 0.5 line.

Second type curve set: transient interporosity flow As
developed by Bourdet and Gringarten (1980) and expanded
by Bourdet et al. (1984) to include the pressure derivative
approach, this type curve is built in the same way as for the
pseudosteady-state interporosity flow. As shown in Figure
1.66, the pressure behavior is defined by three component
curves, (CDe2s)f , β\, and (CDe2s)f + m. The authors defined
β\ as the interporosity dimensionless group and given by:

β\ = δ

[
(CDe2s)f + m

λe−2s

]

where the parameter δ is the shape coefficient with assigned
values as given below:

δ = 1. 0508 for spherical blocks
δ = 1. 8914 for slab matrix blocks

As the first fissure flow is short-lived with transient inter-
porosity flow models, the (CDe2s)f curves are not seen in
practice and therefore have not been included in the deriva-
tive curves. The dual-porosity derivative response starts on
the derivative of a β\ transition curve, then follows a late
transition curve labeled λ(CD)f + m/(1 − ω)2 until it reaches
the total system regime on the 0.5 line.

Bourdet (1985) points out that the pressure derivative
responses during the transition flow regime are very differ-
ent between the two types of double-porosity model. With the
transient interporosity flow solutions, the transition starts
from early time and does not drop to a very low level.
With pseudosteady-state interporosity flow, the transition
starts later and the shape of the depression is much more
pronounced. There is no lower limit for the depth of the
depression when the flow from the matrix to the fissures
follows the pseudosteady-state model, whereas for the inter-
porosity transient flow the depth of the depression does not
exceed 0.25.

In general, the matching procedure and reservoir param-
eters estimation as applied to the type-curve of Figure 1.66
can be summarized by the following steps:

Step 1. Using the actual well test data, calculate the pressure
difference �p and the pressure derivative plotting
functions as defined by Equation 1.5.4 for drawdown
or Equation 1.5.5 for buildup tests, i.e.,:
For drawdown tests:

The pressure difference �p = pi − pwf

The derivative function t�p\ = −t
(

d(�p)
d(t)

)

For buildup tests:

The pressure difference �p = pws − pwf at �t=0

The derivative function �te�p\ = �t
(

tp + �t
�t

)[
d(�p)
d(�t)

]

Step 2. On tracing paper with the same size log cycles as in
Figure 1.66, plot the data of step 1 as a function of
flowing time t for drawdown tests or equivalent time
�te for buildup tests.

TLFeBOOK



WELL TESTING ANALYSIS 1/89

Step 3. Place the actual two sets of plots, i.e., �p and deriva-
tive plots, on Figure 1.65 or Figure 1.66 and force a
simultaneous match of the two plots to Gringarten–
Bourdet type curves. Read the matched derivative
curve [λ(CD)f + m/(1 − ω)2]M .

Step 4. Choose any point and read its coordinates on both
Figures to give:

(�p, pD)MP and (t or �te, tD/CD)MP

Step 5. With the match still maintained, read the values
of the curves labeled (CDe2s) which match the ini-
tial segment of the curve [(CDe2s)f ]M and the final
segment [(CDe2s)f +m]M of the data curve.

Step 6. Calculate the well and reservoir parameters from the
following relationships:

ω = [(CDe2s)f + m]M

[(CDe2s)f ]M
[1.5.13]

kf h = 141. 2QBµ

(
pD

�p

)
MP

md ft [1.5.14]

C =
[

0. 000295kf h
µ

]
(�t)MP

(CD/CD)MP
[1.5.15]

(CD)f + m = 0. 8926C
φcthr2

w
[1.5.16]

s = 0. 5 ln
[ [(CDe2s)f + m]M

(CD)f + m

]
[1.5.17]

λ =
[

λ(CD)f + m

(1 − ω)2

]
M

(1 − ω)2

(CD)f + m
[1.5.18]

The selection of the best solution between the
pseudosteady-state and the transient interporosity flow
is generally straightforward; with the pseudosteady-state
model, the drop of the derivative during transition is a
function of the transition duration. Long transition regimes,
corresponding to small ω values, produce derivative levels
much smaller than the practical 0.25 limit of the transient
solution.

The following pressure buildup data as given by Bour-
det et al. and reported conveniently by Sabet (1991) is
used below as an example to illustrate the use of pressure
derivative type curves.

Example 1.35 Table 1.8 shows the pressure buildup and
pressure derivative data for a naturally fractured reservoir.
The following flow and reservoir data is also given:

Q = 960 STB/day, Bo = 1. 28 bbl/STB,
ct = 1 × 10−5 psi−1, φ = 0. 007,
µ = 1 cp, rw = 0. 29 ft, h = 36 ft

It is reported that the well was opened to flow at a rate of
2952 STB/day for 1.33 hours, shut-in for 0.31 hours, opened
again at the same rate for 5.05 hours, closed for 0.39 hours,
opened for 31.13 hours at the rate of 960 STB/day, and then
shut-in for the pressure buildup test.

Analyze the buildup data and determine the well and
reservoir parameters assuming transient interporosity flow.

Solution

Step 1. Calculate the flowing time tp as follows:
Total oil produced = NP

= 2952
4

[1. 33 + 5. 05] + 960
24

31. 13 � 2030 STB

tp = (24)(2030)
960

= 50. 75 hours

Table 1.8 Pressure Buildup Test, Naturally Fractured
Reservoir. After Sabet, M. A. “Well Test Analysis” 1991,
Gulf Publishing Company

�t �pws tp + �t
�t

Slope �p\ tp + �t
tp

(hr) (psi) (psi/hr) (psi)

0.00000E+00 0.000 3180.10
3.48888E−03 11.095 14 547.22 1727.63 8.56
9.04446E−03 20.693 5 612.17 847.26 11.65
1.46000E−02 25.400 3 477.03 486.90 9.74
2.01555E−02 28.105 2 518.92 337.14 8.31
2.57111E−02 29.978 1 974.86 257.22 7.64
3.12666E−02 31.407 1 624.14 196.56 7.10
3.68222E−02 32.499 1 379.24 159.66 6.56
4.23777E−02 33.386 1 198.56 127.80 6.10
4.79333E−02 34.096 1 059.76 107.28 5.64
5.90444E−02 35.288 860.52 83.25 5.63
7.01555E−02 36.213 724.39 69.48 5.36
8.12666E−02 36.985 625.49 65.97 5.51
9.23777E−02 37.718 550.38 55.07 5.60
0.10349 38.330 491.39 48.83 5.39
0.12571 39.415 404.71 43.65 5.83
0.14793 40.385 344.07 37.16 5.99
0.17016 41.211 299.25 34.38 6.11
0.19238 41.975 264.80 29.93 6.21
0.21460 42.640 237.49 28.85 6.33
0.23682 43.281 215.30 30.96 7.12
0.25904 43.969 196.92 25.78 7.39
0.28127 44.542 181.43 24.44 7.10
0.30349 45.085 168.22 25.79 7.67
0.32571 45.658 156.81 20.63 7.61
0.38127 46.804 134.11 18.58 7.53
0.43682 47.836 117.18 17.19 7.88
0.49238 48.791 104.07 16.36 8.34
0.54793 49.700 93.62 15.14 8.72
0.60349 50.541 85.09 12.50 8.44
0.66460 51.305 77.36 12.68 8.48
0.71460 51.939 72.02 11.70 8.83
0.77015 52.589 66.90 11.14 8.93
0.82571 53.208 62.46 10.58 9.11
0.88127 53.796 58.59 10.87 9.62
0.93682 54.400 55.17 8.53 9.26
0.99238 54.874 52.14 10.32 9.54
1.04790 55.447 49.43 7.70 9.64
1.10350 55.875 46.99 8.73 9.26
1.21460 56.845 42.78 7.57 10.14
1.32570 57.686 39.28 5.91 9.17
1.43680 58.343 36.32 6.40 9.10
1.54790 59.054 33.79 6.05 9.93
1.65900 59.726 31.59 5.57 9.95
1.77020 60.345 29.67 5.44 10.08
1.88130 60.949 27.98 4.74 9.93
1.99240 61.476 26.47 4.67 9.75
2.10350 61.995 25.13 4.34 9.87
2.21460 62.477 23.92 3.99 9.62
2.43680 63.363 21.83 3.68 9.79
2.69240 64.303 19.85 3.06a 9.55b

2.91460 64.983 18.41 3.16 9.59
3.13680 65.686 17.18 2.44 9.34
3.35900 66.229 16.11 19.72 39.68
a(64. 983 − 64. 303)/(2. 9146 − 2. 69240) = 3. 08.
b[(3. 68 + 3. 06)/2] × 19. 85 × 2. 692402/50. 75 = 9. 55.
Adapted from Bourdet et al. (1984).

Step 2. Confirm the double-porosity behavior by construct-
ing the Horner plot as shown in Figure 1.67. The
graph shows the two parallel straight lines confirm-
ing the dual-porosity system.
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Figure 1.67 The Horner plot; data from Table 1.8 (After Sabet, M. A. Well Test Analysis 1991, Gulf Publishing
Company).

Step 3. Using the same grid system of Figure 1.66, plot
the actual pressure derivative versus shut-in time as
shown in Figure 1.68(a) and �pws versus time (as
shown in Figure 1.68(b)). The 45◦ line shows that the
test was slightly affected by the wellbore storage.

Step 4. Overlay the pressure difference and pressure deriva-
tive plots over the transient interporosity type curve,
as shown in Figure 1.69, to give the following
matching parameters:

[
pD

�p

]
MP

= 0. 053

[
tD/CD

�t

]
MP

= 270

[
λ(CD)f + m

(1 − ω)2

]
M

= 0. 03

[(CDe2s)f ]M = 33. 4

[(CDe2s)f + m]M = 0. 6

Step 5. Calculate the well and reservoir parameters by
applying Equations 1.5.13 through 1.5.18 to give:

ω = [(CDe2s)f + m]M

[(CDe2s)f ]M
= 0. 6

33. 4
= 0. 018

Kazemi (1969) pointed out that if the vertical sepa-
ration between the two parallel slopes �p is less the
100 psi, the calculation of ω by Equation 1.5.10 will
produce a significant error in its values. Figure 1.67

shows that �p is about 11 psi and Equation 1.5.10
gives an erroneous value of:

ω = 10−(�p/m) = 10−(11/22) = 0. 316

Also:

kf h = 141. 2QBµ

(
pD

�p

)
MP

= 141. 2(960)(1)(1. 28)(0. 053) = 9196 md ft

C =
[

0. 000295kf h
µ

]
(�t)MP

(CD/CD)MP

= (0. 000295)(9196)
(1. 0)(270)

= 0. 01 bbl/psi

(CD)f + m = 0. 8926C
φcthr2

w

= (0. 8936)(0. 01)
(0. 07)(1 × 10−5)(36)90. 29)2 = 4216

s = 0. 5 ln
[ [(CDe2s)f + m]M

(CD)f + m

]

= 0. 5 ln
[

0. 6
4216

]
= −4. 4

λ =
[

λ(CD)f + m

(1 − ω)2

]
M

(1 − ω)2

(CD)f + m

= (0. 03)
[

(1 − 0. 018)2

4216

]
= 6. 86 × 10−6
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Figure 1.68(b) Log–log plot of � p vs. �te (After Sabet, M. A. Well Test Analysis 1991, Gulf Publishing Company).
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Figure 1.69 Type curve matching (Copyright ©1984 World Oil, Bourdet et al., April 1984).

Layered reservoirs
The pressure behavior of a no-crossflow multilayered reser-
voir with communication only at the wellbore will behave
significantly different from a single-layer reservoir. Lay-
ered reservoirs can be classified into the following three
categories:

(1) Crossflow layered reservoirs are those which communi-
cate both in the wellbore and in the reservoir.

(2) Commingled layered reservoirs are those which commu-
nicate only in the wellbore. A complete permeability
barrier exists between the various layers.

(3) Composite reservoirs are made up of commingled zones
and some of the zones consist of crossflow layers.
Each crossflow layer behaves on tests as if it were an
homogeneous and isotropic layer; however, the compos-
ite reservoir should behave exactly as a commingled
reservoir.

Some layered reservoirs behave as double-porosity reser-
voirs when in fact they are not. When reservoirs are charac-
terized by layers of very low permeabilities interbedded with
relatively thin high-permeability layers, they could behave
on well tests exactly as if they were naturally fractured sys-
tems and could be treated with the interpretation models
designed for double-porosity systems. Whether the well pro-
duces from a commingled, crossflow, or composite system,
the test objectives are to determine skin factor, permeability,
and average pressure.

The pressure response of crossflow layered systems dur-
ing well testing is similar to that of homogeneous systems
and can be analyzed with the appropriate conventional
semilog and log–log plotting techniques. Results of the
well test should be interpreted in terms of the arithmetic

total permeability–thickness and porosity–compressibility–
thickness products as given by:

(kh)t =
n layers∑

i=1

(kh)i

(φcth)t =
n layers∑

i=1

(φcth)i

Kazemi and Seth (1969) proposed that if the total
permeability–thickness product (kh)t is known from a well
test, the individual layer permeability ki may be approxi-
mated from the layer flow rate qi and the total flow rate qt by
applying the following relationship:

ki = qi

qt

[
(kh)t

hi

]

The pressure buildup behavior of a commingled two-
layer system without crossflow is shown schematically in
Figure 1.70. The straight line AB that follows the early-time
data gives the proper value of the average flow capacity
(kh)t of the reservoir system. The flattening portion BC
analogous to a single-layer system attaining statistic pres-
sure indicates that the pressure in the more permeable zone
has almost reached its average value. The portion CD rep-
resents a repressurization of the more permeable layer by
the less depleted, less permeable layer with a final rise DE
at the stabilized average pressure. Notice that the buildup
is somewhat similar to the buildup in naturally fractured
reservoirs.

Sabet (1991) points out that when a commingled system is
producing under the pseudosteady-state flow condition, the
flow rate from any layer qi can be approximated from total

TLFeBOOK



WELL TESTING ANALYSIS 1/93

A

B

E

C

D

p

10−3 10−2 10−1 1
∆t /(t + ∆t)

Figure 1.70 Theoretical pressure buildup curve for
two-layer reservoir (Copyright ©1961 SPE, Lefkovits
et al., SPEJ, March 1961).

flow rate and the layer storage capacity φcth from:

qi = qt

[
(φcth)i∑

j=1 (φcthi)j

]

1.5.4 Hydraulically fractured reservoirs
A fracture is defined as a single crack initiated from the
wellbore by hydraulic fracturing. It should be noted that
fractures are different from “fissures,” which are the for-
mation of natural fractures. Hydraulically induced fractures
are usually vertical, but can be horizontal if the formation is
less than approximately 3000 ft deep. Vertical fractures are
characterized by the following properties:

● fracture half-length xf , ft;
● dimensionless radius reD, where reD = re/xf ;
● fracture height hf , which is often assumed equal to the

formation thickness, ft;
● fracture permeability kf , md;
● fracture width wf , ft;
● fracture conductivity FC , where FC = kf wf .

The analysis of fractured well tests deals with the iden-
tification of well and reservoir variables that would have an
impact on future well performance. However, fractured wells
are substantially more complicated. The well-penetrating
fracture has unknown geometric features, i.e., xf , wf , and
hf , and unknown conductivity properties.

Gringarten et al. (1974) and Cinco and Samaniego (1981),
among others, propose three transient flow models to con-
sider when analyzing transient pressure data from vertically
fractured wells. These are:

(1) infinite conductivity vertical fractures;
(2) finite conductivity vertical fractures;
(3) uniform flux fractures.

Descriptions of the above three types of fractures are given
below.

Infinite conductivity vertical fractures
These fractures are created by conventional hydraulic frac-
turing and characterized by a very high conductivity, which
for all practical purposes can be considered as infinite. In
this case, the fracture acts similar to a large-diameter pipe
with infinite permeability and, therefore, there is essentially

no pressure drop from the tip of the fracture to the wellbore,
i.e., no pressure loss in the fracture. This model assumes
that the flow into the wellbore is only through the fracture
and exhibits three flow periods:

(1) fracture linear flow period;
(2) formation linear flow period;
(3) infinite-acting pseudoradial flow period.

Several specialized plots are used to identify the start and
end of each flow period. For example, an early-time log–log
plot of �p vs. �t will exhibit a straight line of half-unit slope.
These flow periods associated with infinite conductivity frac-
tures and the diagnostic specialized plots will be discussed
later in this section.

Finite conductivity fractures
These are very long fractures created by massive hydraulic
fracture (MHF). These types of fractures need large quan-
tities of propping agent to keep them open and, as a result,
the fracture permeability kf is reduced as compared to that of
the infinite conductivity fractures. These finite conductivity
vertical fractures are characterized by measurable pressure
drops in the fracture and, therefore, exhibit unique pressure
responses when testing hydraulically fractured wells. The
transient pressure behavior for this system can include the
following four sequence flow periods (to be discussed later):

(1) initially “linear flow within the fracture”;
(2) followed by “bilinear flow”;
(3) then “linear flow in the formation”; and
(4) eventually “infinite acting pseudoradial flow.”

Uniform flux fractures
A uniform flux fracture is one in which the reservoir fluid
flow rate from the formation into the fracture is uniform
along the entire fracture length. This model is similar to the
infinite conductivity vertical fracture in several aspects. The
difference between these two systems occurs at the bound-
ary of the fracture. The system is characterized by a variable
pressure along the fracture and exhibits essentially two flow
periods;

(1) linear flow;
(2) infinite-acting pseudoradial flow.

Except for highly propped and conductive fractures, it is
thought that the uniform-influx fracture theory better repre-
sents reality than the infinite conductivity fracture; however,
the difference between the two is rather small.

The fracture has a much greater permeability than the
formation it penetrates; hence it influences the pressure
response of a well test significantly. The general solution
for the pressure behavior in a reservoir is expressed in
terms of dimensionless variables. The following dimension-
less groups are used when analyzing pressure transient data
in a hydraulically fractured well:

Diffusivity group ηfD = kfφct

kφf cft
[1.5.19]

Time group tDxf =
[

0. 0002637k
φµctx2

f

]
t = tD

(
r2

w

x2
f

)

[1.5.20]

Conductivity group FCD = kf

k
wf

xf
= FC

kxf
[1.5.21]

Storage group CDf = 0. 8937C
φcthx2

f

[1.5.22]
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Figure 1.71 Flow periods for a vertically fractured well (After Cinco and Samaniego, JPT, 1981).

Pressure group pD = kh�p
141. 2QBµ

for oil [1.5.23]

pD = kh�m(p)
1424QT

for gas [1.5.24]

Fracture group reD = re

xf

where:

xf = fracture half-length, ft
wf = fracture width, ft
kf = fracture permeability, md
k = pre-frac formation permeability, md

tDxf = dimensionless time based on the fracture
half-length xf

t = flowing time in drawdown, �t or �te in buildup,
hours

T = Temperature, ◦R
FC = fracture conductivity, md ft

FCD = dimensionless fracture conductivity
η = hydraulic diffusivity

cft = total compressibility of the fracture, psi−1

Notice that the above equations are written in terms of
the pressure drawdown tests. These equations should be
modified for buildup tests by replacing the pressure and time
with the appropriate values as shown below:

Test Pressure Time

Drawdown �p = pi − pwf t
Buildup �p = pws − pwf at �t=0 �t or �te

In general, a fracture could be classified as an infinite conduc-
tivity fracture when the dimensionless fracture conductivity
is greater than 300, i.e., FCD > 300.

There are four flow regimes, as shown conceptually in
Figure 1.71, associated with the three types of vertical
fractures. These are:

(1) fracture linear flow;
(2) bilinear flow;
(3) formation linear flow;
(4) infinite-acting pseudoradial flow.

These flow periods can be identified by expressing the
pressure transient data in different type of graphs. Some of
these graphs are excellent tools for diagnosis and identifica-
tion of regimes since test data may correspond to different
flow periods.

There are specialized graphs of analysis for each flow
period that include:

● a graph of �p vs.
√

time for linear flow;
● a graph of �p vs. 4√time for bilinear flow;
● a graph of �p vs. log(time) for infinite-acting pseudoradial

flow.

These types of flow regimes and the diagnostic plots are
discussed below.

Fracture linear flow This is the first flow period which
occurs in a fractured system. Most of the fluid enters the
wellbore during this period of time as a result of expansion
within the fracture, i.e., there is negligible fluid coming from
the formation. Flow within the fracture and from the fracture
to the wellbore during this time period is linear and can be
described by the diffusivity equation as expressed in a linear
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form and is applied to both the fracture linear flow and for-
mation linear flow periods. The pressure transient test data
during the linear flow period can be analyzed with a graph of
�p vs.

√
time. Unfortunately, the fracture linear flow occurs

at very early time to be of practical use in well test analysis.
However, if the fracture linear flow exists (for fractures with
FCD > 300), the formation linear flow relationships as given
by Equations 1.5.19 through 1.5.24 can be used in an exact
manner to analyze the pressure data during the formation
linear flow period.

If fracture linear flow occurs, the duration of the flow
period is short, as it often is in finite conductivity fractures
with FCD < 300, and care must be taken not to misinterpret
the early pressure data. It is common in this situation for
skin effects or wellbore storage effects to alter pressures to
the extent that the linear flow straight line does not occur
or is very difficult to recognize. If the early-time slope is
used in determining the fracture length, the slope mvf will
be erroneously high, the computed fracture length will be
unrealistically small, and no quantitative information will be
obtained regarding flow capacity in the fracture.

Cinco et al. (1981) observed that the fracture linear flow
ends when:

tDxf ≈ 0. 01(FCD)2

(ηfD)2

Bilinear flow This flow period is called bilinear flow because
two types of linear flow occur simultaneously. As originally
proposed by Cinco (1981), one flow is a linear incompressible
flow within the fracture and the other is a linear compressible
flow in the formation. Most of the fluid which enters the
wellbore during this flow period comes from the formation.
Fracture tip effects do not affect well behavior during bilinear
flow and, accordingly, it will not be possible to determine
the fracture length from the well bilinear flow period data.
However, the actual value of the fracture conductivity FC can
be determined during this flow period. The pressure drop
through the fracture is significant for the finite conductivity
case and the bilinear flow behavior is observed; however, the
infinite conductivity case does not exhibit bilinear flow behavior
because the pressure drop in the fracture is negligible. Thus,
identification of the bilinear flow period is very important for
two reasons:

(1) It will not be possible to determine a unique fracture
length from the well bilinear flow period data. If this
data is used to determine the length of the fracture, it
will produce a much smaller fracture length than the
actual.

(2) The actual fracture conductivity kf wf can be determined
from the bilinear flow pressure data.

Cinco and Samaniego suggested that during this flow
period, the change in the wellbore pressure can be described
by the following expressions.

For fractured oil wells In terms of dimensionless
pressure:

pD =
[

2. 451√
FCD

]
(tDxf )1/4 [1.5.25]

Taking the logarithm of both sides of Equation 1.5.25 gives:

log(pD) = log
[

2. 451√
FCD

]
+ 1

4
log(tDxf ) [1.5.26]

In terms of pressure:

�p =
[

44. 1QBµ

h
√

FC(φµctk)1/4

]
t1/4 [1.5.27]

or equivalently:

�p = mbf t1/4

Taking the logarithm of both sides of the above expression
gives:

log(�p) = log(mbf ) + 1
4

log(t) [1.5.28]

with the bilinear slope mbf as given by:

mbf =
[

44. 1QBµ

h
√

FC(φµctk)1/4

]

where FC is the fracture conductivity as defined by:
FC = kf wf [1.5.29]
For fractured gas wells In a dimensionless form:

mD =
[

2. 451√
FCD

]
(tDxf )1/4

or:

log(mD) = log
[

2. 451√
FCD

]
+ 1

4
log(tDxf ) [1.5.30]

In terms of m(p):

�m(p) =
[

444. 6QT
h
√

FC(φµctk)1/4

]
t1/4 [1.5.31]

or equivalently:
�m(p) = mbf t1/4 [1.5.32]
Taking the logarithm of both sides gives:

log[�m(p)] = log(mbf ) + 1
4

log(t)

Equations 1.5.27 and 1.5.31 indicate that a plot of �p or
�m(p) vs. (time)1/4 on a Cartesian scale would produce a
straight line passing through the origin with a slope of “mbf
(bilinear flow slope) as given by:
For oil:

mbf = 44. 1QBµ

h
√

FC(φµctk)1/4
[1.5.33]

The slope can then be used to solve for fracture conductiv-
ity FC:

FC =
[

44. 1QBµ

mbf h(φµctk)1/4

]2

For gas:

mbf = 444. 6QT
h
√

FC(φµctk)1/4
[1.5.34]

with:

FC =
[

444. 6QT
mbf h(φµctk)1/4

]2

It should be noted that if the straight-line plot does not pass
through the origin, it indicates an additional pressure drop
“�ps’‘ caused by flow restriction within the fracture in the
vicinity of the wellbore (chocked fracture; where the fracture
permeability just away from the wellbore is reduced). Exam-
ples of restrictions that cause a loss of resulting production
include:

● inadequate perforations;
● turbulent flow which can be reduced by increasing the

proppant size or concentration;
● overdisplacement of proppant;
● kill fluid was dumped into the fracture.

Similarly, Equations 1.5.28 and 1.5.32 suggest that a plot of
�p or �m(p) versus (time) on a log–log scale would produce
a straight line with a slope of mbf = 1

4 and which can be used
as a diagnostic tool for bilinear flow detection.

When the bilinear flow ends, the plot will exhibit curva-
ture which could concave upwards or downwards depending
upon the value of the dimensionless fracture conductivity
FCD, as shown in Figure 1.72. When the values of FCD is
< 1. 6, the curve will concave downwards, and will concave
upwards if FCD > 1. 6. The upward trend indicates that the
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Figure 1.72 Graph for analysis of pressure data of
bilinear flows (After Cinco and Samaniego, 1981).

fracture tip begins to affect wellbore behavior. If the test
is not run sufficiently long for bilinear flow to end when
FCD > 1. 6, it is not possible to determine the length of
the fracture. When the dimensionless fracture conductivity
FCD < 1. 6, it indicates that the fluid flow in the reservoir has
changed from a predominantly one-dimensional linear flow
to a two-dimensional flow regime. In this particular case, it
is not possible to uniquely determine fracture length even if
bilinear flow does end during the test.

Cinco and Samaniego pointed out that the dimensionless
fracture conductivity FCD can be estimated from the bilinear
flow straight line, i.e., �p vs. (time)1/4, by reading the value
of the pressure difference �p at which the line ends �pebf
and applying the following approximation:

For oil FCD = 194. 9QBµ

kh�pebf
[1.5.35]

For gas FCD = 1965. 1QT
kh�m(p)ebf

[1.5.36]

where:

Q = flow rate, STB/day or Mscf/day
T = temperature, ◦R

The end of the bilinear flow, “ebf,” straight line depends
on the fracture conductivity and can be estimated from the
following relationships:

For FCD > 3 tDebf � 0. 1
(FCD)2

For 1. 6 ≤ FCD ≤ 3 tDebf � 0. 0205[FCD − 1. 5]−1.53

For FCD ≤ 1. 6 tDebf �
[

4. 55√
FCD

− 2. 5
]−4

The procedure for analyzing the bilinear flow data is sum-
marized by the following steps:

Step 1. Make a plot of �p versus time on a log–log scale.
Step 2. Determine if any data fall on a straight line with a 1

4
slope.

Step 3. If data points do fall on the straight line with a 1
4

slope, replot the data in terms of �p vs. (time)1/4 on
a Cartesian scale and identify the data which forms
the bilinear straight line.

Step 4. Determine the slope of the bilinear straight line mbf
formed in step 3.

Step 5. Calculate the fracture conductivity FC = kf wf from
Equation 1.5.33 or Equation 1.5.34:

For oil FC = (kf wf ) =
[

44. 1QBµ

mbf h(φµctk)1/4

]2

For gas FC = (kf wf ) =
[

444. 6QT
mbf h(φµctk)1/4

]2

Step 6. Read the value of the pressure difference at which
the line ends, �pebf or �m(p)ebf.

Step 7. Approximate the dimensionless facture conductivity
from:

For oil FCD = 194. 9QBµ

kh�pebf

For gas FCD = 1965. 1QT
kh�m(p)ebf

Step 8. Estimate the fracture length from the mathematical
definition of FCD as expressed by Equation 1.5.21 and
the value of FC of step 5:

xf = FC

FCDk

Example 1.36 A buildup test was conducted on a frac-
tured well producing from a tight gas reservoir. The follow-
ing reservoir and well parameters are available:

Q = 7350 Mscf/day, tp = 2640 hours

h = 118 ft, φ = 0. 10

k = 0. 025 md, µ = 0. 0252

T = 690◦R, ct = 0. 129 × 10−3 psi−1

pwf at �t=0 = 1320 psia, rw = 0. 28 ft

The graphical presentation of the buildup data is given in
terms of the log–log plot of �m(p) vs. (�t)1/4, as shown in
Figure 1.73.

Calculate the fracture and reservoir parameters by per-
forming conventional well testing analysis.

Solution

Step 1. From the plot of �m(p) vs. (�t)1/4, in Figure 1.73,
determine:

mbf = 1. 6 × 108 psi2/cphr1/4

tsbf ≈ 0. 35 hours (start of bilinear flow)

tebf ≈ 2. 5 hours (end of bilinear flow)

�m(p)ebf ≈ 2. 05 × 108 psi2/cp

Step 2. Perform the bilinear flow analysis, as follows:

● Using Equation 1.5.34, calculate fracture conduc-
tivity FC:

FC =
[

444.6QT
mbf h(φµctk)1/4

]2

=
[

444.6(7350)(690)
(1.62×108)(118)[(0.1)(0.0252)(0.129×10−3)(0.025)]1/4

]2

=154 md ft
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Figure 1.73 Bilinear flow graph for data of Example 1.36 (After Sabet, M. A. Well Test Analysis 1991, Gulf Publishing
Company).

● Calculate the dimensionless conductivity FCD by using
Equation 1.5.36:

FCD = 1965. 1QT
kh�m(p)ebf

= 1965. 1(7350)(690)
(0. 025)(118)(2. 02 × 108)

= 16. 7

● Estimate the fracture half-length from Equation 1.5.21:

xf = FC

FCDk

= 154
(16. 7)(0. 025)

= 368 ft

Formation linear flow At the end of the bilinear flow, there
is a transition period after which the fracture tips begin to
affect the pressure behavior at the wellbore and a linear flow
period might develop. This linear flow period is exhibited
by vertical fractures whose dimensionless conductivity is
greater that 300, i.e., FCD > 300. As in the case of fracture
linear flow, the formation linear flow pressure data collected
during this period is a function of the fracture length xf
and fracture conductivity FC. The pressure behavior during
this linear flow period can be described by the diffusivity
equation as expressed in linear form:

∂2p
∂x2 = φµct

0. 002637k
∂p
∂t

The solution to the above linear diffusivity equation can be
applied to both fracture linear flow and the formation linear
flow, with the solution given in a dimensionless form by:

pD = (π tDxf

)1/2

or in terms of real pressure and time, as:

For oil fractured wells �p=
[

4.064QB
hxf

√
µ

kφct

]
t1/2

or in simplified form as �p=mvf
√

t

For gas fractured wells �m(p)=
[

40.925QT
hxf

√
1

kφµct

]
t1/2

or equivalently as �m(p)=mvf
√

t

The linear flow period may be recognized by pressure data
that exhibits a straight line of a 1

2 slope on a log–log plot of �p
versus time, as illustrated in Figure 1.74. Another diagnos-
tic presentation of pressure data points is the plot of �p or
�m(p) vs.

√
time on a Cartesian scale (as shown in Figure

1.75) which would produce a straight line with a slope of mvf
related to the fracture length by the following equations:

Oil fractured well xf =
[

4. 064QB
mvf h

]√
µ

kφct
[1.5.37]

Gas fractured well xf =
[

40. 925QT
mvf h

]√
1

kφµct
[1.5.38]

where:

Q = flow rate, STB/day or Mscf/day
T = temperature, ◦R

mvf = slope, psi/
√

hr or psi2/cp
√

hr
k = permeability, md
ct = total compressibility, psi−1

The straight-line relationships as illustrated by Figures
1.74 and 1.75 provide distinctive and easily recognizable
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Figure 1.74 Pressure data for a 1
2 -slope straight line in a log–log graph (After Cinco and Samaniego, 1981).
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Figure 1.75 Square-root data plot for buildup test.

evidence of a fracture. When properly applied, these plots
are the best diagnostic tools available for the purpose of
detecting a fracture. In practice, the 1

2 slope is rarely seen
except in fractures with high conductivity. Finite conductivity
fracture responses generally enter a transition period after
the bilinear flow (the 1

4 slope) and reach the infinite-acting
pseudoradial flow regime before ever achieving a 1

2 slope
(linear flow). For a long duration of wellbore storage effect,
the bilinear flow pressure behavior may be masked and data
analysis becomes difficult with current interpretation
methods.

Agarwal et al. (1979) pointed out that the pressure data
during the transition period displays a curved portion before

straightening to a line of proper slope that represents the
fracture linear flow. The duration of the curved portion that
represents the transition flow depends on the fracture flow
capacity. The lower the fracture flow capacity, the longer the
duration of the curved portion. The beginning of formation
linear flow, “blf,” depends on FCD and can be approximated
from the following relationship:

tDblf ≈ 100
(FCD)2

and the end of this linear flow period, “elf,” occurs at
approximately:

tDblf ≈ 0. 016

Identifying the coordinates of these two points (i.e., begin-
ning and end of the straight line) in terms of time can be
used to estimate FCD from:

FCD ≈ 0. 0125

√
telf

tblf

where telf and tblf are given in hours.

Infinite-acting pseudoradial flow During this period, the
flow behavior is similar to the radial reservoir flow with a
negative skin effect caused by the fracture. The traditional
semilog and log–log plots of transient pressure data can be
used during this period; for example, the drawdown pres-
sure data can be analyzed by using Equations 1.3.1 through
1.3.3. That is:

pwf = pi − 162. 6QoBoµ

kh

×
[

log (t) + log
(

k
φµctr2

w

)
− 3. 23 + 0. 87s

]

or in a linear form as:

pi − pwf = �p = a + m log(t)
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Figure 1.76 Use of the log–log plot to approximate the beginning of pseudoradial flow.

with the slope m of:

m = 162. 6QoBoµo

kh
Solving for the formation capacity gives:

kh = 162. 6QoBoµo

|m|
The skin factor s can be calculated by Equation 1.3.3:

s = 1. 151
[

pi − p1 hr

|m| − log
(

k
φµctr2

w

)
+ 3. 23

]

If the semilog plot is made in terms of �p vs. t, notice that
the slope m is the same when making the semilog plot in
terms of pwf vs. t. Then:

s = 1. 151
[

�p1 hr

|m| − log
(

k
φµctr2

w

)
+ 3. 23

]

�p1 hr can then be calculated from the mathematical defini-
tion of the slope m, i.e., rise/run, by using two points on the
semilog straight line (conveniently, one point could be �p at
log(10)) to give:

m = �p at log(10) − �p1 hr

log(10) − log(1)

Solving this expression for �p1 hr gives:

�p1 hr = �p at log(10) − m [1.5.39]

Again, �p at log(10) must be read at the corresponding point
on the straight line at log(10).

Wattenbarger and Ramey (1968) have shown that an
approximate relationship exists between the pressure
change �p at the end of the linear flow, i.e., �pelf , and the

beginning of the infinite acting pseudoradial flow, �pbsf , as
given by:

�pbsf ≥ 2�pelf [1.5.40]

The above rule is commonly referred to as the “double-�p
rule” and can be obtained from the log–log plot when the
1
2 slope ends and by reading the value of �p, i.e., �pelf , at
this point. For fractured wells, doubling the value of �pelf
will mark the beginning of the infinite-acting pseudoradial
flow period. Equivalently, a time rule as referred to as
the “10�t rule” can be applied to mark the beginning of
pseudoradial flow by:

For drawdown tbsf ≥ 10telf [1.5.41]

For buildup �tbsf ≥ 10�telf [1.5.42]

which indicates that correct infinite-acting pseudoradial
flow occurs one log cycle beyond the end of the linear flow.
The concept of the above two rules is illustrated graphically
in Figure 1.76.

Another approximation that can be used to mark the
start of the infinite-acting radial flow period for a finite
conductivity fracture is given by:

tDbs ≈ 5 exp[−0. 5(FCD)−0.6] for FCD > 0. 1

Sabet (1991) used the following drawdown test data, as
originally given by Gringarten et al. (1975), to illustrate
the process of analyzing a hydraulically fractured well test
data.
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Figure 1.77 Log–log plot, drawdown test data of Example 1.37 (After Sabet, M. A. Well Test Analysis 1991, Gulf
Publishing Company).

Example 1.37 The drawdown test data for an infinite
conductivity fractured well is tabulated below:

t (hr) pwf (psi) �p (psi)
√

t (hr1/2)

0.0833 3759.0 11.0 0.289
0.1670 3755.0 15.0 0.409
0.2500 3752.0 18.0 0.500
0.5000 3744.5 25.5 0.707
0.7500 3741.0 29.0 0.866
1.0000 3738.0 32.0 1.000
2.0000 3727.0 43.0 1.414
3.0000 3719.0 51.0 1.732
4.0000 3713.0 57.0 2.000
5.0000 3708.0 62.0 2.236
6.0000 3704.0 66.0 2.449
7.0000 3700.0 70.0 2.646
8.0000 3695.0 75.0 2.828
9.0000 3692.0 78.0 3.000

10.0000 3690.0 80.0 3.162
12.0000 3684.0 86.0 3.464
24.0000 3662.0 108.0 4.899
48.0000 3635.0 135.0 6.928
96.0000 3608.0 162.0 9.798

240.0000 3570.0 200.0 14.142

Additional reservoir parameters are:

h = 82 ft, φ = 0. 12

ct = 21 × 10−6 psi−1, µ = 0. 65 cp

Bo = 1. 26 bbl/STB, rw = 0. 28 ft

Q = 419 STB/day, pi = 3770 psi

Estimate:

● permeability, k;
● fracture half-length, xf ;
● skin factor, s.

Solution

Step 1. Plot:

● �p vs. t on a log–log scale, as shown in
Figure 1.77;

● �p vs.
√

t on a Cartesian scale, as shown in
Figure 1.78;

● �p vs. t on a semilog scale, as shown in
Figure 1.79.

Step 2. Draw a straight line through the early points rep-
resenting log(�p) vs. log(t), as shown in Figure
1.77, and determine the slope of the line. Figure 1.77
shows a slope of 1

2 (not 45◦ angle) indicating lin-
ear flow with no wellbore storage effects. This linear
flow lasted for approximately 0.6 hours. That is:

telf = 0. 6 hours

�pelf = 30 psi
and therefore the beginning of the infinite-acting
pseudoradial flow can be approximated by the “dou-
ble �p rule” or “one log cycle rule,” i.e., Equations
1.5.40 and 1.5.41, to give:

tbsf ≥ 10telf ≥ 6 hours

�pbsf ≥ 2�pelf ≥ 60 psi

Step 3. From the Cartesian scale plot of �p vs.
√

t, draw a
straight line through the early pressure data points
representing the first 0.3 hours of the test (as shown
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Figure 1.78 Linear plot, drawdown test data of Example 1.37 (After Sabet, M. A. Well Test Analysis 1991, Gulf
Publishing Company).
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Figure 1.79 Semilog plot, drawdown test data from Example 1.37.
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Figure 1.80 Effect of skin on the square root plot.

in Figure 1.79) and determine the slope of the line,
to give:

mvf = 36 psi/hr1/2

Step 4. Determine the slope of the semilog straight line rep-
resenting the unsteady-state radial flow in Figure
1.79, to give:

m = 94. 1 psi/cycle
Step 5. Calculate the permeability k from the slope:

k = 162. 6QoBoµo

mh
= 162. 6(419)(1. 26)(0. 65)

(94. 1)(82)

= 7. 23 md
Step 6. Estimate the length of the fracture half-length from

Equation 1.5.37, to give:

xf =
[

4. 064QB
mvf h

]√
µ

kφct

=
[

4. 064(419)(1. 26)
(36)(82)

]√
0. 65

(7. 23)(0. 12)(21 × 10−6)

= 137. 3 ft
Step 7. From the semilog straight line of Figure 1.78, deter-

mine �p at t = 10 hours, to give:
�p at �t=10 = 71. 7 psi

Step 8. Calculate �p1 hr by applying Equation 1.5.39:
�p1 hr = �p at �t=10 − m = 71. 7 − 94. 1 = −22. 4 psi

Step 9. Solve for the “total” skin factor s, to give

s = 1. 151
[

�p1 hr

|m| − log
(

k
φµctr2

w

)
+ 3. 23

]

= 1. 151
[−22. 4

94. 1

− log
(

7. 23
0. 12(0. 65)(21 × 10−6)(0. 28)2

)
+ 3. 23

]

= −5. 5

with an apparent wellbore ratio of:
r\

w = rwe−s = 0. 28e5.5 = 68. 5 ft

Notice that the “total” skin factor is a composite of effects
that include:

s = sd + sf + st + sp + ssw + sr

where:

sd = skin due to formation and fracture damage
sf = skin due to the fracture, large negative value sf � 0
st = skin due to turbulence flow
sp = skin due to perforations
sw = skin due to slanted well
sr = skin due to restricted flow

For fractured oil well systems, several of the skin compo-
nents are negligible or cannot be applied, mainly st , sp, ssw,
and sr ; therefore:

s = sd + sf

or:
sd = s − sf

Smith and Cobb (1979) suggested that the best approach
to evaluate damage in a fractured well is to use the square
root plot. In an ideal well without damage, the square root
straight line will extrapolate to pwf at �t = 0, i.e, pwf at �t=0,
however, when a well is damaged the intercept pressure pint
will be greater than pwf at �t=0, as illustrated in Figure 1.80.
Note that the well shut-in pressure is described by Equation
1.5.35 as:

pws = pwf at �t=0 + mvf
√

t
Smith and Cobb pointed out that the total skin factor exclu-

sive of sf , i.e., s − sf , can be determined from the square
root plot by extrapolating the straight line to �t = 0 and an
intercept pressure pint to give the pressure loss due to skin
damage, (�ps)d, as:

(�ps)d = pint − pwf at �t=0 =
[

141. 2QBµ

kh

]
sd

Equation 1.5.35 indicates that if pint = pwf at �t=0, then the
skin due to fracture sf is equal to the total skin.
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Figure 1.81 Vertically fractured reservoir, calculated pressure buildup curves (After Russell and Truitt, 1964).

It should be pointed out that the external boundary can
distort the semilog straight line if the fracture half-length is
greater than one-third of the drainage radius. The pressure
behavior during this infinite-acting period is very dependent
on the fracture length. For relatively short fractures, the flow
is radial but becomes linear as the fracture length increases
as it reaches the drainage radius. As noted by Russell and
Truitt (1964), the slope obtained from the traditional well test
analysis of a fractured well is erroneously too small and the
calculated value of the slope progressively decreases with
increasing fracture length. This dependency of the pressure
response behavior on the fracture length is illustrated by
the theoretical Horner buildup curves given by Russell and
Truitt and shown in Figure 1.81. If the fracture penetration
ratio xf /xe is defined as the ratio of the fracture half-length
xf to the half-length xe of a closed square-drainage area,
then Figure 1.81 shows the effects of fracture penetration
on the slope of the buildup curve. For fractures of small
penetration, the slope of the buildup curve is only slightly
less than that for the unfractured “radial flow” case. How-
ever, the slope of the buildup curve becomes progressively
smaller with increasing fracture penetrations. This will result
in a calculated flow capacity kh which is too large, an erro-
neous average pressure, and a skin factor which is too small.
Obviously a modified method for analyzing and interpret-
ing the data must be employed to account for the effect
of length of the fracture on the pressure response during
the infinite-acting flow period. Most of the published cor-
rection techniques require the use of iterative procedures.
The type curve matching approach and other specialized
plotting techniques have been accepted by the oil indus-
try as accurate and convenient approaches for analyzing

pressure data from fractured wells, as briefly discussed
below.

An alternative and convenient approach to analyzing frac-
tured well transient test data is type curve matching. The
type curve matching approach is based on plotting the pres-
sure difference �p versus time on the same scale as the
selected type curve and matching one of the type curves.
Gringarten et al. (1974) presented the type curves shown
in Figures 1.82 and 1.83 for infinite conductivity vertical
fracture and uniform flux vertical fracture, respectively, in
a square well drainage area. Both figures present log–log
plots of the dimensionless pressure drop pd (equivalently
referred to as dimensionless wellbore pressure pwd) versus
dimensionless time tDxf . The fracture solutions show an ini-
tial period controlled by linear flow where the pressure is a
function of the square root of time. In log–log coordinates,
as indicated before, this flow period is characterized by a
straight line with 1

2 slope. The infinite-acting pseudoradial
flow occurs at a tDxf between 1 and 3. Finally, all solutions
reach pseudosteady state.

During the matching process a match point is chosen;
the dimensionless parameters on the axis of the type curve
are used to estimate the formation permeability and fracture
length from:

k = 141. 2QBµ

h

[
pD

�p

]
MP

[1.5.43]

xf =
√

0. 0002637k
φµCt

(
�t
tDxf

)
MP

[1.5.44]
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Figure 1.82 Dimensionless pressure for vertically fractured well in the center of a closed square, no wellbore storage,
infinite conductivity fracture (After Gringarten et al., 1974).
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Figure 1.83 Dimensionless pressure for vertically fractured well in the center of a closed square, no wellbore storage,
uniform-flux fracture (After Gringarten et al., 1974).
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For large ratios of xe/xf , Gringarten and his co-authors
suggested that the apparent wellbore radius r\

w can be
approximated from:

r\
w ≈ xf

2
= rwe−s

Thus, the skin factor can be approximated from:

s = ln
(

2rw

xf

)
[1.5.45]

Earlougher (1977) points out that if all the test data falls
on the 1

2 -slope line on the log �p vs. log(time) plot, i.e., the
test is not long enough to reach the infinite-acting pseudo-
radial flow period, then the formation permeability k cannot
be estimated by either type curve matching or semilog plot.
This situation often occurs in tight gas wells. However, the
last point on the 1

2 slope line, i.e., (�p)Last and (t)Last , may
be used to estimate an upper limit of the permeability and a
minimum fracture length from:

k ≤ 30. 358QBµ

h(�p)last
[1.5.46]

xf ≥
√

0. 01648k(t)last

φµct
[1.5.47]

The above two approximations are only valid for xe/xf �
1 and for infinite conductivity fractures. For uniform-flux
fracture, the constants 30.358 and 0.01648 become 107.312
and 0.001648.

To illustrate the use of the Gringarten type curves in ana-
lyzing well test data, the authors presented the following
example:

Example 1.38 Tabulated below is the pressure buildup
data for an infinite conductivity fractured well:

�t (hr) pws (psi) pws − pwf at �t=0 (psi) (tp + �t)�t

0.000 3420.0 0.0 0.0
0.083 3431.0 11.0 9 3600.0
0.167 3435.0 15.0 4 6700.0
0.250 3438.0 18.0 3 1200.0
0.500 3444.5 24.5 1 5600.0
0.750 3449.0 29.0 1 0400.0
1.000 3542.0 32.0 7800.0
2.000 3463.0 43.0 3900.0
3.000 3471.0 51.0 2600.0
4.000 3477.0 57.0 1950.0
5.000 3482.0 62.0 1560.0
6.000 3486.0 66.0 1300.0
7.000 3490.0 70.0 1120.0
8.000 3495.0 75.0 976.0
9.000 3498.0 78.0 868.0

10.000 3500.0 80.0 781.0
12.000 3506.0 86.0 651.0
24.000 3528.0 108.0 326.0
36.000 3544.0 124.0 218.0
48.000 3555.0 135.0 164.0
60.000 3563.0 143.0 131.0
72.000 3570.0 150.0 109.0
96.000 3582.0 162.0 82.3

120.000 3590.0 170.0 66.0
144.000 3600.0 180.0 55.2
192.000 3610.0 190.0 41.6
240.000 3620.0 200.0 33.5

Other available data:
pi = 3700, rw = 0. 28 ft,

φ = 12%, h = 82 ft,

ct = 21 × 10−6 psi−1, µ = 0. 65 cp,

B = 1. 26 bbl/STB, Q = 419 STB/day,

tp = 7800 hours

drainage area = 1600 acres (not fully developed)

Calculate:

● permeability;
● fracture half-length, xf ;
● skin factor.

Solution

Step 1. Plot �p vs. �t on tracing paper with the same scale
as the Gringarten type curve of Figure 1.82. Super-
impose the tracing paper on the type curve, as shown
in Figure 1.84, with the following match points:

(�p)MP = 100 psi

(�t)MP = 10 hours

(pD)MP = 1. 22

(tD)MP = 0. 68

Step 2. Calculate k and xf by using Equations 1.5.43 and
1.5.44:

k = 141. 2QBµ

h

[
pD

�p

]
MP

= (141. 2)(419)(1. 26)(0. 65)
(82)

[
1. 22
100

]
= 7. 21 md

xf =
√

0. 0002637k
φµCt

(
�t
tDxf

)
MP

=
√

0. 0002637(7. 21)
(0. 12)(0. 65)(21 × 10−6)

(
10

0. 68

)
= 131 ft

Step 3. Calculate the skin factor by applying Equation
1.5.45:

s = ln
(

2rw

xf

)

≈ ln
[

(2)(0. 28)
131

]
= 5. 46

Step 4. Approximate the time that marks the start of the
semilog straight line based on the Gringarten et al.
criterion. That is:

tDxf =
[

0. 0002637k
φµctx2

f

]
t ≥ 3

or:

t ≥ (3)(0. 12)(0. 68)(21 × 10−6)(131)2

(0. 0002637)(7. 21)
≥ 50 hours

All the data beyond 50 hours can be used in
the conventional Horner plot approach to estimate
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Figure 1.84 Type curve matching. Data from Example 1.38 (Copyright ©1974 SPE, Gringarten et al., SPEJ, August
1974).

permeability and skin factor. Figure 1.85 shows a
Horner graph with the following results:

m = 95 psi/cycle

p∗ = 3764 psi

p1 hr = 3395 psi

k = 7. 16 md

s = −5. 5

xf = 137 ft

Cinco and Samaniego (1981) developed the type curves
shown in Figure 1.86 for finite conductivity vertical fracture.
The proposed type curve is based on the bilinear flow the-
ory and presented in terms of (pDFCD) vs. (tDxf F

2
CD) on a

log–log scale for various values of FCD ranging from 0. 1π to
1000π . The main feature of this graph is that for all values
of FCD the behavior of the bilinear flow ( 1

4 slope) and the
formation linear flow ( 1

2 slope) is given by a single curve.
Note that there is a transition period between the bilinear
and linear flows. The dashed line in this figure indicates
the approximate start of the infinite-acting pseudoradial
flow.

The pressure data is plotted in terms of log(�p) vs. log(t)
and the resulting graph is matched to a type curve that is
characterized by a dimensionless finite conductivity, (FCD)M ,
with match points of:

● (�p)MP, (pDFCD)MP;
● (t)MP, (tDxf F

2
CD)MP;

● end of bilinear flow (tebf )MP;
● beginning of formation linear flow (tblf )MP;
● beginning of semilog straight line (tbssl)MP.

From the above match FCD and xf can be calculated:

For oil FCD =
[

141. 2QBµ

hk

]
(pDFCD)MP

(�p)MP
[1.5.48]

For gas FCD =
[

1424QT
hk

]
(pDFCD)MP

(�m(p))MP
[1.5.49]

The fracture half-length is given by:

xf =
[

0. 0002637k
φµct

]
(t)MP(FCD)2

M

(tDxf F
2
CD)MP

[1.5.50]

Defining the dimensionless effective wellbore radius r\
wD

as the ratio of the apparent wellbore radius r\
w to the fracture

half-length xf , i.e., r\
wD = r\

w/xf , Cinco and Samaniego corre-
lated r\

wD with the dimensionless fracture conductivity FCD
and presented the resulting correlation in graphical form, as
shown in Figure 1.87.

Figure 1.87 indicates that when the dimensionless fracture
conductivity is greater than 100, the dimensionless effective
wellbore radius r\

wD is independent of the fracture conduc-
tivity with a fixed value of 0.5, i.e., r\

wD = 0. 5 for FCD > 100.
The apparent wellbore radius is expressed in terms of the
fracture skin factor sf by:

r\
w = rwe−sf

Introducing r\
wD into the above expression and solving for sf

gives:

sf = ln
[(

xf

rw

)
r\

wD

]

For FCD > 100, this gives:

sf = − ln
(

xf

2rw

)

where:
sf = skin due to fracture
rw = wellbore radius, ft
It should be kept in mind that specific analysis graphs

must be used for different flow regimes to obtain a better
estimate of both fracture and reservoir parameters. Cinco
and Samaniego used the following pressure buildup data to
illustrate the use of their type curve to determine the fracture
and reservoir parameters.
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Figure 1.85 Horner graph for a vertical fracture (infinite conductivity).
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Figure 1.86 Type curve for vertically fractured gas wells graph (After Cinco and Samaniego, 1981).
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Figure 1.88 Type curve matching for data in bilinear and transitional flow graph (After Cinco and Samaniego, 1981).

Example 1.39 The buildup test data as given in Example
1.36 is given below for convenience:

Q = 7350 Mscf/day, tp = 2640 hours

h = 118 ft, φ = 0. 10

k = 0. 025 md, µ = 0. 0252

T = 690◦R, ct = 0. 129 × 10−3 psi−1

pwf at �t=0 = 1320 psia, rw = 0. 28 ft

The graphical presentation of the buildup data is given in
the following two forms:

(1) The log–log plot of �m(p) vs. (�t)1/4, as shown earlier
in Figure 1.73.

(2) The log–log plot of �m(p) vs. (�t), on the type curve
of Figure 1.86 with the resulting match as shown in
Figure 1.88.

Calculate the fracture and reservoir parameters by per-
forming conventional and type curve analysis. Compare the
results.

Solution

Step 1. From the plot of �m(p) vs. (�t)1/4, in Figure 1.73,
determine:
mbf = 1. 6 × 108 psi2/cphr1/4

tsbf ≈ 0. 35 hrs (start of bilinear flow)
tebf ≈ 2. 5 hrs (end of bilinear flow)

�m(p)ebf ≈ 2. 05 × 108 psi2/cp
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Step 2. Perform the bilinear flow analysis, as follows:

● Using Equation 1.5.34, calculate fracture conduc-
tivity FC:

FC =
[

444.6QT

mbf h(φµctk)1/4

]2

=
[

444.6(7350)(690)
(1.62×108)(118)[(0.1)(0.0252)(0.129×10−3)(0.025)]1/4

]2

=154 md ft

● Calculate the dimensionless conductivity FCD by
using Equation 1.5.36:

FCD = 1965. 1QT
kh�m(p)ebf

= 1965. 1(7350)(690)
(0. 025)(118)(2. 02 × 108)

= 16. 7

● Estimate the fracture half-length from Equation
1.5.21:

xf = FC

FCDk

= 154
(16. 7)(0. 025)

= 368 ft

● Estimate the dimensionless ratio r\
w/xf from

Figure 1.86:
r\

w

xf
≈ 0. 46

● Calculate the apparent wellbore radius r\
w:

r\
w = (0. 46)(368) = 169 ft

● Calculate the apparent skin factor

s = ln
(

rw

r\
w

)
= ln

(
0. 28
169

)
= −6. 4

Step 3. Perform the type curve analysis as follows:

● Determine the match points from Figure 1.88, to
give:

�m(p)MP = 109 psi2/cp

(pDFCD)MP = 6. 5

(�t)mp = 1 hour

[tDxf (FCD)2]MP = 3. 69 × 10−2

tsbf � 0. 35 hour

tebf = 2. 5 hour
● Calculate FCD from Equation

FCD =
[

1424(7350)(690)
(118)(0. 025)

]
6. 5

(109)
= 15. 9

● Calculate the fracture half-length from Equation
1.5.49:

xf =
[

0. 0002637(0. 025)
(0. 1)(0. 0252)(0. 129 × 10−3)

(1)(15. 9)2

3. 69 × 10−2

]1/2

= 373 ft

● Calculate FC from Equation 1.5.21:
FC = FCDxf k = (15. 9)(373)(0. 025) = 148 md ft

● From Figure 1.86 :
r\

w/xf = 0. 46

r\
w = (373)(0. 46) = 172 ft

Test Type curve Bilinear flow
results analysis analysis

FC 148.0 154.0
xf 373.0 368.0
FCD 15.9 16.7
r\

w 172.0 169.0

The concept of the pressure derivative can be effectively
employed to identify different flow regime periods associ-
ated with hydraulically fractured wells. As shown in Figure
1.89, a finite conductivity fracture shows a 1

4 straight-line
slope for both the pressure difference �p and its derivative;
however, the two parallel lines are separated by a factor of 4.
Similarly, for an infinite conductivity fracture, two straight
parallel lines represent �p and its derivative with a 1

2 slope
and separation between the lines of a factor of 2 (as shown
in Figure 1.90).

In tight reservoirs where the productivity of wells is
enhanced by massive hydraulic fracturing (MHF), the result-
ing fractures are characterized as long vertical fractures
with finite conductivities. These wells tend to produce at a
constant and low bottom-hole flowing pressure, rather than
constant flow rate. The diagnostic plots and the conventional
analysis of bilinear flow data can be used when analyzing

0.1
0.1

1 1 × 104

1

10

10

100

100 1000

factor of 4.

tD / CD

PD

p\
D(tD/CD)

Figure 1.89 Finite conductivity fracture shows as a 1
4

slope line on a log–log plot, same on a derivative plot.
Separation between pressure and derivative is a factor
of 4.

100

1

1
0.1
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10 100 1000

factor of 2

(tD/CD)

p\
D(tD/CD)

pD

1/2 slope

1 × 104

Figure 1.90 Infinite conductivity fracture shows as a 1
2

slope line on a log–log plot, same on a derivative plot.
Separation between pressure and derivative is a
factor of 2.
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well test data under constant flowing pressure. Equations
1.5.27 through 1.5.31 can be rearranged and expressed in
the following forms.
For fractured oil wells

1
Q

=
[

44. 1Bµ

h
√

FC(φµctk)1/4�p

]
t1/4

or equivalently:
1
Q

= mbf t1/4

and:

log
(

1
Q

)
= log(mbf ) + 1/4 log(t)

where:

mbf = 44. 1Bµ

h
√

FC(φµctk)1/4�p

FC = kf wf =
[

44. 1Bµ

hmbf (φµctk)1/2�p

]2

[1.5.51]

For fractured gas wells

1
Q

= mbf t1/4

or:

log
(

1
Q

)
= log(m)

where:

mbf = 444. 6T
h
√

FC(φµctk)1/4�m(p)
Solving for FC:

FC =
[

444. 6T
hmbf (φµctk)1/4�m(p)

]2

[1.5.52]

The following procedure can be used to analyze bilinear
flow data under constant flow pressure:

Step 1. Plot 1/Q vs. t on a log–log scale and determine if
any data falls on a straight line of a 1

4 slope.
Step 2. If any data forms a 1

4 slope in step 1, plot 1/Q vs. t1/4

on a Cartesian role and determine the slope mbf .
Step 3. Calculate the fracture conductivity FC from Equation

1.5.51 or 1.5.52:

For oil FC =
[

44. 1Bµ

hmbf (φµctk)1/4(pi − pwf )

]2

For gas FC =
[

444. 6T
hmbf (φµctk)1/4[m(pi) − m(pwf )]

]2

Step 4. Determine the value of Q when the bilinear straight
line ends and designate it as Qebf .

Step 5. Calculate FCD from Equation 1.5.35 or 1.5.36:

For oil FCD = 194. 9Qebf Bµ

kh(pi − pwf )

For gas FCD = 1965. 1Qebf T
kh[m(pi) − m(pwf )]

Step 6. Estimate the fracture half-length from:

xf = FC

FCDk

Agarwal et al. (1979) presented constant-pressure type
curves for finite conductivity fractures, as shown in Figure
1.91. The reciprocal of the dimensionless rate 1/QD is
expressed as a function of dimensionless time tDxf , on log–log
paper, with the dimensionless fracture conductivity FCD as

a correlating parameter. The reciprocal dimensionless rate
1/QD is given by:

For oil wells
1

QD
= kh(pi − pwf )

141. 2QµB
[1.5.53]

For gas wells
1

QD
= kh[m(pi) − m(pwf )]

1424QT
[1.5.54]

with:

tDxf = 0. 0002637kt
φ(µct )ix2

f

[1.5.55]

where:

pwf = wellbore pressure, psi
Q = flow rate, STB/day or Mscf/day
T = temperature, ◦R
t = time, hours

subscripts:

i= initial
D = dimensionless

The following example, as adopted from Agarwal et al.
(1979), illustrates the use of these type curves.

Example 1.40 A pre-frac buildup test was performed on a
well producing from a tight gas reservoir, to give a formation
permeability of 0.0081 md. Following an MHF treatment, the
well produced at a constant pressure with recorded rate-time
data as given below:

t (days) Q (Mscf/day) 1/Q (day/Mscf)

20 625 0.00160
35 476 0.00210
50 408 0.00245
100 308 0.00325
150 250 0.00400
250 208 0.00481
300 192 0.00521

The following additional data is available:

pi = 2394 psi, �m(p) = 396 × 106 psi2/cp

h = 32 ft, φ = 0. 107

T = 720◦R, cti = 2. 34 × 10−4 psi−1

µi = 0. 0176 cp, k = 0. 0081 md

Calculate:

● fracture half-length, xf ;
● fracture conductivity, FC.

Solution

Step 1. Plot 1/Q vs. t on tracing paper, as shown in Figure
1.92, using the log–log scale of the type curves.

Step 2. We must make use of the available values of k, h, and
�m(p) by arbitrarily choosing a convenient value
of the flow rate and calculating the corresponding
1/QD. Selecting Q = 1000 Mscf/day, calculate the
corresponding value of 1/QD by applying Equation
1.5.54:

1
QD

= kh�m(p)
1424QT

= (0. 0081)(32)(396 × 106)
1424(1000)(720)

= 0. 1

Step 3. Thus, the position of 1/Q = 10−3 on the y axis of the
tracing paper is fixed in relation to 1/QD = 0. 1 on
the y axis of the type curve graph paper; as shown in
Figure 1.93.
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Figure 1.92 Reciprocal smooth rate vs. time for MHF,
Example 1.42.

Step 4. Move the tracing paper horizontally along the x axis
until a match is obtained, to give:

t = 100 days = 2400 hours
tDxf = 2. 2 × 10−2

FCD = 50

Step 5. Calculate the fracture half-length from Equation
1.5.55:

x2
f =

[
0. 0002637k

φ(µct )i

](
t

tDxf

)
MP

=
[

0. 0002637(0. 0081)
(0. 107)(0. 0176)(2. 34 × 10−4)

](
2400

2. 2 × 10−2

)

= 528 174

xf ≈ 727 ft

Thus the total fracture length is:
2xf = 1454 ft

Step 6. Calculate the fracture conductivity FC from Equation
1.5.2:

FC = FCDkxf = (50)(0. 0081)(727) = 294 md ft

It should be pointed out that if the pre-fracturing buildup
test were not available, matching would require shifting the
tracing paper along both the x and y axes to obtain the proper
match. This emphasizes the need for determining kh from a
pre-fracturing test.

Faults or impermeable barriers
One of the important applications of a pressure buildup test
is analyzing the test data to detect or confirm the existence
of faults and other flow barriers. When a sealing fault is
located near a test well, it significantly affects the recorded
well pressure behavior during the buildup test. This pressure
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Figure 1.93 Type curve matching for MHF gas well, Example 1.42.

Actual Well Image Well

No Flow Boundary

Image WellActual Well

L L

qq

Figure 1.94 Method of images in solving boundary
problems.

behavior can be described mathematically by applying the
principle of superposition as given by the method of images.
Figure 1.94 shows a test well that is located at a distance
L from a sealing fault. Applying method images, as given
Equation 1.2.157, the total pressure drop as a function of
time t is:

(�p)total = 162. 6QoBµ

kh

[
log
(

kt
φµctr2

w

)
− 3. 23 + 0. 87s

]

−
(

70. 6QoBµ

kh

)
Ei

(
− 948φµct

(
2L
)2

kt

)

When both the test well and image well are shut-in for a
buildup test, the principle of superposition can be applied to
Equation 1.2.57 to predict the buildup pressure at �t as:

pws = pi − 162. 6QoBoµo

kh

[
log
(

tp + �t
�t

)]

−
(

70. 6QoBoµo

kh

)
Ei
[−948φµct (2L)2

k(tp + �t)

]

−
(

70. 6(−Qo)Boµo

kh

)
Ei
[−948φµct (2L)2

k�t

]
[1.5.56]

Recalling that the exponential integral Ei(−x) can be approx-
imated by Equation 1.2.68 when x < 0. 01 as:

Ei(−x) = ln(1. 781x)
the value of the Ei(−x) can be set equal to zero when x is
greater than 10.9, i.e., Ei(−x) = 0 for x > 10. 9. Notice that
the value of (2L)2 is large and for early buildup times, when
�t is small, the last two terms in can be set equal to zero, or:

pws = pi − 162. 6QoBoµo

kh

[
log
(

tp + �t
�t

)]
[1.5.57]

which is essentially the regular Horner equation with a
semilog straight-line slope of:

m = 162. 6QoBoµo

kh
For a shut-in time sufficiently large that the logarithmic
approximation is accurate for the Ei functions, Equation 1.5.56
becomes:

pws = pi − 162. 6QoBoµo

kh

[
log
(

tp + �t
�t

)]

− 162. 6QoBoµo

kh

[
log
(

tp + �t
�t

)]
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Rearranging this equation by recombining terms gives:

pws = pi − 2
(

162. 6QoBoµo

kh

)[
log
(

tp + �t
�t

)]

Simplifying:

pws = pi − 2m
[

log
(

tp + �t
�t

)]
[1.5.58]

Three observations can be made by examining Equations
1.5.57 and 1.5.58:

(1) For early shut-in time buildup data, Equation 1.5.57
indicates that the data from the early shut-in times will
form a straight line on the Horner plot with a slope that
is identical to a reservoir without sealing fault.

(2) At longer shut-in times, the data will form a second
straight line on the Horner plot with a slope that is twice
that of the first line, i.e., second slope = 2m. The pres-
ence of the second straight line with a double slope of
the first straight line provides a means of recognizing
the presence of a fault from pressure buildup data.

(3) The shut-in time required for the slope to double can be
approximated from the following expression:

948φµct (2L)2

k�t
< 0. 01

Solving for �t gives:

�t >
380 000φµctL2

k

where:

�t = minimum shut-in time, hours
k = permeability, md
L = distance between well and the sealing fault, ft

Notice that the value of p∗ for use in calculating the average
drainage region pressure p is obtained by extrapolating the
second straight line to a unit-time ratio, i.e., to (tp +�t)/�t =
1. 0. The permeability and skin factor are calculated in the
normal manner described before using the slope of the first
straight line.

Gray (1965) suggested that for the case in which the slope
of the buildup test has the time to double, as shown schemat-
ically in Figure 1.95, the distance L from the well to the fault
can be calculated by finding the time �tx at which the two
semilog straight lines intersect. That is:

L =
√

0. 000148k�tx
φµct

[1.5.59]

Lee (1982) illustrated Gray’s method through the follow-
ing examples.

Example 1.41 A pressure buildup test was conducted to
confirm the existence of a sealing fault near a newly drilled
well. Data from the test is given below:

�t(hr) pws(psi) (tp + �t)/�t

6 3996 47.5
8 4085 35.9

10 4172 28.9
12 4240 24.3
14 4298 20.9
16 4353 18.5
20 4435 15.0
24 4520 12.6

1 10 102 103 104

pws

slope = 2m

Figure 1.95 Theoretical Horner plot for a faulted system.

�t(hr) pws(psi) (tp + �t)/�t

30 4614 10.3
36 4700 8.76
42 4770 7.65
48 4827 6.82
54 4882 6.17
60 4931 5.65
66 4975 5.23

Other data include the following:

φ = 0. 15, µo = 0. 6 cp,

ct = 17 × 10−6 psi−1 rw = 0. 5 ft,

Qo = 1221 STB/day, h = 8 ft

Bo = 1. 31 bbl/STB,

A total of 14 206 STB of oil had been produced before shut-in.
Determine whether the sealing fault exists and the distance
from the well to the fault.

Solution

Step 1. Calculate total production time tp:

tp = 24Np

Qo
= (24)(14206)

1221
= 279. 2 hours

Step 2. Plot pws vs. (tp + �t)/�t as shown in Figure 1.96.
The plot clearly shows two straight lines with the
first slope of 650 psi/cycle and the second with
1300 psi/cycle. Notice that the second slope is twice
that of the first slope indicating the existence of the
sealing fault.

Step 3. Using the value of the first slope, calculate the
permeability k:

k = 162. 6QoBoµo

mh
= 162. 6(1221)(1. 31)(0. 6)

(650)(8)

= 30 md
Step 4. Determine the value of Horner’s time ratio at the

intersection of the two semilog straight lines shown
in Figure 1.96, to give:

tp + �tx
�tx

= 17

or:
279. 2 + �tx

�tx
= 17
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Figure 1.96 Estimating distance to a no-flow boundary.

from which:

�tx = 17. 45 hours

Step 5. Calculate the distance L from the well to the fault by
applying Equation 1.5.59:

L =
√

0. 000148k�tx
φµct

=
√

0. 000148(30)(17. 45)
(0. 15)(0. 6)(17 × 10−6)

= 225 ft

Qualitative interpretation of buildup curves
The Horner plot has been the most widely accepted means
for analyzing pressure buildup data since its introduction in
1951. Another widely used aid in pressure transient analysis
is the plot of change in pressure �p versus time on a log–log
scale. Economides (1988) pointed out that this log–log plot
serves the following two purposes:

(1) the data can be matched to type curves;
(2) the type curves can illustrate the expected trends in

pressure transient data for a large variety of well and
reservoir systems.

The visual impression afforded by the log–log presentation
has been greatly enhanced by the introduction of the pres-
sure derivative which represents the changes of the slope of
buildup data with respect to time. When the data produces
a straight line on a semilog plot, the pressure derivative plot
will, therefore, be constant. That means the pressure deriva-
tive plot will be flat for that portion of the data that can be
correctly analyzed as a straight line on the Horner plot.

Many engineers rely on the log–log plot of �p and its
derivative versus time to diagnose and select the proper
interpretation model for a given set of pressure transient
data. Patterns visible in the log–log diagnostic and Horner
plots for five frequently encountered reservoir systems are
illustrated graphically by Economides as shown in Figure
1.97. The curves on the right represent buildup responses
for five different patterns, a through e, with the curves on
the left representing the corresponding responses when the
data is plotted in the log–log format of�p and (�t�p\) versus
time.

The five different buildup examples shown in Figure
1.97 were presented by Economides (1988) and are briefly
discussed below:

Example a illustrates the most common response—that
of a homogeneous reservoir with wellbore storage and
skin. Wellbore storage derivative transients are recog-
nized as a “hump” in early time. The flat derivative portion
in late time is easily analyzed as the Horner semilog
straight line.
Example b shows the behavior of an infinite conductivity,
which is characteristic of a well that penetrates a natural
fracture. The 1

2 slopes in both the pressure change and
its derivative result in two parallel lines during the flow
regime, representing linear flow to the fracture.
Example c shows the homogeneous reservoir with a sin-
gle vertical planar barrier to flow or a fault. The level of
the second-derivative plateau is twice the value of the level
of the first-derivative plateau, and the Horner plot shows
the familiar slope-doubling effect.
Example d illustrates the effect of a closed drainage
volume. Unlike the drawdown pressure transient, this
has a unit-slope line in late time that is indicative of
pseudosteady-state flow; the buildup pressure derivative
drops to zero. The permeability and skin cannot be deter-
mined from the Horner plot because no portion of the data
exhibits a flat derivative for this example. When transient
data resembles example d, the only way to determine the
reservoir parameters is with a type curve match.
Example e exhibits a valley in the pressure derivative that
is indicative of reservoir heterogeneity. In this case, the
feature results from dual-porosity behavior, for the case
of pseudosteady flow from matrix to fractures.

Figure 1.97 clearly shows the value of the pressure/
pressure derivative presentation. An important advantage of
the log–log presentation is that the transient patterns have
a standard appearance as long as the data is plotted with
square log cycles. The visual patterns in semilog plots are
amplified by adjusting the range of the vertical axis. Without
adjustment, many or all of the data may appear to lie on one
line and subtle changes can be overlooked.

Some of the pressure derivative patterns shown are sim-
ilar to those characteristics of other models. For example,
the pressure derivative doubling associated with a fault
(example c) can also indicate transient interporosity flow
in a dual-porosity system. The sudden drop in the pres-
sure derivative in buildup data can indicate either a closed
outer boundary or constant-pressure outer boundary result-
ing from a gas cap, an aquifer, or pattern injection wells.
The valley in the pressure derivative (example e) could indi-
cate a layered system instead of dual porosity. For these
cases and others, the analyst should consult geological, seis-
mic, or core analysis data to decide which model to use in
an interpretation. With additional data, a more conclusive
interpretation for a given transient data set may be found.

An important place to use the pressure/pressure deriva-
tive diagnosis is on the well site. If the objective of the test is to
determine permeability and skin, the test can be terminated
once the derivative plateau is identified. If heterogeneities
or boundary effects are detected in the transient, the test
can be run longer to record the entire pressure/pressure
derivative response pattern needed for the analysis.

1.6 Interference and Pulse Tests

When the flow rate is changed and the pressure response is
recorded in the same well, the test is called a “single-well”
test. Examples of single-well tests are drawdown, buildup,
injectivity, falloff and step-rate tests. When the flow rate is
changed in one well and the pressure response is recorded
in another well, the test is called a “multiple-well” test.
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Figure 1.97 Qualitative interpretation of buildup curves (After Economides, 1988).
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Figure 1.98 Rate history and pressure response of a
two-well interference test conducted by placing the
active well on production at constant rate.

Examples of multiple-well tests are interference and pulse
tests.

Single-well tests provide valuable reservoir and well char-
acteristics that include flow capacity kh, wellbore conditions,
and fracture length as examples of these important prop-
erties. However, these tests do not provide the directional
nature of reservoir properties (such as permeability in the x,
y, and z direction) and have inabilities to indicate the degree
of communication between the test wells and adjacent wells.
Multiple-well tests are run to determine:

● the presence or lack of communication between the test
well and surrounding wells;

● the mobility–thickness product kh/µ;
● the porosity–compressibility–thickness product φcth;
● the fracture orientation if intersecting one of the test wells;
● the permeability in the direction of the major and minor

axes.

The multiple-well test requires at least one active (produc-
ing or injecting) well and at least one pressure observation
well, as shown schematically in Figure 1.98. In an interfer-
ence test, all the test wells are shut-in until their wellbore
pressures stabilize. The active well is then allowed to pro-
duce or inject at constant rate and the pressure response in
the observation well(s) is observed. Figure 1.98 indicates
this concept with one active well and one observation well.
As the figure indicates, when the active well starts to pro-
duce, the pressure in the shut-in observation well begins to
respond after some “time lag” that depends on the reservoir
rock and fluid properties.

Pulse testing is a form of interference testing. The pro-
ducer or injector is referred to as “the pulser or the active
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Figure 1.99 Illustration of rate history and pressure
response for a pulse test (After Earlougher, R. Advances
in Well Test Analysis) (Permission to publish by the SPE,
copyright SPE, 1977).

well” and the observation well is called “the responder.” The
tests are conducted by sending a series of short-rate pulses
from the active well (producer or injector) to a shut-in obser-
vation well(s). Pulses generally are alternating periods of
production (or injection) and shut-in, with the same rate
during each production (injection) period, as illustrated in
Figure 1.99 for a two-well system.

Kamal (1983) provided an excellent review of interfer-
ence and pulse testing and summarized various methods that
are used to analyze test data. These methods for analyzing
interference and pulse tests are presented below.

1.6.1 Interference testing in homogeneous isotropic
reservoirs

A reservoir is classified as “homogeneous” when the poros-
ity and thickness do not change significantly with location.
An “isotropic” reservoir indicates that the permeability is
the same throughout the system. In these types of reser-
voirs, the type curve matching approach is perhaps the most
convenient to use when analyzing interference test data in
a homogeneous reservoir system. As given previously by
Equation 1.2.66, the pressure drop at any distance r from an
active well (i.e., distance between an active well and a shut-in
observation well) is expressed as:

pi − p(r , t) = �p =
[−70. 6QBµ

kh

]
Ei
[−948φctr2

kt

]

Earlougher (1977) expressed the above expression in a
dimensionless form as:

pi − p(r , t)
141. 2QBµ

kh
= − 1

2
Ei

[(−1
4

)(
φµctr2

w

0. 0002637kt

)(
r
rw

)2
]

From the definitions of the dimensionless parameters
pD, tD, and rD, the above equations can be expressed in a
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Figure 1.100 Dimensionless pressure for a single well in an infinite system, no wellbore storage, no skin.
Exponential–integral solution (After Earlougher, R. Advances in Well Test Analysis) (Permission to publish by the SPE,
copyright SPE, 1977).

dimensionless form as:

pD = − 1
2

Ei

[
−r2

D

4tD

]
[1.6.1]

with the dimensionless parameters as defined by:

pD = [pi − p(r , t)]kh
141. 2QBµ

rD = r
rw

tD = 0. 0002637kt
φµctr2

w

where:

p(r , t) = pressure at distance r and time t, psi
r = distance between the active well and a shut-in

observation well
t = time, hours

pi = reservoir pressure
k = permeability, md

Earlougher expressed in Equation 1.6.1 a type curve form
as shown previously in Figure 1.47 and reproduced for
convenience as Figure 1.100.

To analyze an interference test by type curve matching,
plot the observation well(s) pressure change �p versus time
on tracing paper laid over Figure 1.100 using the matching
procedure described previously. When the data is matched to
the curve, any convenient match point is selected and match
point values from the tracing paper and the underlying type
curve grid are read. The following expressions can then be

applied to estimate the average reservoir properties:

k =
[

141. 2QBµ

h

] [
pD

�p

]
MP

[1.6.2]

φ = 0. 0002637
ctr2

[
k
µ

][
t

tD/r2
D

]

MP

[1.6.3]

where:

r = distance between the active and observation wells, ft
k = permeability, md

Sabet (1991) presented an excellent discussion on the use
of the type curve approach in analyzing interference test data
by making use of test data given by Strobel et al. (1976). The
data, as given by Sabet, is used in the following example to
illustrate the type curve matching procedure:

Example 1.42 An interference test was conducted in a
dry gas reservoir using two observation wells, designated
as Well 1 and Well 3, and an active well, designated as Well
2. The interference test data is listed below:

● Well 2 is the producer, Qg = 12. 4 MMscf/day;
● Well 1 is located 8 miles east of Well 2, i.e., r12 = 8 miles;
● Well 3 is located 2 miles west of Well 2, i.e., r23 = 2 miles.

Flow rate Time Observed pressure (psia)

Q t Well 1 Well 3

(MMscf/day) (hr) p1 �p1 p3 �p3

0.0 24 2912.045 0.000 2908.51 0.00
12.4 0 2912.045 0.000 2908.51 0.00
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Figure 1.101 Interference data of Well 3. (After Sabet,
M. A. Well Test Analysis 1991, Gulf Publishing Company).

Flow rate Time Observed pressure(psia)

Q t Well 1 Well 3

(MMscf/day) (hr) p1 �p1 p3 �p3

12.4 24 2912.035 0.010 2907.66 0.85
12.4 48 2912.032 0.013 2905.80 2.71
12.4 72 2912.015 0.030 2903.79 4.72
12.4 96 2911.997 0.048 2901.85 6.66
12.4 120 2911.969 0.076 2899.98 8.53
12.4 144 2911.918 0.127 2898.25 10.26
12.4 169 2911.864 0.181 2896.58 11.93
12.4 216 2911.755 0.290 2893.71 14.80
12.4 240 2911.685 0.360 2892.36 16.15
12.4 264 2911.612 0.433 2891.06 17.45
12.4 288 2911.533 0.512 2889.79 18.72
12.4 312 2911.456 0.589 2888.54 19.97
12.4 336 2911.362 0.683 2887.33 21.18
12.4 360 2911.282 0.763 2886.16 22.35
12.4 384 2911.176 0.869 2885.01 23.50
12.4 408 2911.108 0.937 2883.85 24.66
12.4 432 2911.030 1.015 2882.69 25.82
12.4 444 2910.999 1.046 2882.11 26.40
0.0 450 Well 2 shut-in
0.0 480 2910.833 1.212 2881.45 27.06
0.0 504 2910.714 1.331 2882.39 26.12
0.0 528 2910.616 1.429 2883.52 24.99
0.0 552 2910.520 1.525 2884.64 23.87
0.0 576 2910.418 1.627 2885.67 22.84
0.0 600 2910.316 1.729 2886.61 21.90
0.0 624 2910.229 1.816 2887.46 21.05
0.0 648 2910.146 1.899 2888.24 20.27
0.0 672 2910.076 1.969 2888.96 19.55
0.0 696 2910.012 2.033 2889.60 18.91

The following additional reservoir data is available:

T = 671. 6◦R, h = 75 ft, cti = 2. 74 × 10−4 psi−1

Bgi = 920. 9 bbl/MMscf, rw = 0. 25 ft, Zi = 0. 868,

Sw = 0. 21, γg = 0. 62, µgi = 0. 0186 cp
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Figure 1.102 Interference data of Well 1. (After Sabet,
M. A. Well Test Analysis 1991, Gulf Publishing Company).

Using the type curve approach, characterize the reservoir
in terms of permeability and porosity.

Solution

Step 1. Plot �p vs. t on a log–log tracing paper with the
same dimensions as those of Figure 1.100, as shown
in Figures 1.101 and 1.102 for Wells 1 and 3, respec-
tively.

Step 2. Figure 1.103 shows the match of interference data
for Well 3, with the following matching points:

(pD)MP = 0. 1 and (�p)MP = 2 psi

(tD/r2
D)MP = 1 and (t)MP = 159 hours

Step 3. Solve for k and φ between Well 2 and Well 3 by
applying Equations 1.6.2 and 1.6.3

k =
[

141. 2QBµ

h

] [
pD

�p

]
MP

=
[

141. 2(12. 4)(920. 9)(0. 0186)
75

](
0. 1
2

)
= 19. 7 md

φ = 0. 0002637
ctr2

[
k
µ

][
t

tD/r2
D

]

MP

= 0. 0002637
(2. 74 × 10−4)(2 × 5280)2

(
19. 7

0. 0186

)(
159

1

)

= 0. 00144

Step 4. Figure 1.104 shows the match of the test data for
Well 1 with the following matching points:

(pD)MP = 1 and (�p)MP = 5. 6 psi

(tD/r2
D)MP = 0. 1 and (t)MP = 125 hours
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Figure 1.103 Match of interference data of Well 3. (After Sabet, M. A. Well Test Analysis 1991, Gulf Publishing
Company).
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Figure 1.104 Match of interference data of Well 1.
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Step 5. Calculate k and φ:

k =
[

141. 2(12. 4)(920. 9)(0. 0186)
75

](
1

5. 6

)

= 71. 8 md

φ = 0. 0002637
(2. 74 × 10−4)(8 × 5280)2

(
71. 8

0. 0180

)(
125
0. 1

)

= 0. 0026

In a homogeneous and isotropic reservoir, i.e., perme-
ability is the same throughout the reservoir, the minimum
area of the reservoir investigated during an interference test
between two wells located a distance r apart is obtained by
drawing two circles of radius r centered at each well.

1.6.2 Interference testing in homogeneous anisotropic
reservoirs

A homogeneous anisotropic reservoir is one in which the
porosity φ and thickness h are the same throughout the
system, but the permeability varies with direction. Using
multiple observation wells when conducting an interference
test in a homogeneous anisotropic reservoir, it is possible
to determine the maximum and minimum permeabilities,
i.e., kmax and kmin, and their directions relative to well loca-
tions. Based on the work of Papadopulos (1965), Ramey
(1975) adopted the Papadopulos solution for estimating
anisotropic reservoir properties from an interference test
that requires at least three observation wells for analysis.
Figure 1.105 defines the necessary nomenclature used in the
analysis of interference data in a homogeneous anisotropic
reservoir.

Figure 1.105 shows an active well, with its coordinates at
the origin, and several observation wells are each located
at coordinates defined by (x, y). Assuming that all the wells
in the testing area have been shut in for a sufficient time to
equalize the pressure to pi , placing the active well on produc-
tion (or injection) will cause a change in pressure of �p, i.e.,
�p = pi − p(x, y, t), at all observation wells. This change in

y

x

kmax
kmin

ACTIVE WELL WELL PATTERN
COORDINATES

θ

MINOR
PERMEABILITY
     AXIS

MAJOR
PERMEABILITY
                   AXIS

OBSERVATION WELL
    AT (x, y)

Figure 1.105 Nomenclature for anisotropic permeability
system (After Ramey, 1975).

the pressure will occur after a lag period with a length that
depends, among other parameters, on:

● the distance between the active well and observation well;
● permeability;
● wellbore storage in the active well;
● the skin factor following a lag period.

Ramey (1975) showed that the change in pressure at an
observation well with coordinates of (x, y) at any time t is
given by the Ei function as:

pD = − 1
2

Ei

[
−r2

D

4tD

]

The dimensionless variables are defined by:

pD = kh[pi − p(x, y, t)]
141. 2QBµ

[1.6.4]

tD

r2
D

=
[

(k)2

y2kx + x2ky − 2xykxy

](
0. 0002637t

φµct

)
[1.6.5]

with:

k =
√

kmaxkmin =
√

kxky − k2
xy [1.6.6]

Ramey also developed the following relationships:

kmax = 1
2

[
(kx + ky) +

√
(kxky)2 + 4k2

xy

]
[1.6.7]

kmin = 1
2

[
(kx + ky)2 −

√
(kxky)2 + 4k2

xy

]
[1.6.8]

θmax = arctan
(

kmax − kx

kxy

)
[1.6.9]

θmin = arctan
(

kmin − ky

kxy

)
[1.6.10]

where:
kx = permeability in x direction, md
ky = permeability in y direction, md

kxy = permeability in xy direction, md
kmin = minimum permeability, md
kmax = maximum permeability, md

k = average system permeability, md
θmax = direction (angle) of kmax as measured from

the +x axis
θmin = direction (angle) of kmin as measured from

the +y axis
x, y = coordinates, ft

t = time, hours

Ramey pointed out that if φµct is not known, solution of
the above equations will require that a minimum of three
observation wells is used in the test, otherwise the required
information can be obtained with only two observation wells.
Type curve matching is the first step of the analysis tech-
nique. Observed pressure changes at each observation well,
i.e., �p = pi − p(x, y, t), are plotted on log–log paper and
matched with the exponential–integral type curve shown in
Figure 1.100. The associated specific steps of the methodol-
ogy of using the type curve in determining the properties of a
homogeneous anisotropic reservoir are summarized below:

Step 1. From at least three observation wells, plot the
observed pressure change �p versus time t for each
well on the same size scale as the type curve given
in Figure 1.100.

Step 2. Match each of the observation well data set to the
type curve of Figure 1.100. Select a convenient match
point for each data set so that the pressure match
point (�p, pD)MP is the same for all observation well
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responses, while the time match points (t, tD/r2
D)MP

vary.
Step 3. From the pressure match point (�p, pD)MP, calculate

the average system permeability from:

k =
√

kminkmax =
[

141. 2QBµ

h

](
pD

�p

)
MP

[1.6.11]

Notice from Equation 1.6.6 that:

(k)2 = kminkmax = kxky − k2
xy [1.6.12]

Step 4. Assuming three observation wells, use the time match
[(t, (tD/r2

D)]MP for each observation well to write:
Well 1:[

(tD/r2
D)

t

]

MP

=
(

0. 0002637
φµct

)

×
(

(k)2

y2
1kx + x2

1ky − 2x1y1kxy

)

Rearranging gives:

y2
1kx + x2

1ky − 2x1y1kxy =
(

0. 0002637
φµct

)

×




(k)2[
(tD/r2

D)
t

]

MP




[1.6.13]
Well 2:[

(tD/r2
D)

t

]

MP

=
(

0. 0002637
φµct

)

×
(

(k)2

y2
2kx + x2

2ky − 2x2y2kxy

)

y2
2kx + x2

2ky − 2x2y2kxy =
(

0. 0002637
φµct

)

×




(k)2[
(tD/r2

D)
t

]

MP




[1.6.14]
Well 3:[

(tD/r2
D)

t

]

MP

=
(

0. 0002637
φµct

)

×
(

(k)2

y2
3kx + x2

3ky − 2x3y3kxy

)

y2
3kx + x2

3ky − 2x3y3kxy =
(

0. 0002637
φµct

)

×




(k)2[
(tD/r2

D)
t

]

MP




[1.6.15]

Equations 1.6.12 through 1.6.15 contain the following four
unknowns:

kx = permeability in x direction
ky = permeability in y direction

y

x

(0, 475)
(475, 514)

(475, 0)

1-D

5-D

1-E

5-E

47.3°

N

Figure 1.106 Well locations for Example 1.43 (After
Earlougher, R. Advances in Well Test Analysis)
(Permission to publish by the SPE, copyright SPE, 1977).

kxy = permeability in xy direction
φµct = porosity group

These four equations can be solved simultaneously for the
above four unknowns. The following example as given by
Ramey (1975) and later by Earlougher (1977) is used to clar-
ify the use of the proposed methodology for determining the
properties of an anisotropic reservoir.

Example 1.43 The following data is for an interference
test in a nine-spot pattern with one active well and eight
observation wells. Before testing, all wells were shut in.
The test was conducted by injecting at −115 STB/day and
observing the fluid levels in the remaining eight shut-in
wells. Figure 1.106 shows the well locations. For simplicity,
only the recorded pressure data for three observation wells,
as tabulated below, is used to illustrate the methodology.
These selected wells are labeled Well 5-E, Well 1-D, and
Well 1-E.

Well 1-D Well 5-E Well 1-E
t �p t �p t �p
(hr) (psi) (hr) (psi) (hr) (psi)

23.5 −6.7 21.0 −4.0 27.5 −3.0
28.5 −7.2 47.0 −11.0 47.0 −5.0
51.0 −15.0 72.0 −16.3 72.0 −11.0
77.0 −20.0 94.0 −21.2 95.0 −13.0
95.0 −25.0 115.0 −22.0 115.0 −16.0

−25.0

The well coordinates (x, y) are as follows:

Well x (ft) y (ft)

1 1-D 0 475
2 5-E 475 0
3 1-E 475 514

iw = −115 STB/day, Bw = 1. 0 bbl/STB, µw = 1. 0 cp,
φ = 20%, T = 75◦ F, h = 25 ft,
co = 7. 5 × 10−6 psi−1, cw = 3. 3 × 10−6 psi−1,
cf = 3. 7 × 10−6 psi−1, rw = 0. 563 ft, pi = 240 psi

Calculate kmax, kmin, and their directions relative to the x
axis.
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Figure 1.107 Interference data of Example 1.6 matched to Figure 1.100. Pressure match is the same of all curves.
(After Earlougher, R. Advances in Well Test Analysis). (Permission to publish by the SPE, copyright SPE, 1977).

Solution

Step 1. Plot �p versus time t for each of the three obser-
vation wells on a log–log plot of the same scale as
that of Figure 1.100. The resulting plots with the
associated match on the type curve are shown in
Figure 1.107.

Step 2. Select the same pressure match point on the pres-
sure scale for all the observation wells; however,
the match point on the time scale is different for all
wells:

Match point Well 1-D Well 5-E Well 1-E

(pD)MP 0.26 0.26 0.26
(tD/r2

D)MP 1.00 1.00 1.00
(�p)MP −10.00 −10. 00 −10.00
(t)MP 72.00 92.00 150.00

Step 3. From the pressure match point, use Equation 1.6.11
to solve for k:

k =
√

kminkmax =
[

141. 2QBµ

h

](
pD

�p

)
MP

=
√

kminkmax =
[

141. 2(−115)(1. 0)(1. 0)
25

](
0. 26
−10

)

= 16. 89 md

or:

kminkmax = (16. 89)2 = 285. 3

Step 4. Using the time match point (t, tD/r2
D)MP for each

observation well, apply Equations 1.6.13 through
1.6.15 to give:
For Well 1-D with (x1, y1) = (0, 475):

y2
1kx + x2

1ky − 2x1y1kxy =
(

0. 0002637
φµct

)

×




(k)2[
(tD/r2

D)
t

]

MP




(475)2kx + (0)2ky − 2(0)(475)

= 0. 0002637(285. 3)
φµct

(
72
1. 0

)

Simplifying gives:

kx = 2. 401 × 10−5

φµct
(A)

For Well 5-E with (x2, y2) = (475, 0):

(0)2kx + (475)2ky − 2(475)(0)kxy

= 0. 0002637(285. 3)
φµCt

(
92
1. 0

)
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or:

ky = 3. 068 × 10−5

φµct
(B)

For Well 1-E with (x3, y3) = (475, 514):

(514)2kx + (475)2ky − 2(475)(514)kxy

= 0. 0002637(285. 3)
φµct

(
150
1. 0

)

or:

0. 5411kx + 0. 4621ky − kxy = 2. 311 × 10−5

φµct
(C)

Step 5. Combine Equations A through C to give:

kxy = 4. 059 × 10−6

φµct
(D)

Step 6. Using Equations A, B, and D in Equation 1.6.12
gives:

[kxky] − k2
xy = (k)2

[
(2. 401 × 10−5)

(φµct )
(3. 068 × 10−5)

(φµct )

]

− (4. 059 × 10−6)2

(φµct )
= (16. 89)2 = 285. 3

or:

φµct =
√

(2. 401 × 10−5)(3. 068 × 10−5) − (4. 059 × 10−6)2

285. 3

= 1. 589 × 10−6 cp/psi

Step 7. Solve for ct :

ct = 1. 589 × 10−6

(0. 20)(1. 0)
= 7. 95 × 10−6 psi−1

Step 8. Using the calculated value of φµct from step 6, i.e.,
φµct = 1. 589×10−6, in Equations A, B, and D, solve
for kx , ky , and kxy :

kx = 2. 401 × 10−5

1. 589 × 10−6 = 15. 11 md

ky = 3. 068 × 10−5

1. 589 × 10−6 = 19. 31 md

kxy = 4. 059 × 10−6

1. 589 × 10−6 = 2. 55 md

Step 9. Estimate the maximum permeability value by apply-
ing Equation 1.6.7, to give:

kmax = 1
2

[
(kx + ky) +

√
(kxky)2 + 4k2

xy

]

= 1
2
[
(15. 11 + 19. 31)

+
√

(15. 11 − 19. 31)2 + 4(2. 55)2
]

= 20. 5 md

Step 10. Estimate the minimum permeability value by apply-
ing Equation 1.6.8:

kmin = 1
2

[
(kx + ky)2 −

√
(kxky)2 + 4k2

xy

]

= 1
2
[
(15. 11 + 19. 31)

−
√

(15. 11 − 19. 31)2 + 4(2. 55)2
]

= 13. 9 md

Step 11. Estimate the direction of kmax from Equation 1.6.9:

θmax = arctan
(

kmax − kx

kxy

)

= arctan
(

20. 5 − 15. 11
2. 55

)

= 64. 7◦ as measured from the +x axis

1.6.3 Pulse testing in homogeneous isotropic
reservoirs

Pulse tests have the same objectives as conventional inter-
ference tests, which include:

● estimation of permeability k;
● estimation of porosity–compressibility product φct ;
● whether pressure communication exists between wells.

The tests are conducted by sending a sequence of flow
disturbances “pulses” into the reservoir from an active well
and monitoring the pressure responses to these signals at
shut-in observation wells. The pulse sequence is created by
producing from (or injecting into) the active well, then shut-
ting it in, and repeating that sequence in a regular pattern, as
depicted by Figure 1.108. The figure is for an active produc-
ing well that is pulsed by shutting in, continuing production,
and repeating the cycle.

The production (or injection) rate should be the same
during each period. The lengths of all production periods
and all shut-in periods should be equal; however, produc-
tion periods do not have to equal shut-in periods. These
pulses create a very distinctive pressure response at the
observation well which can be easily distinguished from
any pre-existing trend in reservoir pressure, or random
pressure perturbations “noise,” which could otherwise be
misinterpreted.

It should be noted that pulse testing offers several advan-
tages over conventional interference tests:

● Because the pulse length used in a pulse test is short,
ranging from a few hours to a few days, boundaries
seldom affect the test data.

● Because of the distinctive pressure response, there are
fewer interpretation problems caused by random “noise”
and by trends in reservoir pressure at the observation
well.

● Because of shorter test times, pulse tests cause less
disruption of normal field operations than interference
test.

For each pulse, the pressure response at the observation
well is recorded (as illustrated in Figure 1.109) with a very
sensitive pressure gauge. In pulse tests, pulse 1 and pulse 2
have characteristics that differ from those of all subsequent
pulses. Following these pulses, all odd pulses have similar
characteristics and all even pulses also have similar charac-
teristics. Any one of the pulses can be analyzed for k and φct .
Usually, several pulses are analyzed and compared.

Figure 1.109, which depicts the rate history of the active
well and the pressure response at an observation well, illus-
trates the following five parameters which are required for
the analysis of a pulse test:

(1) The “pulse period” �tp represents the length of the shut-
in time.

(2) The “cycle period” �tC represents the total time length
of a cycle, i.e., the shut-in period plus the flow or injection
period.

(3) The “flowing or injection period” �tf represents the
length of the flow or injection time.
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Figure 1.110 Pulse testing: relation between time lag and response amplitude for first odd pulse. (After Kamal and
Brigham, 1976).

(4) The “time lag” tL represents the elapsed time between
the end of a pulse and the pressure peak caused by the
pulse. This time lag tL is associated with each pulse and
essentially describes the time required for a pulse cre-
ated when the rate is changed to move from the active
well to the observation well. It should be pointed out
that a flowing (or injecting) period is a “pulse” and a
shut-in period is another pulse; the combined two pulses
constitute a “cycle.”

(5) The “pressure response amplitude” �p is the vertical
distance between two adjacent peaks (or valleys) and a
line parallel to this through the valley (or peak), as illus-
trated in Figure 1.109. Analysis of simulated pulse tests
show that pulse 1, i.e., the “first odd pulse,” and pulse 2,
i.e., the “first even pulse,” have characteristics that differ
from all subsequent pulses. Beyond these initial pulses,
all odd pulses have similar characteristics, and all even
pulses exhibit similar behavior.

Kamal and Brigham (1975) proposed a pulse test analysis
technique that uses the following four dimensionless groups:

(1) Pulse ratio F \, as defined by:

F \ = pulse period
cycle period

= �tp

�tp + �tf
= �tp

�tC
[1.6.16]

where the time is expressed in hours.

(2) Dimensionless time lag (tL )D, as given by:

(tL )D = tL

�tC
[1.6.17]

where:

k = average permeability, md

(3) Dimensionless distance (rD) between the active and
observation wells:

rD = r
rw

[1.6.18]

where:

r = distance between the active well and the observation
well, ft

(4) Dimensionless pressure response amplitude �pD:

�pD =
[

kh
141. 2Bµ

�p
Q

]
[1.6.19]

where Q is the rate at the active well while it is active,
with the sign convention that �p/Q is always positive,
i.e., the absolute value of

∣∣�p/Q
∣∣.

Kamal and Brigham developed a family of curves, as
shown in Figures 1.110 through 1.117, that correlates the
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Figure 1.111 Pulse testing: relation between time lag and response amplitude for first even pulse. (After Kamal and
Brigham, 1976).

pulse ratio F \ and the dimensionless time lag (tL)D to the
dimensionless pressure �pD. These curves are specifically
designated to analyze the pulse test data for the following
conditions:

● First odd pulse: Figures 1.110 and 1.114.
● First even pulse: Figures 1.111 and 1.115.
● All the remaining odd pulses except the first: Figures 1.112

and 1.116.
● All the remaining even pulses except the first: Figures

1.113 and 1.117.

The time lag tL and pressure response amplitude �p
from one or more pulse responses are used to estimate the
average reservoir permeability from:

k =
[

141. 2QBµ

h�p[(tL )D]2

] [
�pD(tL /�tC)2]

Fig [1.6.20]

The term
[
�pD(tL /�tC)2

]
Fig is determined from Figures

1.110, 1.111, 1.112, or 1.113 for the appropriate values of
tL /�tC and F \. The other parameters of Equation 1.6.20 are
defined below:

�p = amplitude of the pressure response from the obs-
ervation well for the pulse being analyzed, psi

�tC = cycle length, hours
Q = production (injection) rate during active period,

STB/day
k = average permeability, md

Once the permeability is estimated from Equation 1.6.20, the
porosity–compressibility product can be estimated from:

φct =
[

0. 0002637k(tL )
µr2

]
1

[(tL )D/r2
D] Fig

[1.6.21]

where:

tL = time lag, hours
r = distance between the active well and observation

well, ft

The term
[
(tL )D/r2

D

]
Fig is determined from Figures 1.114,

1.115, 1.116, or 1.117. Again, the appropriate figure to be
used in analyzing the pressure response data depends
on whether the first-odd or fist-even pulse or one of the
remaining pulses is being analyzed.

Example 1.44a In a pulse test following rate stabilization,
the active well was shut in for 2 hours, then produced
for 2 hours, and the sequence was repeated several times.

aAfter John Lee, Well Testing (1982).
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Figure 1.112 Pulse testing: relation between time lag and response amplitude for all odd pulses after the first. (After
Kamal and Brigham, 1976).

An observation well at 933 ft from the active well recorded an
amplitude pressure response of 0.639 psi during the fourth
pulse and a time lag of 0.4 hours. The following additional
data is also available:

Q = 425 STB/day, B = 1. 26 bbl/STB,

r = 933 ft, h = 26 ft,

µ = 0. 8 cp, φ = 0. 08

Estimate k and φct .

Solution

Step 1. Calculate the pulse ratio F \ from Equation 1.6.16, to
give:

F \ = �tp

�tC
= �tp

�tp + �tf
= 2

2 + 2
= 0. 5

Step 2. Calculate the dimensionless time lag (tL )D by apply-
ing Equation 1.6.17:

(tL )D = tL

�tC
= 0. 4

4
= 0. 1

Step 3. Using the values of (tL )D = 0. 1 and F \ = 0. 5, use
Figure 1.113 to get:[

�pD(tL /�tC)2]
Fig = 0. 00221

Step 4. Estimate the average permeability from Equation
1.6.20, to give:

k =
[

141. 2QBµ

h�p[(tL )D]2

] [
�pD(tL /�tC)2]

Fig

=
[

(141. 2)(425)(1. 26)(0. 8)
(26)(0. 269)[0. 1]2

]
(0. 00221) = 817 md

Step 5. Using (tL )D = 0. 1 and F \ = 0. 5, use Figure 1.117
to get: [

(tL )D/r2
D

]
Fig = 0. 091

Step 6. Estimate the product φct by applying Equation 1.6.21

φct =
[

0. 0002637k(tL )
µr2

]
1

[(tL )D/r2
D] Fig

=
[

0. 0002637(817)(0. 4)
(0. 8)(933)2

]
1

(0. 091)

= 1. 36 × 10−6

Step 7. Estimate ct as:

ct = 1. 36 × 10−6

0. 08
= 17 × 10−6 psi−1
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Figure 1.113 Pulse testing: relation between time lag and response amplitude for all even pulses after the first. (After
Kamal and Brigham, 1976).

Example 1.45a A pulse test was conducted using an injec-
tion well as the pulsing well in a five-spot pattern with the
four offsetting production wells as the responding wells. The
reservoir was at its static pressure conditions when the first
injection pulse was initiated at 9:40 a.m., with an injection
rate of 700 bbl/day. The injection rate was maintained for 3
hours followed by a shut-in period for 3 hours. The injection
shut-in periods were repeated several times and the results
of pressure observation are given in Table 1.9. The following
additional data is available:

µ = 0. 87 cp, ct = 9. 6 × 10−6 psi−1,

φ = 16%, r = 330 ft

Calculate the permeability and average thickness.

Solution

Step 1. Plot the pressure response from one of the observa-
tions well as a function of time, as shown in Figure
1.118.
Analyzing first odd-pulse pressure data

Step 1. From Figure 1.118 determine the amplitude pres-
sure response and time lag during the first pulse,

aData reported by H. C. Slider, Worldwide Practical Petroleum Reser-
voir Engineering Methods, Penn Well Books, 1983.

to give:

�p = 6. 8 psi

tL = 0. 9 hour

Step 2. Calculate the pulse ratio F \ from Equation 1.6.16, to
give:

F \ = �tp

�tC
= 3

3 + 3
= 0. 5

Step 3. Calculate the dimensionless time lag (tL )D by apply-
ing Equation 1.6.17:

(tL )D = tL

�tC
= 0. 9

6
= 0. 15

Step 4. Using the values of (tL )D = 0. 15 and F \ = 0. 5, use
Figure 1.110 to get:[

�pD(tL /�tC)2]
Fig = 0. 0025

Step 5. Estimate average hk from Equation 1.6.20, to give:

hk =
[

141. 2QBµ

�p[(tL )D]2

] [
�pD(tL /�tC)2]

Fig

=
[

(141. 2)(700)(1. 0)(0. 86)
(6. 8)[0. 15]2

]
(0. 0025)

= 1387. 9 md ft
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Figure 1.114 Pulse testing: relation between time lag and cycle length for first odd pulse. (After Kamal and Brigham,
1976).

Step 6. Using (tL )D = 0. 15 and F \ = 0. 5, use Figure 1.114
to get: [

(tL )D/r2
D

]
Fig = 0. 095

Step 7. Estimate the average permeability by rearranging
Equation 1.6.21 as:

k =
[

φctµr2

0. 0002637(tL )

] [
(tL )D/r2

D

]
Fig

=
[

(0. 16)(9. 6 × 10−6)(0. 86)(330)2

0. 0002637(0. 9)

]
(0. 095)

= 57. 6 md
Estimate the thickness h from the value of the prod-
uct hk as calculated in step 5 and the above average
permeability. That is:

k =
[

hk

k

]
=
[

1387. 9
57. 6

]
= 24. 1 ft

Analyzing the fifth pulse pressure data

Step 1. From Figure 1.110 determine the amplitude pres-
sure response and time lag during the fifth pulse, to
give:

�p = 9. 2 psi
tL = 0. 7 hour

Step 2. Calculate the pulse ratio F \ from Equation 1.6.16 to
give:

F \ = �tp

�tC
= �tp

�tp + �tf
= 3

3 + 3
= 0. 5

Step 3. Calculate the dimensionless time lag (tL )D by apply-
ing Equation 1.6.17:

(tL )D = tL

�tC
= 0. 7

6
= 0. 117

Step 4. Using the values of (tL )D = 0. 117 and F \ = 0. 5, use
Figure 1.111 to get:[

�pD(tL /�tC)2]
Fig = 0. 0018

Step 5. Estimate average hk from equation 1.6.20, to give:

hk =
[

141. 2QBµ

�p[(tL )D]2

] [
�pD(tL /�tC)2]

Fig

=
[

(141. 2)(700)(1. 0)(0. 86)
(9. 2)[0. 117]2

]
(0. 0018)

= 1213 md ft

Step 6. Using (tL )D = 0. 117 and F \ = 0. 5, use Figure 1.115
to get: [

(tL )D/r2
D

]
Fig = 0. 093
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Figure 1.115 Pulse testing: relation between time lag and cycle length for first even pulse. (After Kamal and Brigham,
1976).

Step 7. Estimate the average permeability by rearranging
Equation 1.6.21 as:

k =
[

φctµr2

0. 0002637(tL )

]
[(tL )D/r2

D]Fig

=
[

(0. 16)(9. 6 × 10−6)(0. 86)(330)2

0. 0002637(0. 7)

]
(0. 095)

= 72. 5 md

Estimate the thickness h from the value of the prod-
uct hk as calculated in step 5 and the above average
permeability. That is:

k =
[

hk

k

]
=
[

1213
72. 5

]
= 16. 7 ft

The above calculations should be repeated for all other
pulses and the results should be compared with core and con-
ventional well testing analysis to determine the best values
that describe these properties.

1.6.4 Pulse testing in homogeneous anisotropic
reservoirs

The analysis for the pulse test case is the same as that
for the homogeneous isotropic case, except the average
permeability k as defined by Equation 1.6.6 is introduced
into 1.6.20 and 1.6.21, to give:

k =
√

kxky − k2
xy =

[
141. 2QBµ

h�p[(tL )D]2

] [
�pD(tL /�tC)2]

Fig

[1.6.22]
and:

φct =
[

0. 0002637(tL )
µr2

][
(k)2

y2kx + x2ky − 2xykxy

]

× 1[
(tL )D/r2

D

]
Fig

[1.6.23]

The solution methodology outlined in analyzing interfer-
ence test data in homogeneous anisotropic reservoirs can be
employed when estimating various permeability parameters
from pulse testing.

1.6.5 Pulse test design procedure
Prior knowledge of the expected pressure response is impor-
tant so that the range and sensitivity of the pressure gauge
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Figure 1.116 Pulse testing: relation between time lag and cycle length for all odd pulses after the first. (After Kamal
and Brigham, 1976).

and length of time needed for the test can be predeter-
mined. To design a pulse test, Kamal and Brigham (1975)
recommend the following procedure:

Step 1. The first step in designing a pulse test is to select
the appropriate pulse ratio F \ as defined by Equation
1.6.16, i.e., pulse ratio = pulse period/cycle period. A
pulse ratio near 0.7 is recommended if analyzing the
odd pulses; and near 0.3 if analyzing the even pulses.
It should be noted the F \ should not exceed 0.8 or
drop below 0.2.

Step 2. Calculate the dimensionless time lag from one of the
following approximations:

For odd pulses (tL )D = 0. 09 + 0. 3F \ [1.6.24]

For even pulses (tL )D = 0. 027 − 0. 027F \
[1.6.25]

Step 3. Using the values of F \ and (tL )D from step 1 and step
2 respectively, determine the dimensionless param-
eter

[
(tL )D/r2

D

]
from Figure 1.114 or Figure 1.115.

Step 4. Using the values of F \ and (tL )D, determine the
dimensionless response amplitude

[
�pD(tL /�tC)2

]
Fig

from the appropriate curve in Figure 1.110 or
Figure 1.111.

Step 5. Using the following parameters:

● estimates of k, h, φ, µ, and ct ,
● values of

⌊
(tL )D/r2

D

⌋
Fig and

[
�pD(tL /�tC)2

]
Fig

from step 3 and 4, and
● Equations 1.6.1 and 1.6.2

calculate the cycle period (�tC) and the response
amplitude �p from:

tL =
[

φµctr2

0. 0002637k

] [
(tL)D /r2

D

]
Fig [1.6.26]

�tC = tL

(tL)D
[1.6.27]

�p =
[

141. 2QBµ

hk [(tL)D]2

] [
�pD(tL /�tC)2]

Fig [1.6.28]

Step 6. Using the pulse ratio F \ and cycle period �tC, cal-
culate the pulsing (shut-in) period and flow period
from:

Pulse (shut-in) period �tp = F \�tC

Flow period �tf = �tC − �tp
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Figure 1.117 Pulse testing: relation between time lag and cycle length for all even pulses after the first. (After Kamal
and Brigham, 1976).

Table 1.9 Pressure behaviour of producing Well. After Slider, H. C., Worldwide
Practical Petroleum Reservoir Engineering Methods, copyright ©1983, Penn Well
Publishing

Time Pressure Time Pressure Time Pressure
(psig) (psig) (psig)

9:40 a.m 390.1 2:23 p.m. 411.6 11:22 p.m. 425.1
10:10 a.m. 390.6 2:30 p.m. 411.6 12:13 a.m. 429.3
10:30 a.m. 392.0 2:45 p.m. 411.4 12:40 a.m. 431.3
10:40 a.m. 393.0 3:02 p.m. 411.3 1:21 a.m. 433.9
10:48 a.m. 393.8 3:30 p.m. 411.0 1:53 a.m. 433.6
11:05 a.m. 395.8 4:05 p.m 410.8 2:35 a.m. 432.0
11:15 a.m. 396.8 4:30 p.m. 412.0 3:15 a.m. 430.2
11:30 a.m. 398.6 5:00 p.m. 413.2 3:55 a.m. 428.5
11:45 a.m. 400.7 5:35 p.m. 416.4 4:32 a.m. 428.8
12:15 p.m. 403.8 6:00 p.m. 418.9 5:08 a.m. 430.6
12:30 p.m. 405.8 6:35 p.m. 422.3 5:53 a.m. 434.5
12:47 p.m. 407.8 7:05 p.m. 424.6 6:30 a.m. 437.4
1:00 p.m. 409.1 7:33 p.m. 425.3 6:58 a.m. 440.3
1:20 p.m. 410.7 7:59 p.m. 425.1 7:30 a.m. 440.9
1:32 p,m. 411.3 8:31 p.m. 423.9 7:58 a.m. 440.7
1:45 p.m. 411.7 9:01 p.m, 423.1 8:28 a.m. 439.6
2:00 p.m. 411.9 9:38 p.m. 421.8 8:57 a.m. 438.6
2:15 p.m. 411.9 10:26 p.m. 421.4 9:45 a.m. 437.0
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Figure 1.118 Pulse pressure response for Example 1.45.

Example 1.46 Design a pulse test using the following
approximate properties:

µ = 3 cp, φ = 0. 18, k = 200 md

h = 25 ft, r = 600 ft, ct = 10 × 10−6 psi−1

B = 1 bbl/STB, Q = 100 bbl/day, F \ = 0. 6

Solution

Step 1. Calculate (tL )D from Equation 1.6.24 or 1.6.25. Since
F \ is 0.6, the odd pulses should be used and therefore
from Equation 1.6.24:

(tL )D = 0. 09 + 0. 3(0. 6) = 0. 27

Step 2. Selecting the first odd pulse, determine the dimen-
sionless cycle period from Figure 1.114 to get:[

(tL)D /r2
D

]
Fig = 0. 106

Step 3. Determine the dimensionless response amplitude
from Figure 1.110 to get:[

�pD(tL /�tC)2]
Fig = 0. 00275

Step 4. Solve for tL , �tC, and �p by applying Equations
1.6.26 through 1.6.28, to give:
Time lag:

tL =
[

φµCtr2

0. 0002637k

] [
(tL)D /r2

D

]
Fig

=
[

(0. 18)(3)(10 × 10−6)(660)2

(0. 0002637)(200)

]
(0. 106)

= 4. 7 hours

Cycle time:

�tC = tL

(tL )D
= 4. 7

0. 27
= 17. 5 hours

Pulse length (shut-in):

�tP = �tCF \ = (17. 5)(0. 27) ≈ 5 hours

Flow period:

�tf = �tC − �tP = 17. 5 − 4. 7 ≈ 13 hours

Step 5. Estimate the pressure response from Equation
1.6.28:

�p =
[

141. 2QBµ

hk [(tL)D]2

] [
�pD(tL /�tC)2]

Fig

=
[

(141. 2)(100)(1)(3)
(25)(200)(0. 27)2

]
(0. 00275) = 0. 32 psi

This is the expected response amplitude for odd-pulse anal-
ysis. We shut in the well for 5 hours and produced for 13
hours and repeated each cycle with a period of 18 hours.

The above calculations can be repeated if we desire to
analyze the first even-pulse response.

1.7 Injection Well Testing

Injectivity testing is a pressure transient test during injec-
tion into a well. Injection well testing and the associated
analysis are essentially simple, as long as the mobility ratio
between the injected fluid and the reservoir fluid is unity.
Earlougher (1977) pointed out that the unit-mobility ratio is
a reasonable approximation for many reservoirs under water
floods. The objectives of injection tests are similar to those
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of production tests, namely the determination of:

● permeability;
● skin;
● average pressure;
● reservoir heterogeneity;
● front tracking.

Injection well testing involves the application of one or more
of the following approaches:

● injectivity test;
● pressure falloff test;
● step-rate injectivity test.

The above three analyses of injection well testing are briefly
presented below.

1.7.1 Injectivity test analysis
In an injectivity test, the well is shut in until the pressure
is stabilized at initial reservoir pressure pi . At this time,
the injection begins at a constant rate qinj, as schematically
illustrated in Figure 1.119, while recording the bottom-hole
pressure pwf . For a unit-mobility ratio system, the injectivity
test would be identical to a pressure drawdown test except
that the constant rate is negative with a value of qinj. How-
ever, in all the preceding relationships, the injection rate will
be treated as a positive value, i.e., qinj > 0.

For a constant injection rate, the bottom-hole pressure is
given by the linear form of Equation 1.3.1 as:
pwf = p1 hr + m log(t) [1.7.1]

The above relationship indicates that a plot of bottom-
hole injection pressure versus the logarithm of injection
time would produce a straight-line section as shown in
Figure 1.119, with an intercept of p1 hr and a slope m as
defined by:

m = 162. 6qinjBµ

kh
where:

qinj = absolute value of injection rate, STB/day
m = slope, psi/cycle
k = permeability, md
h = thickness, ft
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Figure 1.119 Idealized rate schedule and pressure
response for injectivity testing.

Sabet (1991) pointed out that, depending on whether the
density of the injected fluid is higher or lower than the reser-
voir fluid, the injected fluid will tend to override or underride
the reservoir fluid and, therefore the net pay h which should
be used in interpreting injectivity tests would not be the
same as the net pay which is used in interpreting drawdown
tests.

Earlougher (1977) pointed out that, as in drawdown test-
ing, the wellbore storage has great effects on the recorded
injectivity test data due to the expected large value of the
wellbore storage coefficient. Earlougher recommended that
all injectivity test analyses must include the log–log plot of
(pwf −pi) versus injection time with the objective of determin-
ing the duration of the wellbore storage effects. As defined
previously, the beginning of the semilog straight line, i.e., the
end of the wellbore storage effects, can be estimated from
the following expression:

t >
(200 000 + 12 000s)C

kh/µ
[1.7.2]

where:

t = time that marks the end of wellbore storage effects,
hours

k = permeability, md
s = skin factor

C = wellbore storage coefficient, bbl/psi
µ = viscosity, cp

Once the semilog straight line is identified, the permeabil-
ity and skin can be determined as outlined previously by:

k = 162. 6qinjBµ

mh
[1.7.3]

s = 1. 1513
[

p1 hr − pi

m
− log

(
k

φµctr2
w

)
+ 3. 2275

]
[1.7.4]

The above relationships are valid as long as the mobility
ratio is approximately equal to 1. If the reservoir is under
water flood and a water injection well is used for the injec-
tivity test, the following steps summarize the procedure of
analyzing the test data assuming a unit-mobility ratio:

Step 1. Plot (pwf −pi) versus injection time on a log–log scale.
Step 2. Determine the time at which the unit-slope line, i.e.,

45◦ line, ends.
Step 3. Move 1 1

2 log cycles ahead of the observed time in
step 2 and read the corresponding time which marks
the start of the semilog straight line.

Step 4. Estimate the wellbore storage coefficient C by
selecting any point on the unit-slope line and read-
ing its coordinates, i.e., �p and t, and applying the
following expression:

C = qinjBt
24�p

[1.7.5]

Step 5. Plot pwf vs. t on a semilog scale and determine
the slope m of the straight line that represents the
transient flow condition.

Step 6. Calculate the permeability k and skin factor from
Equations 1.7.3 and 1.7.4 respectively.

Step 7. Calculate the radius of investigation rinv at the end of
injection time. That is:

rinv = 0. 0359

√
kt

φµct
[1.7.6]

Step 8. Estimate the radius to the leading edge of the
water bank rwb before the initiation of the injectivity
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Figure 1.120 Log–log data plot for the injectivity test of Example 1.47. Water injection into a reservoir at static
conditions (After Earlougher, R. Advances in Well Test Analysis) (Permission to publish by the SPE, copyright
SPE, 1977).

test from:

rwb =
√

5. 615Winj

πhφ(Sw − Swi)
=
√

5. 615Winj

πhφ(�Sw)
[1.7.7]

where:

rwb = radius to the water bank, ft
Winj = cumulative water injected at the start of the

test, bbl
Sw = average water saturation at the start of the

test
swi = initial water saturation

Step 9. Compare rwb with rinv : if rinv < rwb, the unit-mobility
ratio assumption is justified.

Example 1.47a Figures 1.120 and 1.121 show pressure
response data for a 7 hour injectivity test in a water-flooded
reservoir in terms of log(pwf − pi) vs. log(t) and log(pwf ) vs.
log(t) respectively. Before the test, the reservoir had been
under water flood for 2 years with a constant injection rate of
100 STB/day. The injectivity test was initiated after shutting
in all wells for several weeks to stabilize the pressure at pi .
The following data is available:

ct = 6. 67 × 10−6 psi−1

B = 1. 0 bbl/STB, µ = 1. 0 cp

Sw = 62. 4 lb/ft3, φ = 0. 15, qinj = 100 STB/day

h = 16 ft, rw = 0. 25 ft, pi = 194 psig

�Sw = 0. 4, depth = 1002 ft, total test time = 7 hours

The well is completed with 2 inch tubing set on a packer.
Estimate the reservoir permeability and skin factor.

aAfter Robert Earlougher, Advances in Well Test Analysis, 1977.

Solution

Step 1. The log–log data plot of Figure 1.120 indicates that
the data begins to deviate from the unit-slope line at
about 0.55 hours. Using the rule of thumb of moving
1 to 1 1

2 cycles in time after the data starts deviating
from the unit-slope line, suggests that the start of
the semilog straight line begins after 5 to 10 hours
of testing. However, Figures 1.120 and 1.121 clearly
show that the wellbore storage effects have ended
after 2 to 3 hours.

Step 2. From the unit-slope portion of Figure 1.120, select
the coordinates of a point (i.e. ,�p and t) end calcu-
late the wellbore storage coefficient C by applying
Equation 1.7.5:

�p = 408 psig

t = 1 hour

C = qinjBt
24�p

= (100)(1. 0)(1)
(24)(408)

= 0. 0102 bbl/psi

Step 3. From the semilog plot in Figure 1.121, determine the
slope of the straight line m to give:

m = 770 psig/cycle

Step 4. Calculate the permeability and skin factor by using
Equations 1.7.3 and 1.7.4:

k = 162. 6qinjBµ

mh

= (162. 6)(100)(1. 0)(1. 0)
(80)(16)

− 12. 7 md
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Figure 1.121 Semilog plot for the injectivity test of Example 1.47. Water injection into a reservoir at static conditions
(After Earlougher, R. Advances in Well Test Analysis) (Permission to publish by the SPE, copyright SPE, 1977).

s = 1. 1513
[

p1 hr − pi

m
− log

(
k

φµctr2
w

)
+ 3. 2275

]

= 1. 1513
[

770 − 194
80

− log
(

12. 7
(0. 15)(1. 0)(6. 67 × 10−6)(0. 25)2

)

+ 3. 2275
]

= 2. 4

Step 5. Calculate the radius of investigation after 7 hours by
applying Equation 1.7.6:

rinv = 0. 0359

√
kt

φµct

= 0. 0359

√
(12. 7)(7)

(0. 15)(1. 0)(6. 67 × 10−6)
� 338 ft

Step 6. Estimate the distance of the leading edge of the water
bank before the start of the test from Equation 1.7.7:

Winj ∼= (2)(365)(100)(1. 0) = 73 000 bbl

rwb =
√

5. 615Winj

πhφ(�Sw)

=
√

(5. 615)(73 000)
π(16)(0. 15)(0. 4)

∼= 369 ft

Since rinv < rwb, the use of the unit-mobility ratio
analysis is justified.

1.7.2 Pressure falloff test
A pressure falloff test is usually preceded by an injectiv-
ity test of a long duration. As illustrated schematically in
Figure 1.122, falloff testing is analogous to pressure buildup
testing in a production well. After the injectivity test that
lasted for a total injection time of tp at a constant injection
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Figure 1.122 Idealized rate schedule and pressure
response for falloff testing.

rate of qinj, the well is then shut in. The pressure data taken
immediately before and during the shut in period is analyzed
by the Horner plot method.

The recorded pressure falloff data can be represented by
Equation 1.3.11, as:

pws = p∗ + m
[

log
(

tp + �t
�t

)]

with:

m =
∣∣∣∣162. 6qinjBµ

kh

∣∣∣∣
where p∗ is the false pressure that is only equal to the initial
(original) reservoir pressure in a newly discovered field. As
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Figure 1.123 Horner plot of a typical falloff test.

shown in Figure 1.123, a plot of pws vs. log
[(

tp + �t
)

/�t
]

would form a straight-line portion with an intercept of p∗ at(
tp + �t

)
/�t = 1 and a negative slope of m.

It should be pointed out that the log–log data plot should
be constructed to identify the end of the wellbore storage
effects and beginning of the proper semilog straight line.
The permeability and skin factor can be estimated as outlined
previously by the expressions:

k = 162. 6qinjBµ

|m| h

s = 1. 513
[

pwf at �t=0 − p1 hr

|m| − log
(

k
φµctr2

w

)
+ 3. 2275

]

Earlougher (1977) indicated that if the injection rate varies
before the falloff test, the equivalent injection time may be
approximated by:

tp = 24Winj

qinj

where Winj is the cumulative volume injected since the last
pressure equalization, i.e., last shut-in, and qinj is the injection
rate just before shut-in.

It is not uncommon for a falloff test to experience a change
in wellbore storage after the test begins at the end of the
injectivity test. This will occur in any well which goes on
vacuum during the test. An injection well will go on vacuum
when the bottom-hole pressure decreases to a value which is
insufficient to support a column of water to the surface. Prior
to going on vacuum, an injection well will experience storage
due to water expansion; after going on vacuum, the storage
will be due to a falling fluid level. This change in storage will
generally exhibit itself as a decrease in the rate of pressure
decline.

The falloff data can also be expressed in graphical form by
plotting pws vs. log(�t) as proposed by MDH (Miller–Dyes–
Hutchinson). The mathematical expression for estimating
the false pressure p∗ from the MDH analysis is given by
Equation 1.3.12 as:

p∗ = p1 hr − |m| log(tp + 1) [1.7.8]

Earlougher pointed out that the MDH plot is more prac-
tical to use unless tp is less than about twice the shut-in
time.

The following example, as adopted from the work of
McLeod and Coulter (1969) and Earlougher (1977), is used
to illustrate the methodology of analyzing the falloff pressure
data.

Example 1.48a During a stimulation treatment, brine
was injected into a well and the falloff data, as reported by
McLeod and Coulter (1969), is shown graphically in Figures
1.124 through 1.126. Other available data includes:

total injection time tp = 6. 82 hours,
total falloff time = 0.67 hours
qinj = 807 STB/day, Bw = 1. 0 bbl/STB,
cw = 3. 0 × 10−6 psi−1

φ = 0. 25, h = 28 ft, µw = 1. 0 cp
ct = 1. 0 × 10−5 psi−1, rw = 0. 4 ft, Sw = 67. 46 lb/ft3

depth = 4819 ft,
hydrostatic fluid gradient = 0.4685 psi/ft

The recorded shut-in pressures are expressed in terms of
wellhead pressures pts with ptf at �t=0 = 1310 psig. Calculate:

● the wellbore storage coefficient;
● the permeability;
● the skin factor;
● the average pressure.

Solution

Step 1. From the log–log plot of Figure 1.124, the semilog
straight line begins around 0.1 to 0.2 hours after
shut-in. Using �p = 238 psi at �t = 0. 01 hours
as the selected coordinates of a point on the unit-
slope straight line, calculate the wellbore storage
coefficient from Equation 1.7.5, to give:

C = qinjBt
24�p

= (807)(1. 0)(0. 01)
(24)(238)

= 0. 0014 bbl/psi

Step 2. Figures 1.125 and 1.126 show the Horner plot,
i.e., “wellhead pressures vs. log

[(
tp + �t

)
/�t

]
,”

and the MDH plot, i.e., “wellhead pressures
vs. log(�t), respectively, with both plots giving:

m = 270 psig/cycle

p1 hr = 85 psig

Using these two values, calculate k and s:

k = 162. 6qinjBµ

|m| h

= (162. 6)(807)(1. 0)(1. 0)
(270)(28)

= 17. 4 md

s = 1.513
[

pwf at �t=0 − p1 hr

|m| − log
(

k
φµctr2

w

)
+3.2275

]

= 1.513
[

1310−85
270

− log
(

17.4
(0.25)(1.0)(1.0×10−5)(0.4)2

)]

+ 3.2275 = 0.15

Step 3. Determine p∗ from the extrapolation of the Horner
plot of Figure 1.125 to (tp + �t)/�t = 1, to give:

p∗
ts = −151 psig

Equation 1.7.8 can be used to approximate p∗:

p∗ = p1 hr − |m| log(tp + 1)

p∗
ts = 85 − (270) log(6. 82 + 1) = −156 psig

aRobert Earlougher, Advances in Well Test Analysis, 1977.
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Figure 1.124 Log–log data plot for a falloff test after brine injection, Example 1.48 (After Earlougher, R. Advances in
Well Test Analysis) (Permission to publish by the SPE, copyright SPE, 1977).
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Figure 1.125 Horner plot of pressure falloff after brine injection, Example 1.48.

This is the false pressure at the wellhead, i.e., the
surface. Using the hydrostatic gradient of 0.4685
psi/ft and the depth of 4819 ft, the reservoir false
pressure is:

p∗ = (4819)(0. 4685) − 151 = 2107 psig

and since injection time tp is short compared with
the shut-in time, we can assume that:

p = p∗ = 2107 psig

Pressure falloff analysis in non-unit-mobility
ratio systems
Figure 1.127 shows a plan view of the saturation distribution
in the vicinity of an injection well. This figure shows two
distinct zones.

Zone 1. represents the water bank with its leading edge at
a distance of rf1 from the injection well. The mobil-
ity λ of the injected fluid in this zone, i.e., zone 1,
is defined as the ratio of effective permeability of
the injected fluid at its average saturation to its
viscosity, or:

λ1 = (k/µ)1

Zone 2. represents the oil bank with the leading edge at a
distance of rf2 from the injection well. The mobility λ

of the oil bank in this zone, i.e., zone 2, is defined as
the ratio of oil effective permeability as evaluated at
initial or connate water saturation to its viscosity, or:

λ2 = (k/µ)2
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Figure 1.126 Miller–Dyes–Hutchinson plot of pressure falloff after brine injection, Example 1.48.
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Figure 1.127 Schematic diagram of fluid distribution around an injection well (composite reservoir).
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Figure 1.128 Pressure falloff behavior in a two-bank
system.

The assumption of a two-bank system is applicable if the
reservoir is filled with liquid or if the maximum shut-in time
of the falloff test is such that the radius of investigation of
the test does not exceed the outer radius of the oil bank.
The ideal behavior of the falloff test in a two-bank system
as expressed in terms of the Horner plot is illustrated in
Figure 1.128.

Figure 1.128 shows two distinct straight lines with slopes
of m1 and m2, that intersect at �tfx . The slope m1 of the first
line is used to estimate the effective permeability to water
kw in the flooded zone and the skin factor s. It is commonly
believed that the slope of the second line m2 will yield the
mobility of the oil bank λo. However, Merrill et al. (1974)
pointed out that the slope m2 can be used only to determine
the oil zone mobility if rf2 > 10rf1 and (φct )1 = (φct )2, and
developed a technique that can be used to determine the dis-
tance rf1 and mobility of each bank. The technique requires
knowing the values of (φct ) in the first and second zone,
i.e., (φct )1 and (φct )2. The authors proposed the following
expression:

λ = k
µ

= 162. 6QB
m2h

The authors also proposed two graphical correlations, as
shown in Figures 1.129 and 1.130, that can be used with the
Horner plot to analyze the pressure falloff data.

The proposed technique is summarized by the following:

Step 1. Plot �p vs. �t on a log–log scale and determine the
end of the wellbore storage effect.

Step 2. Construct the Horner plot or the MDH plot and
determine m1, m2, and �tfx .

Step 3. Estimate the effective permeability in the first zone,
i.e., injected fluid invaded zone, “zone 1,” and the
skin factor from:

k1 = 162. 6qinjBµ

|m1| h
[1.7.9]

s = 1. 513
[

pwf at �t=0 − p1 hr

|m1|

− log
(

k1

φµ1(ct )1r2
w

)
+ 3. 2275

]

where the subscript “1” denotes zone 1, the injected
fluid zone.
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Figure 1.129 Relationship between mobility ratio, slope
ratio, and storage ratio. (After Merrill, et al. 1974).

Step 4. Calculate the following dimensionless ratios:

m2

m1
and

(φct )1

(φct )2

with the subscripts “1” and “2” denoting zone 1 and
zone 2 respectively.

Step 5. Use Figure 1.129 with the two dimensionless ratios
of step 4 and read the mobility ratio λ1/λ2.

Step 6. Estimate the effective permeability in the second
zone from the following expression:

k2 =
(

µ2

µ1

)
k1

λ1/λ2
[1.7.10]

Step 7. Obtain the dimensionless time �tDfx from Figure
1.130.

Step 8. Calculate the distance to the leading edge of the
injected fluid bank rf1 from:

rf1 =
√[

0. 0002637(k/µ)1

(φct )1

](
�tfx

�tDfx

)
[1.7.11]

To illustrate the technique, Merrill et al. (1974)
presented the following example.

Example 1.49 Figure 1.131 shows the MDH semilog
plot of simulated falloff data for a two-zone water flood
with no apparent wellbore storage effects. Data used in the
simulation is given below:

rw = 0. 25 ft, h = 20 ft, rf1 = 30 ft

rf2 = re = 3600 ft, (k/µ)1 = η1 = 100 md/cp

(k/µ)2 = η2 = 50 md/cp, (φct )1 = 8. 95 × 10−7 psi−1

(φct )2 = 1. 54 × 10−6 psi−1, qinj = 400 STB/day

Bw = 1. 0 bbl/STB

Calculate λ1, λ2, and rf1 and compare with the simulation
data.
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Figure 1.130 Correlation of dimensionless intersection time, �tDfx, for falloff data from a two-zone reservoir. (After
Merrill et al.1974).
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Figure 1.131 Falloff test data for Example 1.49. (After Merrill et al. 1974).
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Figure 1.132 Injection pressure response and derivative (base case).

Solution

Step 1. From Figure 1.131, determine m1, m2, and �tfx to
give:

m1 = 32. 5 psi/cycle

m2 = 60. 1 psi/cycle

�tfx = 0. 095 hour
Step 2. Estimate (k/µ)1, i.e., mobility of water bank, from

Equation 1.7.9:(
k
µ

)
1

= 162. 6qinjB
|m1| h

= 162. 6(400)(1. 0)
(32. 5)(20)

= 100 md/cp
The value matches the value used in the simulation.

Step 3. Calculate the following dimensionless ratios:
m2

m1
= −60. 1

−32. 5
= 1. 85

(φct )1

(φct )2
= 8. 95 × 10−7

1. 54 × 10−6 = 0. 581

Step 4. Using the two dimensionless ratios as calculated in
step 4, determine the ratio λ1/λ2 from Figure 1.129:

λ1

λ2
= 2. 0

Step 5. Calculate the mobility in the second zone, i.e., oil
bank mobility λ2 = (k/µ)2, from Equation 1.7.10:(

k
µ

)
2

= (k/µ)1

(λ1/λ2)
= 100

2. 0
= 50 md/cp

with the exact match of the input data.
Step 6. Determine �tDfx from Figure 1.130:

�tDfx = 3. 05
Step 7. Calculate rf1 from Equation 1.7.11:

rf1 =
√

(0. 0002637)(100)(0. 095)
(8. 95 × 10−7)(3. 05)

= 30 ft

Yeh and Agarwal (1989) presented a different approach of
analyzing the recorded data from the injectivity and falloff
tests. Their methodology uses the pressure derivate �p
and Agarwal equivalent time �te (see Equation 1.4.16) in
performing the analysis. The authors defined the following
nomenclature:
During the injectivity test period:

�pwf = pwf − pi

�p\
wf = d(�pwf )

d(ln t)
where:

pwf = bottom-hole pressure at time t during
injection, psi

t = injection time, hours
ln t = natural logarithm of t

During the falloff test period:
�pws = pwf at �t=0 − pws

�p\
ws = d(�pws)

d(ln �te)
with:

�te = tp�t
tp + �t

where:

�t = shut-in time, hours
tp = injection time, hours

Through the use of a numerical simulator, Yeh and Agar-
wal simulated a large number of injectivity and falloff tests
and made the following observations for both tests:

Pressure behavior during injectivity tests
(1) A log–log plot of the injection pressure difference �pwf

and its derivative �p\
wf versus injection time will exhibit

a constant-slope period, as shown in Figure 1.132, and
designated as (�p\

wf )const . The water mobility λ1 in
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Figure 1.133 Falloff pressure response and derivative (base case).

the floodout zone, i.e., water bank, can be estimated
from:

λ1 =
(

k
µ

)
1

= 70. 62qinjB

h(�p\
wf )const

Notice that the constant 70.62 is used instead of 162.6
because the pressure derivative is calculated with
respect to the natural logarithm of time.

(2) The skin factor as calculated from the semilog analysis
method is usually in excess of its true value because
of the contrast between injected and reservoir fluid
properties.

Pressure behavior during falloff tests
(1) The log–log plot of the pressure falloff response in

terms of �p and its derivative as a function of the falloff
equivalent time �te is shown in Figure 1.133. The result-
ing derivative curve shows two constant-slope periods,
(�p\

ws)1 and (�p\
ws)2, which reflect the radial flow in the

floodout zone, i.e., water bank, and, the radial flow in the
unflooded zone, i.e., oil bank.
These two derivative constants can be used to estimate
the mobility of the water bank λ1 and the oil bank λ2
from:

λ1 = 70. 62qinjB

h(�p\
ws)1

λ2 = 70. 62qinjB

h(�p\
ws)2

(2) The skin factor can be estimated from the first semilog
straight line and closely represents the actual mechani-
cal skin on the wellbore.

1.7.3 Step-rate test
Step-rate injectivity tests are specifically designed to deter-
mine the pressure at which fracturing could be induced in
the reservoir rock. In this test, water is injected at a con-
stant rate for about 30 minutes before the rate is increased
and maintained for successive periods, each of which also
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Figure 1.134 Step-rate injectivity data plot.

lasts for 30 minutes. The pressure observed at the end
of each injection rate is plotted versus the rate. This plot
usually shows two straight lines which intersect at the frac-
ture pressure of the formation, as shown schematically
in Figure 1.134. The suggested procedure is summarized
below:

Step 1. Shut in the well and allow the bottom-hole pressure
to stabilize (if shutting in the well is not possible, or
not practical, stabilize the well at a low flow rate).
Measure the stabilized pressure.

Step 2. Open the well at a low injection rate and maintain
this rate for a preset time. Record the pressure at
the end of the flow period.

Step 3. Increase the rate, and at the end of an interval of
time equal to that used in step 2, again record the
pressure.

Step 4. Repeat step 3 for a number of increasing rates until
the parting pressure is noted on the step-rate plot
depicted by Figure 1.134.
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As pointed out by Horn (1995), data presented in graph-
ical form is much easier to understand than a single
table of numbers. Horn proposed the following

Flow period Characteristic Plot used

Infinite-acting radial flow
drawdown)

Semilog straight line p vs. log �t (semilog plot, sometimes
called MDH plot)

Infinite-acting radial flow (buildup) Horner straight line p vs. log(tp + �t)/�t (Horner plot)
Wellbore storage Straight line p vs. t, or unit-slope

log �p vs. log �t
log �p vs. log �t (log–log plot, type

curve)
Finite conductivity fracture Straight-line slope 1

4 , log �p
vs. log �t plot

log �p vs. log �t, or �p vs. �t1/4

Infinite conductivity fracture Straight-line slope 1
2 , log �p

vs. log �t plot
log �p vs. log �t, or �p vs. �t1/2

Dual-porosity behavior S-shaped transition between
parallel semilog straight lines

p vs. log �t (semilog plot)

Closed boundary Pseudosteady state, pressure
linear with time

p vs. �t (Cartesian plot)

Impermeable fault Doubling of slope on semilog
straight line

p vs. log �t (semilog plot)

Constant-pressure boundary Constant pressure, flat line
on all p, t plots

Any

Chaudhry (2003) presented another useful “toolbox” that
summarizes the pressure derivative trends for common flow
regimes that have been presented in this chapter, as shown
in Table 1-10.

Table 1.10 Pressure Derivative Trends for Common Flow Regimes.

Wellbore storage dual-porosity
matrix to fissure flow

Semilog straight lines with slope 1.151
Parallel straight-line responses are characteristics of naturally fractured reservoirs

Dual porosity with
pseudosteady-state interporosity
flow

Pressure change slope → increasing, leveling off, increasing
Pressure derivative slope = 0, valley = 0
Additional distinguishing characteristic is middle-time valley trend during more than

1 log cycle
Dual porosity with transient inter-

porosity flow
Pressure change slope → steepening
Pressure derivative slope = 0, upward trend = 0
Additional distinguishing characteristic → middle-time slope doubles

Pseudosteady state Pressure change slope → for drawdown and zero for buildup
Pressure derivative slope → for drawdown and steeply descending for buildup
Additional distinguishing characteristic → late time drawdown pressure change and

derivative are overlain; slope of 1 occurs much earlier in the derivative
Constant-pressure boundary

(steady state)
Pressure change slope → 0
Pressure derivative slope → steeply descending
Additional distinguishing characteristic → cannot be distinguished from psuedosteady

state in pressure buildup test
Single sealing fault (pseudoradial

flow)
Pressure change slope → steeping
Pressure derivative slope → 0, upward trend → 0
Additional distinguishing characteristic → late-time slope doubles

Elongated reservoir linear flow Pressure change slope → 0.5
Pressure derivative slope → 0.5
Additional distinguishing characteristic → late-time pressure change and derivative

are offset by factor of 2; slope of 0.5 occurs much earlier in the derivative
Wellbore storage infinite-acting

radial flow
Pressure change slope = 1, pressure derivative slope = 1
Additional distinguishing characteristics are: early time pressure change, and derivative

are overlain
Wellbore storage, partial

penetration, infinite-acting radial
flow

Pressure change increases and pressure derivative slope = 0
Additional distinguishing characteristic is: middile-time flat derivative

Linear flow in an infinite
conductivity vertical fracture

K (xf )2 → calculate from specialized plot
Pressure slope = 0.5 and pressure derivative slope = 0.5
Additional distinguishing characteristics are: early-time pressure change and the

derivative are offset by a factor of 2
Bilinear flow to an infinite

conductivity vertical fracture
Kf w → calculate from specialized plot
Pressure slope = 0.25 and pressure derivative slope = 0.25
Additional distinguishing characteristic are: early-time pressure change and derivative

are offset by factor of 4

(continued)

“toolbox” of graphing functions that is considered an
essential part of computer-aided well test interpretation
system:

Kamal et al. (1995) conveniently summarized; in tabulated
form, various plots and flow regimes most commonly used in
transient tests and the information obtained from each test
as shown in Tables 1-11 and 1-12.
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Table 1.10 Pressure Derivative Trends for Common Flow Regimes (continued)

Wellbore storage infinite acting
radial flow

Sealing fault

Wellbore storage No flow boundary
Wellbore storage linear flow Kb2 → calculate from specialized plot

Table 1.11 Reservoir properties obtainable from various transient tests (After Kamal et al. 1995).

Drill item tests Reservoir behavior Step-rate tests Formation parting pressure
Permeability Permeability
Skin Skin
Fracture length Falloff tests Mobility in various banks
Reservoir pressure Skin
Reservoir limit Reservoir pressure
Boundaries Fracture length

Repeat/multiple-formation Pressure profile Location of front
tests Boundaries

Drawdown tests Reservoir behavior Interference and pulse Communication between wells
Permeability tests
Skin Reservoir type behavior
Fracture length Porosity
Reservoir limit Interwell permeability
Boundaries Vertical permeability

Buildup tests Reservoir behavior Layered reservoir tests Properties of individual layers
Permeability Horizontal permeability
Skin Vertical permeability
Fracture length Skin
Reservoir pressure Average layer pressure
Boundaries Outer Boundaries

Table 1.12 Plots and flow regimes of transient tests (After Kamal et al. 1995)

Plot

Flow regime Cartesian
√

�t 4√
�t Log–log Semilog

Wellbore storage Straight line Unit slope on �p and p\ Positive s
Slope → C �p and p\ coincide Negative s
Intercept → �tc

�pc
Linear flow Straight line Slope = 1

2 on p\ and on
Slope = mf → lf �p if s = 0
Intercept = fracture Slope < 1

2 on �p if s 
= 0
damage p\ at half the level of �p

Bilinear flow Straight line Slope = 1
4

Slope = mbf → Cfd p\ at 1
4 level of �p

First IARF a (high-k Decreasing p\ horizontal at p\
D = 0. 5 Straight line

layer, fractures) slope Slope = m → kh
�p1 hr → s

Transition More decreasing �p = λe−2s or B\ Straight line
slope p\

D = 0. 25 (transition) Slope = m/2 (transition)
=< 0. 25 (pseudo- = 0 (pseudo-

steady state) steady state)
Second IARF Similar slope to p\ horizontal at p\

D = 0. 5 Straight line
(total system) first IARF Slope = m → kh, p∗

�p1 hr → s
Single no-flow boundary p\ horizontal at p\

D = 1. 0 Straight line
Slope = 2m
Intersection with
IARF→distance to
boundary

Outer no-flow Straight line Unit slope for �p and p\ Increasing slope
boundaries Slope = m∗ → φAh �p and p\ coincide
(drawdown test only) pint → CA

aIARF = Infinite-Acting Radial Flow.
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Problems

1. An incompressible fluid flows in a linear porous media
with the following properties.

L = 2500 ft, h = 30 ft, width = 500 ft, k = 50 md,
φ = 17%, µ = 2 cp, inlet pressure = 2100 psi,
Q = 4 bbl/day, ρ = 45 lb/ft3

Calculate and plot the pressure profile throughout the
linear system.

2. Assume the reservoir linear system as described in prob-
lem 1 is tilted with a dip angle of 7◦. Calculate the fluid
potential through the linear system.

3. A gas of 0.7 specific gravity is flowing in a linear reser-
voir system at 150◦F. The upstream and downstream
pressures are 2000 and 1800 psi, respectively. The
system has the following properties:

L = 2000 ft, W = 300 ft, h = 15 ft
k = 40 md, φ = 15%

Calculate the gas flow rate.
4. An oil well is producing a crude oil system at 1000

STB/day and 2000 psi of bottom-hole flowing pressure.
The pay zone and the producing well have the following
characteristics.

h = 35 ft, rw = 0. 25 ft, drainage area = 40 acres
API = 45◦, γg = 0. 72, Rs = 700 scf/STB
k = 80 md

Assuming steady-state flowing conditions, calculate and
plot the pressure profile around the wellbore.

5. Assuming steady-state flow and an incompressible
fluid, calculate the oil flow rate under the following
conditions:

pe = 2500 psi, pwf = 2000 psi, re = 745 ft
rw = 0. 3 ft, µo = 2 cp, Bo = 1. 4 bbl/STB
h = 30 ft, k = 60 md

6. A gas well is flowing under a bottom-hole flowing
pressure of 900 psi. The current reservoir pressure is
1300 psi. The following additional data is available:

T = 140◦F, γg = 0. 65, rw = 0. 3 ft
k = 60 md, h = 40 ft, re = 1000 ft

Calculate the gas flow rate by using

(a) the real-gas pseudopressure approach;
(b) the pressure-squared method.

7. After a period of shut-in of an oil well, the reservoir pres-
sure has stabilized at 3200 psi. The well is allowed to flow
at a constant flow rate of 500 STB/day under a transient
flow condition. Given:

Bo = 1. 1 bbl/STB, µo = 2 cp, ct = 15 × 10−6 psi−1

k = 50 md, h = 20 ft, φ = 20%
rw = 0. 3 ft, pi = 3200 psi

calculate and plot the pressure profile after 1, 5, 10, 15,
and 20 hours.

8. An oil well is producing at a constant flow rate of 800
STB/day under a transient flow condition. The following
data is available:

Bo = 1. 2 bbl/STB, µo = 3 cp, ct = 15 × 10−6 psi−1

k = 100 md, h = 25 ft, φ = 15%
rw = 0. 5, pi = 4000 psi,

Using the Ei function approach and the pD method, cal-
culate the bottom-hole flowing pressure after 1, 2, 3, 5,
and 10 hours. Plot the results on a semilog scale and
Cartesian scale.

9. A well is flowing under a drawdown pressure of 350 psi
and produces at a constant flow rate of 300 STB/day. The
net thickness is 25 ft. Given:

re = 660 ft, rw = 0. 25 ft
µo = 1. 2 cp, Bo = 1. 25 bbl/STB

calculate:

(a) the average permeability;
(b) the capacity of the formation.

10. An oil well is producing from the center of a 40 acre
square drilling pattern. Given:

φ = 20%, h = 15ft, k = 60 md
µo = 1. 5 cp, Bo = 1. 4 bbl/STB, rw = 0. 25 ft
pi = 2000 psi, pwf = 1500 psi

calculate the oil flow rate.
11. A shut-in well is located at a distance of 700 ft from one

well and 1100 ft from a second well. The first well flows
for 5 days at 180 STB/day, at which time the second well
begins to flow at 280 STB/day. Calculate the pressure
drop in the shut-in well when the second well has been
flowing for 7 days. The following additional data is given:

pi = 3000 psi, Bo = 1. 3 bbl/STB, µo = 1. 2 cp,

h = 60 ft, ct = 15 × 10−6 psi−1, φ = 15%, k = 45 md

12. A well is opened to flow at 150 STB/day for 24 hours. The
flow rate is then increased to 360 STB/day and lasts for
another 24 hours. The well flow rate is then reduced to
310 STB/day for 16 hours. Calculate the pressure drop
in a shut-in well 700 ft away from the well, given:

φ = 15%, h = 20 ft, k = 100 md
µo = 2 cp, Bo = 1. 2 bbl/STB, rw = 0. 25 ft

pi = 3000 psi, ct = 12 × 10−6 psi−1

13. A well is flowing under unsteady-state flowing conditions
for 5 days at 300 STB/day. The well is located at 350 ft
and 420 ft distance from two sealing faults. Given:

φ = 17%, ct = 16 × 10−6 psi−1, k = 80 md
pi = 3000 psi, Bo = 1. 3 bbl/STB, µo = 1. 1 cp
rw = 0. 25 ft, h = 25 ft

calculate the pressure in the well after 5 days.
14. A drawdown test was conducted on a new well with

results as given below:

t (hr) pwf (psi)

1.50 2978
3.75 2949
7.50 2927

15.00 2904
37.50 2876
56.25 2863
75.00 2848

112.50 2810
150.00 2790
225.00 2763
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Given:

pi = 3400 psi, h = 25 ft, Q = 300 STB/day
ct = 18 × 10−6 psi−1, µo = 1. 8 cp,
Bo = 1. 1 bbl/STB, rw = 0. 25 ft, φ = 12%,

and assuming no wellbore storage, calculate:

(a) the average permeability;
(b) the skin factor.

15. A drawdown test was conducted on a discovery well.
The well was allowed to flow at a constant flow rate of
175 STB/day. The fluid and reservoir data is given below:

Swi = 25%, φ = 15%, h = 30 ft, ct = 18 × 10−6 psi−1

rw = 0. 25 ft, pi = 4680 psi, µo = 1. 5 cp,
Bo = 1. 25 bbl/STB

The drawdown test data is given below:

t (hr) pwf (psi)

0.6 4388
1.2 4367
1.8 4355
2.4 4344
3.6 4334
6.0 4318
8.4 4309

12.0 4300
24.0 4278
36.0 4261
48.0 4258
60.0 4253
72.0 4249
84.0 4244
96.0 4240

108.0 4235
120.0 4230
144.0 4222
180.0 4206

Calculate:

(a) the drainage area;
(b) the skin factor;
(C) the oil flow rate at a bottom-hole flowing pressure

of 4300 psi, assuming a semisteady-state flowing
conditions.

16. A pressure buildup test was conducted on a well that
had been producing at 146 STB/day for 53 hours.

The reservoir and fluid data is given below.

Bo = 1. 29 bbl/STB, µo = 0. 85 cp,
ct = 12 × 10−6 psi−1, φ = 10%, pwf = 1426. 9 psig,
A = 20 acres

The buildup data is as follows:

Time pws (psig)

0.167 1451.5
0.333 1476.0
0.500 1498.6
0.667 1520.1
0.833 1541.5
1.000 1561.3
1.167 1581.9
1.333 1599.7
1.500 1617.9
1.667 1635.3
2.000 1665.7
2.333 1691.8
2.667 1715.3
3.000 1736.3
3.333 1754.7
3.667 1770.1
4.000 1783.5
4.500 1800.7
5.000 1812.8
5.500 1822.4
6.000 1830.7
6.500 1837.2
7.000 1841.1
7.500 1844.5
8.000 1846.7
8.500 1849.6
9.000 1850.4

10.000 1852.7
11.000 1853.5
12.000 1854.0
12.667 1854.0
14.620 1855.0

Calculate:

(a) the average reservoir pressure;
(b) the skin factor;
(c) the formation capacity;
(d) an estimate of the drainage area and compare with

the given value.
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Water-bearing rocks called aquifers surround nearly all
hydrocarbon reservoirs. These aquifers may be substantially
larger than the oil or gas reservoirs they adjoin as to appear
infinite in size, and they may be so small in size as to be
negligible in their effect on reservoir performance.

As reservoir fluids are produced and reservoir pressure
declines, a pressure differential develops from the surround-
ing aquifer into the reservoir. Following the basic law of
fluid flow in porous media, the aquifer reacts by encroach-
ing across the original hydrocarbon–water contact. In some
cases, water encroachment occurs due to hydrodynamic con-
ditions and recharge of the formation by surface waters at
an outcrop. In many cases, the pore volume of the aquifer is
not significantly larger than the pore volume of the reservoir
itself. Thus, the expansion of the water in the aquifer is negli-
gible relative to the overall energy system, and the reservoir
behaves volumetrically. In this case, the effects of water
influx can be ignored. In other cases, the aquifer permeabil-
ity may be sufficiently low such that a very large pressure
differential is required before an appreciable amount of
water can encroach into the reservoir. In this instance, the
effects of water influx can be ignored as well.

The objective of this chapter, however, concern those
reservoir–aquifer systems in which the size of the aquifer is
large enough and the permeability of the rock is high enough
that water influx occurs as the reservoir is depleted. This
chapter is designed to provide the various water influx calcu-
lation models and a detailed description of the computational
steps involved in applying these models.

2.1 Classification of Aquifers

Many gas and oil reservoirs are produced by a mechanism
termed “water drive.” Often this is called natural water drive
to distinguish it from artificial water drive that involves the
injection of water into the formation. Hydrocarbon produc-
tion from the reservoir and the subsequent pressure drop
prompt a response from the aquifer to offset the pressure
decline. This response comes in the form of a water influx,
commonly called water encroachment, which is attributed to:

● expansion of the water in the aquifer;
● compressibility of the aquifer rock;
● artesian flow where the water-bearing formation outcrop

is located structurally higher than the pay zone.

Reservoir–aquifer systems are commonly classified on the
basis described in the following subsections.

2.1.1 Degree of pressure maintenance
Based on the degree of reservoir pressure maintenance
provided by the aquifer, the natural water drive is often
qualitatively described as:

● the active water drive;
● the partial water drive;
● the limited water drive.

The term “active” water drive refers to the water encroach-
ment mechanism in which the rate of water influx equals the
reservoir total production rate. Active water drive reservoirs
are typically characterized by a gradual and slow reservoir
pressure decline. If during any long period the production
rate and reservoir pressure remain reasonably constant, the
reservoir voidage rate must be equal to the water influx rate:
[

water influx
rate

]
=
[

oil flow
rate

]
+
[

free gas
flow rate

]
+

 water

production
rate




or:
ew = QoBo + QgBg + QwBw [2.1.1]

where:

ew = water influx rate, bbl/day
Qo = oil flow rate, STB/day
Bo = oil formation volume factor, bbl/STB
Qg = free gas flow rate, scf/day
Bg = gas formation volume factor, bbl/scf
Qw = water flow rate, STB/day
Bw = water formation volume factor, bbl/STB

Equation 2.1.1 can be equivalently expressed in terms of
cumulative production by introducing the following deriva-
tive terms:

ew = dWe

dt
= Bo

dNp

dt
+ (GOR − Rs

) dNp

dt
Bg + dWp

dt
Bw

[2.1.2]
where:

We = cumulative water influx, bbl
t = time, days

Np = cumulative oil production, STB
GOR = current gas–oil ratio, scf/STB

Rs = current gas solubility, scf/STB
Bg = gas formation volume factor, bbl/scf
Wp = cumulative water production, STB

dNp/dt = daily oil flow rate Qo, STB/day
dWp/dt = daily water flow rate Qw, STB/day
dWe/dt = daily water influx rate ew, bbl/day

(GOR − Rs)dNp/dt = daily free gas rate, scf/day

Example 2.1 Calculate the water influx rate ew in a reser-
voir whose pressure is stabilized at 3000 psi. Given:

initial reservoir pressure = 3500 psi,

dNp/dt = 32 000 STB/day

Bo = 1.4 bbl/STB, GOR = 900 scf/STB, Rs = 700 scf/STB

Bg = 0.00082 bbl/scf, dWp/dt = 0, Bw = 1.0 bbl/STB

Solution Applying Equation 2.1.1 or 2.1.2 gives:

ew = dWe

dt
= Bo

dNp

dt
+ (GOR − Rs

) dNp

dt
Bg + dWp

dt
Bw

= (1. 4)(32 000) + (900 − 700)(32 000)(0. 00082) + 0

= 50 048 bbl/day

2.1.2 Outer boundary conditions
The aquifer can be classified as infinite or finite (bounded).
Geologically all formations are finite but may act as infinite if
the changes in the pressure at the oil–water contact are not
“felt” at the aquifer boundary. Some aquifers outcrop and are
infinite acting because of surface replenishment. In general,
the outer boundary governs the behavior of the aquifer and
can be classified as follows:

● Infinite system indicates that the effect of the pressure
changes at the oil/aquifer boundary can never be felt at
the outer boundary. This boundary is for all intents and
purposes at a constant pressure equal to initial reservoir
pressure.

● Finite system indicates that the aquifer outer limit is
affected by the influx into the oil zone and that the
pressure at this outer limit changes with time.

2.1.3 Flow regimes
There are basically three flow regimes that influence the rate
of water influx into the reservoir. As previously described in
Chapter 1, these flow regimes are:

(1) steady state;
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Edge-water Drive

Linear-water Drive

Bottom-water Drive

ReservoirReservoir

Aquifer

Aquifer

Oil

Aquifer

Aquifer

Figure 2.1 Flow geometries.

(2) semi(pseudo)steady state;
(3) unsteady state.

2.1.4 Flow geometries
Reservoir–aquifer systems can be classified on the basis of
flow geometry as:

● edge-water drive;
● bottom-water drive;
● linear-water drive.

In edge-water drive, as shown in Figure 2.1, water moves into
the flanks of the reservoir as a result of hydrocarbon produc-
tion and pressure drop at the reservoir–aquifer boundary.
The flow is essentially radial with negligible flow in the
vertical direction.

Bottom-water drive occurs in reservoirs with large areal
extent and a gentle dip where the reservoir–water contact
completely underlies the reservoir. The flow is essentially
radial and, in contrast to the edge-water drive, the bottom-
water drive has significant vertical flow.

In linear–water drive, the influx is from one flank of the
reservoir. The flow is strictly linear with a constant cross-
sectional area.

2.2 Recognition of Natural Water Influx

Normally very little information is obtained during the explo-
ration and development period of a reservoir concerning the
presence or characteristics of an aquifer that could provide
a source of water influx during the depletion period. Natural
water drive may be assumed by analogy with nearby produc-
ing reservoirs, but early reservoir performance trends can
provide clues. A comparatively low, and decreasing, rate of
reservoir pressure decline with increasing cumulative with-
drawals is indicative of fluid influx. Successive calculations of
barrels withdrawn per psi change in reservoir pressure can

supplement performance graphs. However, if the reservoir
limits have not been delineated by the developmental dry
holes the influx could be from an undeveloped area of the
reservoir not accounted for in averaging reservoir pressure.
If the reservoir pressure is below the oil saturation pressure,
a low rate of increase in produced GOR is also indicative of
fluid influx.

Early water production from edge wells is indicative of
water encroachment. Such observations must be tempered
by the possibility that the early water production is due to for-
mation fractures, thin high-permeability streaks, or to coning
in connection with a limited aquifer. The water production
may be due to casing leaks.

Calculation of increasing original oil-in-place from suc-
cessive reservoir pressure surveys by using the material
balance and assuming no water influx is also indicative of
fluid influx.

2.3 Water Influx Models

It should be appreciated that there are more uncertainties
attached to this part of reservoir engineering than to any
other. This is simply because one seldom drills wells into an
aquifer to gain the necessary information about the porosity,
permeability, thickness, and fluid properties. Instead, these
properties have frequently to be inferred from what has been
observed in the reservoir. Even more uncertain, however, is
the geometry and areal continuity of the aquifer itself.

Several models have been developed for estimating water
influx that is based on assumptions that describe the char-
acteristics of the aquifer. Due to the inherent uncertainties
in the aquifer characteristics, all of the proposed mod-
els require historical reservoir performance data to eval-
uate constants representing aquifer property parameters
since these are rarely known from exploration and develop-
ment drilling with sufficient accuracy for direct application.
The material balance equation can be used to determine
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historical water influx provided original oil-in-place is known
from pore volume estimates. This permits evaluation of the
constants in the influx equations so that future water influx
rate can be forecast.

The mathematical water influx models that are commonly
used in the petroleum industry include:

● pot aquifer;
● Schilthuis steady state;
● Hurst modified steady state;
● van Everdingen and Hurst unsteady state:

– edge-water drive;
– bottom-water drive;

● Carter–Tracy unsteady state;
● Fetkovich method:

– radial aquifer;
– linear aquifer.

The following sections describe the above models and their
practical applications in water influx calculations.

2.3.1 The pot aquifer model
The simplest model that can be used to estimate the water
influx into a gas or oil reservoir is based on the basic defi-
nition of compressibility. A drop in the reservoir pressure,
due to the production of fluids, causes the aquifer water to
expand and flow into the reservoir. The compressibility is
defined mathematically as:

c = 1
V

∂V
∂p

= 1
V

�V
�p

or:

�V = cV �p

Applying the above basic compressibility definition to the
aquifer gives:

Water influx = (aquifer compressibility)

× (initial volume of water)(pressure drop)

or:

We = ctWi(pi − p) ct = cw + cf [2.3.1]

where:

We = cumulative water influx, bbl
ct = aquifer total compressibility, psi−1

cw = aquifer water compressibility, psi−1

cf = aquifer rock compressibility, psi−1

Wi = initial volume of water in the aquifer, bbl
pi = initial reservoir pressure, psi
p = current reservoir pressure (pressure at oil–water

contact), psi

Calculating the initial volume of water in the aquifer requires
knowledge of aquifer dimensions and properties. These,
however, are seldom measured since wells are not deliber-
ately drilled into the aquifer to obtain such information. For
instance, if the aquifer shape is radial, then:

Wi =
[

π
(
r2

a − r2
e

)
hφ

5. 615

]
[2.3.2]

where:

ra = radius of the aquifer, ft
re = radius of the reservoir, ft
h = thickness of the aquifer, ft
φ = porosity of the aquifer

Aquifer

Reservoir
re

ra

h

Figure 2.2 Radial aquifer geometries.

Equation 2.3.2 suggests that water is encroaching in a
radial form from all directions. Quite often, water does not
encroach on all sides of the reservoir, or the reservoir is not
circular in nature. To account for these cases, a modification
to Equation 2.3.2 must be made in order to properly describe
the flow mechanism. One of the simplest modifications is to
include the fractional encroachment angle f in the equation,
as illustrated in Figure 2.2, to give:

We = (cw + cf )Wi f (pi − p) [2.3.3]

where the fractional encroachment angle f is defined by:

f =
(
encroachment angle

)◦
360◦ = θ

360◦ [2.3.4]

The above model is only applicable to a small aquifer, i.e., pot
aquifer, whose dimensions are of the same order of mag-
nitude as the reservoir itself. Dake (1978) pointed out that
because the aquifer is considered relatively small, a pressure
drop in the reservoir is instantaneously transmitted through-
out the entire reservoir–aquifer system. Dake suggested that
for large aquifers, a mathematical model is required which
includes time dependence to account for the fact that it takes
a finite time for the aquifer to respond to a pressure change
in the reservoir.

Example 2.2 Calculate the cumulative water influx that
result from a pressure drop of 200 psi at the oil–water contact
with an encroachment angle of 80◦. The reservoir–aquifer
system is characterized by the following properties:

Reservoir Aquifer

radius, ft 2600 10 000
porosity 0.18 0.12
cf , psi−1 4 × 10−6 3 × 10−6

cw, psi−1 5 × 10−6 4 × 10−6

h, ft 20 25
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Solution

Step 1. Calculate the initial volume of water in the aquifer
from Equation 2.3.2:

Wi =
[

π
(
r2

a − r2
e

)
hφ

5. 615

]

=
[

π
(
10 0002 − 26002

) (
25
) (

0. 12
)

5. 615

]
= 156. 5 MMbbl

Step 2. Determine the cumulative water influx by applying
Equation 2.3.3:

We =(cw +cf )Wi f (pi −p)

=(4.0+3.0)10−6(156.5×106)
(

80
360

)
(200)=48689 bbl

2.3.2 The Schilthuis steady-state model
Schilthuis (1936) proposed that for an aquifer that is flowing
under the steady-state flow regime, the flow behavior could
be described by Darcy’s equation. The rate of water influx
ew can then be determined by applying Darcy’s equation:
dWe

dt
= ew =

[
0. 00708 kh
µw ln(ra/re)

]
(pi − p) [2.3.5]

This relationship can be more conveniently expressed as:
dWe

dt
= ew = C(pi − p) [2.3.6]

where:

ew = rate of water influx, bbl/day
k = permeability of the aquifer, md
h = thickness of the aquifer, ft

ra = radius of the aquifer, ft
re = radius of the reservoir, ft
t = time, days

The parameter C is called the “water influx constant” and
expressed in bbl/day/psi. This water influx constant C may
be calculated from the reservoir historical production data
over a number of selected time intervals, provided the rate
of water influx ew has been determined independently from
a different expression. For instance, the parameter C may be
estimated by combining Equations 2.1.1 with 2.3.6. Although
the influx constant can only be obtained in this manner when
the reservoir pressure stabilizes, once it has been found it
may be applied to both stabilized and changing reservoir
pressures.

Example 2.3 The data given in Example 2.1 is used in this
example:

pi = 3500 psi, p = 3000 psi, Qo = 32 000 STB/day

Bo = 1. 4 bbl/STB GOR = 900 scf/STB Rs = 700 scf/STB

Bg = 0. 00082 bbl/scf Qw = 0 Bw = 1. 0 bbl/STB

Calculate the Schilthuis water influx constant.

Solution

Step 1. Solve for the rate of water influx ew by using Equation
2.1.1:

ew = QoBo + QgBg + QwBw

= (1. 4)(32 000) + (900 − 700)(32 000)(0. 00082) + 0

= 50 048 bbl/day

Step 2. Solve for the water influx constant from Equation
2.3.6:

dWe

dt
= ew = C(pi − p)

or:

C = ew

pi − p
= 50 048

3500 − 3000
= 100 bbl/day/psi

If the steady-state approximation is considered to adequately
describe the aquifer flow regime, the values of the calculated
water influx constant C will be constant over the historical
period.

Note that the pressure drops contributing to the influx are
the cumulative pressure drops from the initial pressure.

In terms of the cumulative water influx We, Equation 2.3.6
is integrated to give the common Schilthuis expression for
water influx as:

∫ We

0
dWe =

∫ t

0
C(pi − p) dt

or:

We = C
∫ t

0
(pi − p) dt [2.3.7]

where:

We = cumulative water influx, bbl
C = water influx constant, bbl/day/psi
t = time, days

pi = initial reservoir pressure, psi
p = pressure at the oil–water contact at time t, psi

When the pressure drop (pi − p) is plotted versus the time t,
as shown in Figure 2.3, the area under the curve represents

Time

Time

p1

p2

p3

pi−p3

pi−p2

pi−p1

t1 t2 t3

t1 t2 t3

I II III

0

Figure 2.3 Calculating the area under the curve.
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the integral
∫ t

0 (pi − p)dt. This area at time t can be deter-
mined numerically by using the trapezoidal rule (or any
other numerical integration method) as:∫ t

o
(pi − p)dt = areaI + areaII + areaIII + · · ·

=
(

pi − p1

2

) (
t1 − 0

)

+ (pi − p1) + (pi − p2)

2
(t2 − t1)

+ (pi − p2) + (pi − p3)

2
(t3 − t2) + · · ·

Equation 2.3.7 can then be written as:

We = C
t∑
0

(�p)�t [2.3.8]

Example 2.4 The pressure history of a water drive oil
reservoir is given below:

t (days) p (psi)

0
100 3450
200 3410
300 3380
400 3340

The aquifer is under a steady-state flowing condition
with an estimated water influx constant of 130 bbl/day/psi.
Given the initial reservoir pressure is 3500 psi, calculate the
cumulative water influx after 100, 200, 300, and 400 days
using the steady-state model.

Solution

Step 1. Calculate the total pressure drop at each time t:

t (days) p pi− p

0 3500 0
100 3450 50
200 3410 90
300 3380 120
400 3340 160

Step 2. Calculate the cumulative water influx after 100 days:

We = C
[(

pi − p1

2

) (
t1 − 0

)] = 130
(

50
2

) (
100 − 0

)

= 325 000 bbl

Step 3. Determine We after 200 days:

We = C
{(

pi − p1

2

) (
t1 − 0

)

+
[

(pi − p1) + (pi − p2)
2

]
(t2 − t1)

}

= 130
[(

50
2

) (
100 − 0

)+
(

50 + 90
2

) (
200 − 100

)]

= 1 235 000 bbl

Step 4. We after 300 days:

We = C
{(

pi − p1

2

) (
t1 − 0

)

+
[

(pi − p1) + (pi − p2)
2

]
(t2 − t1)

+ (pi − p2) + (pi − p3)

2
(t3 − t2)

}

= 130
[(

50
2

) (
100
)+

(
50 + 90

2

) (
200 − 100

)

+
(

120 + 90
2

) (
300 − 200

)] = 2 600 000 bbl

Step 5. Similarly, calculate We after 400 days:

We = 130
[

2500 + 7000 + 10 500

+
(

160 + 120
2

) (
400 − 300

)]

= 4 420 000 bbl

2.3.3 The Hurst modified steady-state equation
One of the problems associated with the Schilthuis steady-
state model is that as the water is drained from the aquifer,
the aquifer drainage radius ra will increase as the time
increases. Hurst (1943) proposed that the “apparent” aquifer
radius ra would increase with time and, therefore, the dimen-
sionless radius ra/re may be replaced with a time-dependent
function as given below:

ra/re = at [2.3.9]

Substituting Equation 2.3.9 into Equation 2.3.5 gives:

ew = dWe

dt
= 0. 00708 kh(pi − p)

µw ln(at)
[2.3.10]

The Hurst modified steady-state equation can be written in
a more simplified form as:

ew = dWe

dt
= C(pi − p)

ln(at)
[2.3.11]

and in terms of the cumulative water influx:

We = C
∫ t

0

[
pi − p
ln(at)

]
dt [2.3.12]

Approximating the integral with a summation gives:

We = C
t∑
0

[
�p

ln(at)

]
�t [2.3.13]

The Hurst modified steady-state equation contains two
unknown constants, i.e., a and C, that must be determined
from the reservoir–aquifer pressure and water influx his-
torical data. The procedure for determining the constants
a and C is based on expressing Equation 2.3.11 as a linear
relationship: (

pi − p
ew

)
= 1

C
ln(at)

or:
pi − p

ew
=
(

1
C

)
ln(a) +

(
1
C

)
ln(t) [2.3.14]

Equation 2.3.14 indicates that a plot of the term (pi − p)/ew
vs. ln(t) would produce a straight line with a slope of 1/C
and intercept of (1/C) ln(a), as shown schematically in
Figure 2.4.
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Slope = 1/C
(1/C )ln(a)

1.0

Figure 2.4 Graphical determination of C and a.

Example 2.5 The following data, as presented by Craft
and Hawkins (1959), documents the reservoir pressure as
a function of time for a water drive reservoir. Using the
reservoir historical data, Craft and Hawkins calculated the
water influx by applying the material balance equation (see
Chapter 4). The rate of water influx was also calculated
numerically at each time period:

Time Pressure We ew pi − p
(days) (psi) (M bbl) (bbl/day) (psi)

0 3793 0 0 0
182.5 3774 24.8 389 19
365.0 3709 172.0 1279 84
547.5 3643 480.0 2158 150
730.0 3547 978.0 3187 246
912.5 3485 1616.0 3844 308

1095.0 3416 2388.0 4458 377

It is predicted that the boundary pressure would drop to
3379 psi after 1186.25 days of production. Calculate the
cumulative water influx at that time.

0.12

0.1

0.08

0.06

0.04

0.02

0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00

0

−0.02

−0.04

−0.06

ln(t )

(p
i−p

)/
e w

Figure 2.5 Determination of C and n for Example 2-5.

Solution

Step 1. Construct the following table.

t (days) ln(t) pi − p ew (bbl/day) (pi − p)/ew

0 – 0 0 –
182.5 5.207 19 389 0.049
365.0 5.900 84 1279 0.066
547.5 6.305 150 2158 0.070
730.0 6.593 246 3187 0.077
912.5 6.816 308 3844 0.081

1095.0 6.999 377 4458 0.085

Step 2. Plot the term (pi − p)/ew vs. ln(t) and draw the
best straight line through the points as shown in
Figure 2.5, and determine the slope of the line:

Slope = 1/C = 0. 020
Step 3. Determine the coefficient C of the Hurst equation

from the slope:

C = 1/slope = 1/0. 02 = 50
Step 4. Use any point on the straight line and solve for the

parameter a by applying Equation 2.3.11:

a = 0. 064
Step 5. The Hurst equation is represented by:

We = 50
∫ t

0

[
pi − p

ln(0. 064t)

]
dt

Step 6. Calculate the cumulative water influx after 1186.25
days from:

We =2388×103 +
∫ 1186.25

1095
50
[

pi −p
ln(0.064t)

]
dt

=2388×103 +50
[(

(3793−3379)/ln(0.064×1186.25)

+(3793−3416)/ln(0.064×1095)
)/

2
]
(1186.25−1095)

=2388×103 +420.508×103 =2809 Mbbl
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2.3.4 The van Everdingen and Hurst unsteady-state
model

The mathematical formulations that describe the flow of a
crude oil system into a wellbore are identical in form to
those equations that describe the flow of water from an
aquifer into a cylindrical reservoir, as shown schematically
in Figure 2.6. When an oil well is brought on production at a
constant flow rate after a shut-in period, the pressure behav-
ior is essentially controlled by the transient (unsteady-state)
flowing condition. This flowing condition is defined as the
time period during which the boundary has no effect on the
pressure behavior.

The dimensionless form of the diffusivity equation, as
presented in Chapter 1 by Equation 1.2.78, is basically the
general mathematical equation that is designed to model
the transient flow behavior in reservoirs or aquifers. In a
dimensionless form, the diffusivity equation is:

∂2PD

∂r2
D

+ 1
rD

∂PD

∂rD
= ∂PD

∂tD

Wellbore

Reservoir

Aquifer

Figure 2.6 Water influx into a cylindrical reservoir.

Aquifer Aquifer

AquiferAquifer

Reservoir Reservoir

Reservoir

re re

re

Figure 2.7 Idealized radial flow model.

Van Everdingen and Hurst (1949) proposed solutions to
the dimensionless diffusivity equation for the following two
reservoir–aquifer boundary conditions:

(1) constant terminal rate;
(2) constant terminal pressure.

For the constant-terminal-rate boundary condition, the rate
of water influx is assumed constant for a given period,
and the pressure drop at the reservoir–aquifer boundary is
calculated.

For the constant-terminal-pressure boundary condition,
a boundary pressure drop is assumed constant over some
finite time period, and the water influx rate is determined.

In the description of water influx from an aquifer into a
reservoir, there is greater interest in calculating the influx
rate rather than the pressure. This leads to the determi-
nation of the water influx as a function of a given pres-
sure drop at the inner boundary of the reservoir–aquifer
system.

Van Everdingen and Hurst (1949) solved the diffusivity
equation for the aquifer–reservoir system by applying the
Laplace transformation to the equation. The authors’ solu-
tion can be used to determine the water influx in the following
systems:

● edge-water drive system (radial system);
● bottom-water drive system;
● linear-water drive system.

Edge-water drive
Figure 2.7 shows an idealized radial flow system that rep-
resents an edge-water drive reservoir. The inner boundary
is defined as the interface between the reservoir and the
aquifer. The flow across this inner boundary is considered
horizontal and encroachment occurs across a cylindrical
plane encircling the reservoir. With the interface as the inner
boundary, it is possible to impose a constant terminal pres-
sure at the inner boundary and determine the rate of water
influx across the interface.

Van Everdingen and Hurst proposed a solution to
the dimensionless diffusivity equation that utilizes the
constant-terminal-pressure condition in addition to the fol-
lowing initial and outer boundary conditions:
Initial conditions:

p = pi for all values of radius r

TLFeBOOK



WATER INFLUX 2/157

Outer boundary conditions:

● For an infinite aquifer:
p = pi at r = ∞

● For a bounded aquifer
∂p
∂r

= 0 at r = ra

Van Everdingen and Hurst assumed that the aquifer is
characterized by:

● uniform thickness;
● constant permeability;
● uniform porosity;
● constant rock compressibility;
● constant water compressibility.

The authors expressed their mathematical relationship for
calculating the water influx in the form of a dimensionless
parameter called dimensionless water influx WeD. They also
expressed the dimensionless water influx as a function of
the dimensionless time tD and dimensionless radius rD; thus
they made the solution to the diffusivity equation general-
ized and it can be applied to any aquifer where the flow of
water into the reservoir is essentially radial. The solutions
were derived for the cases of bounded aquifers and aquifers
of infinite extent. The authors presented their solution in tab-
ulated and graphical forms as reproduced here in Figures 2.8
through 2.11 and Tables 2.1 and 2.2. The two dimensionless
parameters tD and rD are given by:

tD = 6. 328 × 10−3 kt
φµwctr2

e
[2.3.15]

rD = ra

re
[2.3.16]

ct = cw + cf [2.3.17]

Dimensionless Time, tD

re/rw = ∞ re/rw = 4.0

re/rw = 3.5

re/rw = 3.0

re/rw = 2.5

re/rw = 2.0
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Figure 2.8 Dimensionless water influx WeD for several values of re/rR, i.e., ra/re ( Van Everdingen and Hurst WeD.
Permission to publish by the SPE).

where:

t = time, days
k = permeability of the aquifer, md
φ = porosity of the aquifer

µw = viscosity of water in the aquifer, cp
ra = radius of the aquifer, ft
re = radius of the reservoir, ft
cw = compressibility of the water, psi−1

cf = compressibility of the aquifer formation, psi−1

ct = total compressibility coefficient, psi−1

The water influx is then given by:

We = B�pWeD [2.3.18]
with:

B = 1. 119φctr2
e h [2.3.19]

where:

We = cumulative water influx, bbl
B = water influx constant, bbl/psi

�p = pressure drop at the boundary, psi
WeD = dimensionless water influx

Equation 2.3.19 assumes that the water is encroaching in a
radial form. Quit often water does not encroach on all sides
of the reservoir, or the reservoir is not circular in nature.
In these cases, some modifications must be made in Equa-
tion 2.3.19 to properly describe the flow mechanism. One of
the simplest modifications is to introduce the encroachment
angle, as a dimensionally parameter f , to the water influx
constant B, as follows:

f = θ

360
[2.3.20]

B = 1. 119φctr2
e hf [2.3.21]
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Figure 2.9 Dimensionless water influx WeD for several values of re/rR, i.e., ra/re ( van Everdingen and Hurst WeD
values. Permission to publish by the SPE).
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Figure 2.10 Dimensionless water influx WeD for infinite aquifer ( van Everdingen and Hurst WeD values. Permission to
publish by the SPE).
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Figure 2.11 Dimensionless water influx WeD for infinite aquifer ( van Everdingen and Hurst WeD values. Permission to
publish by the SPE).

Table 2.1 Dimensionless Water Influx WeD for Infinite Aquifer ( van Everdingen and Hurst WeD. Permission to publish
by the SPE).

Dimen- Fluid Dimen- Fluid Dimen- Fluid Dimen- Fluid Dimen- Fluid Dimen- Fluid
sionless influx sionless influx sionless influx sionless influx sionless influx sionless influx
time WeD time WeD time WeD time WeD time WeD time WeD
tD tD tD tD tD tD

0.00 0.000 79 35.697 455 150.249 1190 340.843 3250 816.090 35.000 6780.247
0.01 0.112 80 36.058 460 151.640 1200 343.308 3300 827.088 40.000 7650.096
0.05 0.278 81 36.418 465 153.029 1210 345.770 3350 838.067 50.000 9363.099
0.10 0.404 82 36.777 470 154.416 1220 348.230 3400 849.028 60.000 11 047.299
0.15 0.520 83 37.136 475 155.801 1225 349.460 3450 859.974 70.000 12 708.358
0.20 0.606 84 37.494 480 157.184 1230 350.688 3500 870.903 75.000 13 531.457
0.25 0.689 85 37.851 485 158.565 1240 353.144 3550 881.816 80.000 14 350.121
0.30 0.758 86 38.207 490 159.945 1250 355.597 3600 892.712 90.000 15 975.389
0.40 0.898 87 38.563 495 161.322 1260 358.048 3650 903.594 100.000 17 586.284
0.50 1.020 88 38.919 500 162.698 1270 360.496 3700 914.459 125.000 21 560.732
0.60 1.140 89 39.272 510 165.444 1275 361.720 3750 925.309 1.5(10)5 2.538(10)4

0.70 1.251 90 39.626 520 168.183 1280 362.942 3800 936.144 2. 0" 3. 308"
0.80 1.359 91 39.979 525 169.549 1290 365.386 3850 946.966 2. 5" 4. 066"
0.90 1.469 92 40.331 530 170.914 1300 367.828 3900 957.773 3. 0" 4. 817"

1 1.569 93 40.684 540 173.639 1310 370.267 3950 968.566 4. 0" 6. 267"
2 2.447 94 41.034 550 176.357 1320 372.704 4000 979.344 5. 0" 7. 699"
3 3.202 95 41.385 560 179.069 1325 373.922 4050 990.108 6. 0" 9. 113"
4 3.893 96 41.735 570 181.774 1330 375.139 4100 1000.858 7. 0" 1. 051(10)5

5 4.539 97 42.084 575 183.124 1340 377.572 4150 1011.595 8. 0" 1. 189"
6 5.153 98 42.433 580 184.473 1350 380.003 4200 1022.318 9. 0" 1. 326"
7 5.743 99 42.781 590 187.166 1360 382.432 4250 1033.028 1. 0(10)6′ 1. 462"
8 6.314 100 43.129 600 189.852 1370 384.859 4300 1043.724 1. 5" 2. 126"
9 6.869 105 44.858 610 192.533 1375 386.070 4350 1054.409 2. 0" 2. 781"
10 7.411 110 46.574 620 195.208 1380 387.283 4400 1065.082 2.5" 3.427"
11 7.940 115 48.277 625 196.544 1390 389.705 4450 1075.743 3.0" 4.064"
12 8.457 120 49.968 630 197.878 1400 392.125 4500 1086.390 4.0" 5.313"
13 8.964 125 51.648 640 200.542 1410 394.543 4550 1097.024 5.0" 6.544"
14 9.461 130 53.317 650 203.201 1420 396.959 4600 1107.646 6.0" 7.761"
15 9.949 135 54.976 660 205.854 1425 398.167 4650 1118.257 7.0" 8.965"
16 10.434 140 56.625 670 208.502 1430 399.373 4700 1128.854 8.0" 1.016(10)6

(continued)
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Table 2.1 Dimensionless Water Influx WeD for Infinite Aquifer (van Everdingen and Hurst WeD. Permission to publish
by the SPE).

Dimen- Fluid Dimen- Fluid Dimen- Fluid Dimen- Fluid Dimen- Fluid Dimen- Fluid
sionless influx sionless influx sionless influx sionless influx sionless influx sionless influx
time WeD time WeD time WeD time WeD time WeD time WeD
tD tD tD tD tD tD

17 10.913 145 58.265 675 209.825 1440 401.786 4750 1139.439 9.0" 1.134"
18 11.386 150 59.895 680 211.145 1450 404.197 4800 1150.012 1.0(10)7 1.252"
19 11.855 155 61.517 690 213.784 1460 406.606 4850 1160.574 1.5" 1.828"
20 12.319 160 63.131 700 216.417 1470 409.013 4900 1171.125 2.0" 2.398"
21 12.778 165 64.737 710 219.046 1475 410.214 4950 1181.666 2.5" 2.961"
22 13.233 170 66.336 720 221.670 1480 411.418 5000 1192.198 3.0" 3.517"
23 13.684 175 67.928 725 222.980 1490 413.820 5100 1213.222 4.0" 4.610"
24 14.131 180 69.512 730 224.289 1500 416.220 5200 1234.203 5.0" 5.689"
25 14.573 185 71.090 740 226.904 1525 422.214 5300 1255.141 6.0" 6.758"
26 15.013 190 72.661 750 229.514 1550 428.196 5400 1276.037 7.0" 7.816"
27 15.450 195 74.226 760 232.120 1575 434.168 5500 1296.893 8.0" 8.866"
28 15.883 200 75.785 770 234.721 1600 440.128 5600 1317.709 9.0" 9.911"
29 16.313 205 77.338 775 236.020 1625 446.077 5700 1338.486 1.0(10)8 1.095(10)7

30 16.742 210 78.886 780 237.318 1650 452.016 5800 1359.225 1.5" 1.604"
31 17.167 215 80.428 790 239.912 1675 457.945 5900 1379.927 2.0" 2.108"
32 17.590 220 81.965 800 242.501 1700 463.863 6000 1400.593 2.5" 2.607"
33 18.011 225 83.497 810 245.086 1725 469.771 6100 1421.224 3.0" 3.100"
34 18.429 230 85.023 820 247.668 1750 475.669 6200 1441.820 4.0" 4.071"
35 18.845 235 86.545 825 248.957 1775 481.558 6300 1462.383 5.0" 5.032"
36 19.259 240 88.062 830 250.245 1800 487.437 6400 1482.912 6.0" 5.984"
37 19.671 245 89.575 840 252.819 1825 493.307 6500 1503.408 7.0" 6.928"
38 20.080 250 91.084 850 255.388 1850 499.167 6600 1523.872 8.0" 7.865"
39 20.488 255 92.589 860 257.953 1875 505.019 6700 1544.305 9.0" 8.797"
40 20.894 260 94.090 870 260.515 1900 510.861 6800 1564.706 1.0(10)9 9.725"
41 21.298 265 95.588 875 261.795 1925 516.695 6900 1585.077 1.5" 1.429(10)8

42 21.701 270 97.081 880 263.073 1950 522.520 7000 1605.418 2.0" 1.880"
43 22.101 275 98.571 890 265.629 1975 528.337 7100 1625.729 2.5" 2.328"
44 22.500 280 100.057 900 268.181 2000 534.145 7200 1646.011 3.0" 2.771"
45 22.897 285 101.540 910 270.729 2025 539.945 7300 1666.265 4.0" 3.645"
46 23.291 290 103.019 920 273.274 2050 545.737 7400 1686.490 5.0" 4.510"
47 23.684 295 104.495 925 274.545 2075 551.522 7500 1706.688 6.0" 5.368"
48 24.076 300 105.968 930 275.815 2100 557.299 7600 1726.859 7.0" 6.220"
49 24.466 305 107.437 940 278.353 2125 563.068 7700 1747.002 8.0" 7.066"
50 24.855 310 108.904 950 280.888 2150 568.830 7800 1767.120 9.0" 7.909"
51 25.244 315 110.367 960 283.420 2175 574.585 7900 1787.212 1.0(10)10 8.747"
52 25.633 320 111.827 970 285.948 2200 580.332 8000 1807.278 1.5" 1.288"(10)9

53 26.020 325 113.284 975 287.211 2225 586.072 8100 1827.319 2.0" 1.697"
54 26.406 330 114.738 980 288.473 2250 591.806 8200 1847.336 2.5" 2.103"
55 26.791 335 116.189 990 290.995 2275 597.532 8300 1867.329 3.0" 2.505"
56 27.174 340 117.638 1000 293.514 2300 603.252 8400 1887.298 4.0" 3.299"
57 27.555 345 119.083 1010 296.030 2325 608.965 8500 1907.243 5.0" 4.087"
58 27.935 350 120.526 1020 298.543 2350 614.672 8600 1927.166 6.0" 4.868"
59 28.314 355 121.966 1025 299.799 2375 620.372 8700 1947.065 7.0" 5.643"
60 28.691 360 123.403 1030 301.053 2400 626.066 8800 1966.942 8.0" 6.414"
61 29.068 365 124.838 1040 303.560 2425 631.755 8900 1986.796 9.0" 7.183"
62 29.443 370 126.720 1050 306.065 2450 637.437 9000 2006.628 1.0(10)11 7.948"
63 29.818 375 127.699 1060 308.567 2475 643.113 9100 2026.438 1.5" 1.17(10)10

64 30.192 380 129.126 1070 311.066 2500 648.781 9200 2046.227 2.0" 1.55"
65 30.565 385 130.550 1075 312.314 2550 660.093 9300 2065.996 2.5" 1.92"
66 30.937 390 131.972 1080 313.562 2600 671.379 9400 2085.744 3.0" 2.29"
67 31.308 395 133.391 1090 316.055 2650 682.640 9500 2105.473 4.0" 3.02"
68 31.679 400 134.808 1100 318.545 2700 693.877 9600 2125.184 5.0" 3.75"
69 32.048 405 136.223 1110 321.032 2750 705.090 9700 2144.878 6.0" 4.47"
70 32.417 410 137.635 1120 323.517 2800 716.280 9800 2164.555 7.0" 5.19"
71 32.785 415 139.045 1125 324.760 2850 727.449 9900 2184.216 8.0" 5.89"
72 33.151 420 140.453 1130 326.000 2900 738.598 10 000 2203.861 9. 0" 6.58"
73 33.517 425 141.859 1140 328.480 2950 749.725 12 500 2688.967 1.0(10)12 7.28"
74 33.883 430 143.262 1150 330.958 3000 760.833 15 000 3164.780 1.5" 1.08(10)11

75 34.247 435 144.664 1160 333.433 3050 771.922 17 500 3633.368 2.0" 1.42"
76 34.611 440 146.064 1170 335.906 3100 782.992 20 000 4095.800
77 34.974 445 147.461 1175 337.142 3150 794.042 25 000 5005.726
78 35.336 450 148.856 1180 338.376 3200 805.075 30 000 5899.508
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Table 2.2 Dimensionless Water Influx WeD for Several Values of re/rR, i.e., ra/re (Van Everdingen and Hurst WeD.
Permission to publish by the SPE).

re/rR = 1. 5 re/rR = 2. 0 re/rR = 2. 5 re/rR = 3. 0 re/rR = 3. 5 re/rR = 4. 0 re/rR = 4. 5
Dimen- Fluid Dimen- Fluid Dimen- Fluid Dimen- Fluid Dimen- Fluid Dimen- Fluid Dimen- Fluid
sionless influx sionless influx sionless influx sionless influx sionless influx sionless influx sionless influx
time WeD time WeD time WeD time WeD time WeD time WeD time WeD
tD tD tD tD tD tD tD

5.0(10)−2 0.276 5.0(10)−2 0.278 1.0(10)−1 0.408 3.0(10)−1 0.755 1.00 1.571 2.00 2.442 2.5 2.835
6.0" 0.304 7.5" 0.345 1.5" 0.509 4.0" 0.895 1.20 1.761 2.20 2.598 3.0 3.196
7.0" 0.330 1.0(10)−1 0.404 2.0" 0.599 5.0" 1.023 1.40 1.940 2.40 2.748 3.5 3.537
8.0" 0.354 1.25" 0.458 2.5" 0.681 6.0" 1.143 1.60 2.111 2.60 2.893 4.0 3.859
9.0" 0.375 1.50" 0.507 3.0" 0.758 7.0" 1.256 1.80 2.273 2.80 3.034 4.5 4.165

1.0(10)−1 0.395 1.75" 0.553 3.5" 0.829 8.0" 1.363 2.00 2.427 3.00 3.170 5.0 4.454
1.1" 0.414 2.00" 0.597 4.0" 0.897 9.0" 1.465 2.20 2.574 3.25 3.334 5.5 4.727
1.2" 0.431 2.25" 0.638 4.5" 0.962 1.00 1.563 2.40 2.715 3.50 3.493 6.0 4.986
1.3" 0.446 2.50" 0.678 5.0" 1.024 1.25 1.791 2.60 2.849 3.75 3.645 6.5 5.231
1.4" 0.461 2.75" 0.715 5.5" 1.083 1.50 1.997 2.80 2.976 4.00 3.792 7.0 5.464
1.5" 0.474 3.00" 0.751 6.0" 1.140 1.75 2.184 3.00 3.098 4.25 3.932 7.5 5.684
1.6" 0.486 3.25" 0.785 6.5" 1.195 2.00 2.353 3.25 3.242 4.50 4.068 8.0 5.892
1.7" 0.497 3.50" 0.817 7.0" 1.248 2.25 2.507 3.50 3.379 4.75 4.198 8.5 6.089
1.8" 0.507 3.75" 0.848 7.5" 1.299 2.50 2.646 3.75 3.507 5.00 4.323 9.0 6.276
1.9" 0.517 4.00" 0.877 8.0" 1.348 2.75 2.772 4.00 3.628 5.50 4.560 9.5 6.453
2.0" 0.525 4.25" 0.905 8.5" 1.395 3.00 2.886 4.25 3.742 6.00 4.779 10 6.621
2.1" 0.533 4.50" 0.932 9.0" 2.440 3.25 2.990 4.50 3.850 6.50 4.982 11 6.930
2.2" 0.541 4.75" 0.958 9.5" 1.484 3.50 3.084 4.75 3.951 7.00 5.169 12 7.208
2.3" 0.548 5.00" 0.993 1.0 1.526 3.75 3.170 5.00 4.047 7.50 5.343 13 7.457
2.4" 0.554 5.50" 1.028 1.1 1.605 4.00 3.247 5.50 4.222 8.00 5.504 14 7.680
2.5" 0.559 6.00" 1.070 1.2 1.679 4.25 3.317 6.00 4.378 8.50 5.653 15 7.880
2.6" 0.565 6.50" 1.108 1.3 1.747 4.50 3.381 6.50 4.516 9.00 5.790 16 8.060
2.8" 0.574 7.00" 1.143 1.4 1.811 4.75 3.439 7.00 4.639 9.50 5.917 18 8.365
3.0" 0.582 7.50" 1.174 1.5 1.870 5.00 3.491 7.50 4.749 10 6.035 20 8.611
3.2" 0.588 8.00" 1.203 1.6 1.924 5.50 3.581 8.00 4.846 11 6.246 22 8.809
3.4" 0.594 9.00" 1.253 1.7 1.975 6.00 3.656 8.50 4.932 12 6.425 24 8.968
3.6" 0.599 1.00" 1.295 1.8 2.022 6.50 3.717 9.00 5.009 13 6.580 26 9.097
3.8" 0.603 1.1 1.330 2.0 2.106 7.00 3.767 9.50 5.078 14 6.712 28 9.200
4.0" 0.606 1.2 1.358 2.2 2.178 7.50 3.809 10.00 5.138 15 6.825 30 9.283
4.5" 0.613 1.3 1.382 2.4 2.241 8.00 3.843 11 5.241 16 6.922 34 9.404
5.0" 0.617 1.4 1.402 2.6 2.294 9.00 3.894 12 5.321 17 7.004 38 9.481
6.0" 0.621 1.6 1.432 2.8 2.340 10.00 3.928 13 5.385 18 7.076 42 9.532
7.0" 0.623 1.7 1.444 3.0 2.380 11.00 3.951 14 5.435 20 7.189 46 9.565
8.0" 0.624 1.8 1.453 3.4 2.444 12.00 3.967 15 5.476 22 7.272 50 9.586

2.0 1.468 3.8 2.491 14.00 3.985 16 5.506 24 7.332 60 9.612
2.5 1.487 4.2 2.525 16.00 3.993 17 5.531 26 7.377 70 9.621
3.0 1.495 4.6 2.551 18.00 3.997 18 5.551 30 7.434 80 9.623
4.0 1.499 5.0 2.570 20.00 3.999 20 5.579 34 7.464 90 9.624
5.0 1.500 6.0 2.599 22.00 3.999 25 5.611 38 7.481 100 9.625

7.0 2.613 24.00 4.000 30 5.621 42 7.490
8.0 2.619 35 5.624 46 7.494
9.0 2.622 40 5.625 50 7.499

10.0 2.624

re/rR = 5. 0 re/rR = 6. 0 re/rR = 7. 0 re/rR = 8. 0 re/rR = 9. 0 re/rR = 10. 0
Dimen- Fluid Dimen- Fluid Dimen- Fluid Dimen- Fluid Dimen- Fluid Dimen- Fluid
sionless influx sionless influx sionless influx sionless influx sionless influx sionless influx
time WeD time WeD time WeD time WeD time WeD time WeD
tD tD tD tD tD tD

3.0 3.195 6.0 5.148 9.0 6.861 9 6.861 10 7.417 15 9.96
3.5 3.542 6.5 5.440 9.50 7.127 10 7.398 15 9.945 20 12.32
4.0 3.875 7.0 5.724 10 7.389 11 7.920 20 12.26 22 13.22
4.5 4.193 7.5 6.002 11 7.902 12 8.431 22 13.13 24 14.95
5.0 4.499 8.0 6.273 12 8.397 13 8.930 24 13.98 26 14.95
5.5 4.792 8.5 6.537 13 8.876 14 9.418 26 14.79 28 15.78
6.0 5.074 9.0 6.795 14 9.341 15 9.895 26 15.59 30 16.59
6.5 5.345 9.5 7.047 15 9.791 16 10.361 30 16.35 32 17.38
7.0 5.605 10.0 7.293 16 10.23 17 10.82 32 17.10 34 18.16
7.5 5.854 10.5 7.533 17 10.65 18 11.26 34 17.82 36 18.91

(continued)
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Table 2.2 Dimensionless Water Influx WeD for Several Values of re/rR, i.e., ra/re (Van Everdingen and Hurst WeD.
Permission to publish by the SPE) (continued)

re/rR = 5. 0 re/rR = 6. 0 re/rR = 7. 0 re/rR = 8. 0 re/rR = 9. 0 re/rR = 10. 0
Dimen- Fluid Dimen- Fluid Dimen- Fluid Dimen- Fluid Dimen- Fluid Dimen- Fluid
sionless influx sionless influx sionless influx sionless influx sionless influx sionless influx
time WeD time WeD time WeD time WeD time WeD time WeD
tD tD tD tD tD tD

8.0 6.094 11 7.767 18 11.06 19 11.70 36 18.52 38 19.65
8.5 6.325 12 8.220 19 11.46 20 12.13 38 19.19 40 20.37
9.0 6.547 13 8.651 20 11.85 22 12.95 40 19.85 42 21.07
9.5 6.760 14 9.063 22 12.58 24 13.74 42 20.48 44 21.76

10 6.965 15 9.456 24 13.27 26 14.50 44 21.09 46 22.42
11 7.350 16 9.829 26 13.92 28 15.23 46 21.69 48 23.07
12 7.706 17 10.19 28 14.53 30 15.92 48 22.26 50 23.71
13 8.035 18 10.53 30 15.11 34 17.22 50 22.82 52 24.33
14 8.339 19 10.85 35 16.39 38 18.41 52 23.36 54 24.94
15 8.620 20 11.16 40 17.49 40 18.97 54 23.89 56 25.53
16 8.879 22 11.74 45 18.43 45 20.26 56 24.39 58 26.11
18 9.338 24 12.26 50 19.24 50 21.42 58 24.88 60 26.67
20 9.731 25 12.50 60 20.51 55 22.46 60 25.36 65 28.02
22 10.07 31 13.74 70 21.45 60 23.40 65 26.48 70 29.29
24 10.35 35 14.40 80 22.13 70 24.98 70 27.52 75 30.49
26 10.59 39 14.93 90 22.63 80 26.26 75 28.48 80 31.61
28 10.80 51 16.05 100 23.00 90 27.28 80 29.36 85 32.67
30 10.98 60 16.56 120 23.47 100 28.11 85 30.18 90 33.66
34 11.26 70 16.91 140 23.71 120 29.31 90 30.93 95 34.60
38 11.46 80 17.14 160 23.85 140 30.08 95 31.63 100 35.48
42 11.61 90 17.27 180 23.92 160 30.58 100 32.27 120 38.51
46 11.71 100 17.36 200 23.96 180 30.91 120 34.39 140 40.89
50 11.79 110 17.41 500 24.00 200 31.12 140 35.92 160 42.75
60 11.91 120 17.45 240 31.34 160 37.04 180 44.21
70 11.96 130 17.46 280 31.43 180 37.85 200 45.36
80 11.98 140 17.48 320 31.47 200 38.44 240 46.95
90 11.99 150 17.49 360 31.49 240 39.17 280 47.94

100 12.00 160 17.49 400 31.50 280 39.56 320 48.54
120 12.00 180 17.50 500 31.50 320 39.77 360 48.91

200 17.50 360 39.88 400 49.14
220 17.50 400 39.94 440 49.28

440 39.97 480 49.36
480 39.98

θ is the angle subtended by the reservoir circumference,
i.e., for a full circle θ = 360◦ and for a semicircular reservoir
against a fault θ = 180◦, as shown in Figure 2.12.

Example 2.6 a Calculate the water influx at the end of
1, 2, and 5 years into a circular reservoir with an aquifer of
infinite extent, i.e., reD = ∞. The initial and current reservoir
pressures are 2500 and 2490 psi, respectively. The reservoir-
aquifer system has the following properties.

Reservoir Aquifer

radius, ft 2000 ∞
h, ft 20 22.7
k, md 50 100
φ, % 15 20
µw, cp 0.5 0.8
cw, psi−1 1 × 10−6 0. 7 × 10−6

cf , psi−1 2 × 10−6 0. 3 × 10−6

aData for this example was reported by Cole, Frank Reservoir
Engineering Manual, Gulf Publishing Company, 1969.

f = 0.5 f = 0.25

Oil Reservoir

Fault

Fault

Fault

Oil Reservoir

R

R

Aqu
ife

r

Aquifer

Figure 2.12 Gas cap drive reservoir (After Cole, F.,
Reservoir Engineering Manual, Gulf Publishing Company,
1969).

Solution

Step 1. Calculate the aquifer total compressibility coefficient
ct from Equation 2.3.17:

ct = cw + cf

= 0. 7(10−6) + 0. 3(10−6) = 1 × 10−6 psi−1

TLFeBOOK



WATER INFLUX 2/163

Step 2. Determine the water influx constant from Equation
2.3.21:

B = 1. 119 φctr2
e hf

= 1. 119(0. 2)(1 × 10−6)(2000)2(22. 7)(360/360)

= 20. 4

Step 3. Calculate the corresponding dimensionless time
after 1, 2, and 5 years:

tD = 6. 328 × 10−3 kt
φµwctr2

e

= 6. 328 × 10−3 100t
(0. 8)(0. 2)(1 × 10−6)(2000)2

= 0. 9888t

Thus in tabular form:

t (days) tD = 0. 9888t

365 361
730 722

1825 1805

Step 4. Using Table 2.1, determine the dimensionless water
influx WeD:

t (days) tD WeD

365 361 123.5
730 722 221.8

1825 1805 484.6

Step 5. Calculate the cumulative water influx by applying
Equation 2.3.18:

We = B�pWeD

Time

P
re

ss
ur

e

T1

p1

pi
∆p1

∆p2

∆p3

∆p4

p2

p3

p4

T2 T3 T4

Figure 2.13 Boundary pressure versus time.

t (days) WeD We = (20. 4)(2500 × 2490)WeD

365 123.5 25 194 bbl
730 221.8 45 247 bbl

1825 484.6 98 858 bbl

Example 2.6 shows that, for a given pressure drop, dou-
bling the time interval will not double the water influx. This
example also illustrates how to calculate water influx as a
result of a single pressure drop. As there will usually be many
of these pressure drops occurring throughout the prediction
period, it is necessary to analyze the procedure to be used
where these multiple pressure drops are present.

Consider Figure 2.13 which illustrates the decline in
the boundary pressure as a function of time for a radial
reservoir–aquifer system. If the boundary pressure in the
reservoir shown in Figure 2.13 is suddenly reduced at
time t, from pi to p1, a pressure drop of (pi − p1) will be
imposed across the aquifer. Water will continue to expand
and the new reduced pressure will continue to move out-
ward into the aquifer. Given a sufficient length of time the
pressure at the outer edge of the aquifer will finally be
reduced to p1.

If some time after the boundary pressure has been
reduced to p1, a second pressure p2 is suddenly imposed
at the boundary, a new pressure wave will begin moving
outward into the aquifer. This new pressure wave will also
cause water expansion and therefore encroachment into the
reservoir. However, this new pressure drop will not be pi −p2,
but will be p1 − p2. This second pressure wave will be mov-
ing behind the first pressure wave. Just ahead of the second
pressure wave will be the pressure at the end of the first
pressure drop, p1.

Since these pressure waves are assumed to occur at dif-
ferent times, they are entirely independent of each other.
Thus, water expansion will continue to take place as a result
of the first pressure drop, even though additional water
influx is also taking place as a result of one or more later
pressure drops. This is essentially an application of the prin-
ciple of superposition. In order to determine the total water
influx into a reservoir at any given time, it is necessary to
determine the water influx as a result of each successive
pressure drop that has been imposed on the reservoir and
aquifer.
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B

A

C 0 t1

t1

t1

t2

∆p3

∆p2

∆p2

∆p1

∆p1

∆p1

t2

t3

0

0

Figure 2.14 Illustration of the superposition concept.

In calculating the cumulative water influx into a reservoir
at successive intervals, it is necessary to calculate the total
water influx from the beginning. This is required because of
the different times during which the various pressure drops
have been effective.

The van Everdingen and Hurst computational procedure
for determining the water influx as a function of time and
pressure is summarized by the following steps and described
conceptually in Figure 2.14:

Step 1. Assume that the boundary pressure has declined
from its initial value of pi to p1 after t1 days. To deter-
mine the cumulative water influx in response to this
first pressure drop �p1 = pi − p1 can be simply
calculated from Equation 2.3.18, or:

We = B�p1(WeD)t1

where We is the cumulative water influx due to the
first pressure drop �p1. The dimensionless water
influx (WeD)t1 is evaluated by calculating the dimen-
sionless time at t1 days. This simple calculation step
is shown by A in Figure 2.14.

Step 2. Let the boundary pressure decline again to p2 after t2
days with a pressure drop of �p2 = p1 −p2. The total
cumulative water influx after t2 days will result from
the first pressure drop �p1 and the second pressure
drop �p2, or:

We = water influx due to �p1

+ water influx due to �p2

We = (We)�p1 + (We)�p2

where:

(We)�p1 = B�p1(WeD)t2
(We)�p2 = B�p2(WeD)t2−t1

The above relationships indicate that the effect of the
first pressure drop �p1 will continue for the entire
time t2, while the effect of the second pressure drop

will continue only for (t2 − t1) days as shown by B in
Figure 2.14.

Step 3. A third pressure drop of �p3 = p2 − p3 would
cause an additional water influx as illustrated by C
in Figure 2.14. The total cumulative water influx can
then be calculated from:

We = (We)�p1 + (We)�p2 + (We)�p3

where:

(We)�p1 = B�p1(WeD)t3(
We
)
�p2

= B�p2
(
WeD

)
t3−t1(

We
)
�p3

= B�p3
(
WeD

)
t3−t2

The van Everdingen and Hurst water influx relation-
ship can then be expressed in a more generalized
form as:

We = B
∑

�pWeD [2.3.22]

The authors also suggested that instead of using the entire
pressure drop for the first period, a better approximation is
to consider that one-half of the pressure drop, 1

2 (pi − p1),
is effective during the entire first period. For the second
period the effective pressure drop then is one-half of the
pressure drop during the first period, 1

2 (pi − p2), which
simplifies to:

1
2

(pi − p1) + 1
2

(p1 − p2) = 1
2

(pi − p2)

Similarly, the effective pressure drop for use in the calcula-
tions for the third period would be one-half of the pressure
drop during the second period, 1

2 (p1 − p2), plus one-half of
the pressure drop during the third period, 1

2 (p2 −p3), which
simplifies to 1

2 (p1 − p3). The time intervals must all be equal
in order to preserve the accuracy of these modifications.

Example 2.7 Using the data given in Example 2.6, calcu-
late the cumulative water influx at the end of 6, 12, 18, and
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24 months. The predicted boundary pressure at the end of
each specified time period is given below:

Time (days) Time (months) Boundary pressure (psi)

0 0 2500
182.5 6 2490
365.0 12 2472
547.5 18 2444
730.0 24 2408

Data from Example 2.6 is listed below:

B = 20. 4

tD = 0. 9888 t

Solution Water influx after 6 months:

Step 1. Determine water influx constant B. Example 2.6
gives a value of:

B = 20. 4 bbl/psi

Step 2. Calculate the dimensionless time tD at t = 182. 5
days:

tD = 0. 9888t = 0. 9888(182. 5) = 180. 5

Step 3. Calculate the first pressure drop �p1. This pressure
is taken as one-half of the actual pressured drop, or:

�p1 = pi − p1

2
= 2500 − 2490

2
= 5 psi

Step 4. Determine the dimensionless water influx WeD from
Table 2.1 at tD = 180. 5, to give:

(WeD)t1 = 69. 46

Step 5. Calculate the cumulative water influx at the end of
182.5 days due to the first pressure drop of 5 psi,
i.e., (We)�p1 = 5, by using the van Everdingen and
Hurst equation, or:

(We)�p1= 5 psi = B�p1(WeD)t1

= (20. 4)(5)(69. 46) = 7085 bbl

Cumulative water influx after 12 months:

Step 1. After an additional 6 months, the pressure has
declined from 2490 psi to 2472 psi. This second pres-
sure �p2 is taken as one-half the actual pressure
drop during the first period, plus one-half the actual
pressure drop during the second period, or:

�p2 = pi − p2

2
= 2500 − 2472

2
= 14 psi

Step 2. The total cumulative water influx at the end of 12
months would result from the first pressure drop
�p1 and the second pressure drop �p2.
The first pressure drop �p1 has been effective for a
year, but the second pressure drop, �p2, has been
effective for only 6 months, as shown in Figure 2.15.
Separate calculations must be made for the two pres-
sure drops because of this time difference, and the
results added in order to determine the total water
influx. That is:

We = (We
)
�p1

+ (We
)
�p2

0 6 Months 12 Months

∆p1 = 5

∆p2 = 14

Figure 2.15 Duration of the pressure drop in Example 2.7.

Step 3. Calculate the dimensionless time at 365 days, as:

tD = 0. 9888t = 0. 9888(365) = 361

Step 4. Determine the dimensionless water influx at tD =
361 from Table 2.1, to give:

WeD = 123. 5

Step 5. Calculate the water influx due to the first and second
pressure drop, i.e., (We)�p1 and (We)�p2 , or:

(We)�p1= 5 = (20. 4)(5)(123. 5) = 12 597 bbl

(We)�p2=14 = (20. 4)(14)(69. 46) = 19 838 bbl

Step 6. Calculate the total cumulative water influx after
12 months:

We = (We
)
�p1

+ (We
)
�p2

= 12 597 + 19 938 = 32 435 bbl

Water influx after 18 months:

Step 1. Calculate the third pressure drop �p3 which is taken
as one-half of the actual pressure drop during the
second period plus one-half of the actual pressure
drop during the third period, or:

�p3 = p1 − p3

2
= 2490 − 2444

2
= 23 psi

Step 2. Calculate the dimensionless time after 6 months:

tD = 0. 9888t = 0. 9888(547. 5) = 541. 5

Step 3. Determine the dimensionless water influx from
Table 2.1 at tD = 541. 5:

WeD = 173. 7

Step 4. The first pressure drop will have been effective for
the entire 18 months, the second pressure drop will
have been effective for 12 months, and the last pres-
sure drop will have been effective for only 6 months,
as shown in Figure 2.16. Therefore, the cumulative
water influx is as calculated below:

Time (days) tD �p WeD B�pWeD

547.5 541.5 5 173.7 17 714
365 361 14 123.5 35 272
182.5 180.5 23 69.40 32 291

We = 85 277 bbl

Water influx after 24 months:
The first pressure drop has now been effective for the entire
24 months, the second pressure drop has been effective for
18 months, the third pressure drop has been effective for
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0 6 Months 12 Months 18 Months

∆p1 = 5

∆p2 = 14

∆p3 = 23

Figure 2.16 Pressure drop data for Example 2.7.

12 months, and the fourth pressure drop has been effective
only 6 months. A summary of the calculations is given below:

Time (days) tD �p WeD B�pWeD

730 722 5 221.8 22 624
547.5 541.5 14 173.7 49 609
365 361 23 123.5 57 946
182.5 180.5 32 69.40 45 343

We = 175 522 bbl

Edwardson et al. (1962) developed three sets of simple
polynomial expressions for calculating the dimensionless
water influx WeD for infinite-acting aquifers. The proposed
three expressions essentially approximate the WeD data in
three dimensionless time regions.

(1) For tD < 0. 01:

WeD =
√

tD

π
[2.3.23]

(2) For 0. 01 < tD < 200:

WeD = (1. 2838
√

tD + 1. 19328 tD + 0. 269872 (tD)3/2

+ 0. 00855294 (tD)2 )/(1 + 0. 616599
√

tD

+ 0. 0413008tD
)

[2.3.24]

(3) For tD > 200:

WeD = −4. 29881 + 2. 02566tD

ln(tD)
[2.3.25]

Bottom-water drive
The van Everdingen and Hurst solution to the radial diffusiv-
ity equation is considered the most rigorous aquifer influx
model to date. However, the proposed solution technique is
not adequate to describe the vertical water encroachment
in bottom-water drive systems. Coats (1962) presented a
mathematical model that takes into account the vertical flow
effects from bottom-water aquifers. He correctly noted that
in many cases reservoirs are situated on top of an aquifer with
a continuous horizontal interface between the reservoir fluid
and the aquifer water and with a significant aquifer thickness.
He stated that in such situations significant bottom-water
drive would occur. He modified the diffusivity equation to
account for the vertical flow by including an additional term
in the equation, to give:

∂2p
∂r2 + 1

r
∂p
∂r

+ Fk
∂2p
∂z2 = µφc

k
∂p
∂t

[2.3.26]

where Fk is the ratio of vertical to horizontal permeability,
or:

Fk = kv/kh [2.3.27]

where:

kv = vertical permeability
kh = horizontal permeability

Allard and Chen (1988) pointed out that there are an infi-
nite number of solutions to Equation 2.3.26, representing
all possible reservoir–aquifer configurations. They sug-
gested that it is possible to derive a general solution that
is applicable to a variety of systems by the solution to
Equation 2.3.26 in terms of the dimensionless time tD, dimen-
sionless radius rD, and a newly introduced dimensionless
variable, zD.

zD = h
re

√
Fk

[2.3.28]

where:

zD = dimensionless vertical distance
h = aquifer thickness, ft

Allen and Chen used a numerical model to solve Equation
2.3.26. The authors developed a solution to the bottom-water
influx that is comparable in form with that of van Everdingen
and Hurst:

We = B
∑

�pWeD [2.3.29]

They defined the water influx constant B as identical to that
of Equation 2.3.19, or

B = 1. 119φctr2
e h [2.3.30]

Note that the water influx constant B in bottom-water drive
reservoirs does not include the encroachment angle θ .

The actual values of WeD are different from those of the van
Everdingen and Hurst model because WeD for the bottom-
water drive is also a function of the vertical permeability.
Allard and Chen tabulated the values of WeD as a function
of rD, tD, and zD. These values are presented in Tables 2.3
through 2.7.

The solution procedure of a bottom-water influx prob-
lem is identical to the edge-water influx problem outlined
in Example 2.7. Allard and Chen illustrated results of their
method in the following example.

Example 2.8 An infinite-acting bottom-water aquifer is
characterized by the following properties:

ra = ∞, kh = 50 md, Fk = 0. 04, φ = 0. 1,
µw = 0. 395 cp, ct = 8 × 10−6 psi−1, h = 200 ft,
re = 2000 ft, θ = 360◦
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Table 2.3 Dimensionless Water Influx, WeD, for Infinite Aquifer (Permission to publish by the SPE)

Z ′
D

tD 0.05 0.1 0.3 0.5 0.7 0.9 1.0

0.1 0.700 0.677 0.508 0.349 0.251 0.195 0.176
0.2 0.793 0.786 0.696 0.547 0.416 0.328 0.295
0.3 0.936 0.926 0.834 0.692 0.548 0.440 0.396
0.4 1.051 1.041 0.952 0.812 0.662 0.540 0.486
0.5 1.158 1.155 1.059 0.918 0.764 0.631 0.569

0.6 1.270 1.268 1.167 1.021 0.862 0.721 0.651
0.7 1.384 1.380 1.270 1.116 0.953 0.806 0.729
0.8 1.503 1.499 1.373 1.205 1.039 0.886 0.803
0.9 1.621 1.612 1.477 1.286 1.117 0.959 0.872
1 1.743 1.726 1.581 1.347 1.181 1.020 0.932

2 2.402 2.393 2.288 2.034 1.827 1.622 1.509
3 3.031 3.018 2.895 2.650 2.408 2.164 2.026
4 3.629 3.615 3.477 3.223 2.949 2.669 2.510
5 4.217 4.201 4.048 3.766 3.462 3.150 2.971
6 4.784 4.766 4.601 4.288 3.956 3.614 3.416

7 5.323 5.303 5.128 4.792 4.434 4.063 3.847
8 5.829 5.808 5.625 5.283 4.900 4.501 4.268
9 6.306 6.283 6.094 5.762 5.355 4.929 4.680

10 6.837 6.816 6.583 6.214 5.792 5.344 5.080
11 7.263 7.242 7.040 6.664 6.217 5.745 5.468

12 7.742 7.718 7.495 7.104 6.638 6.143 5.852
13 8.196 8.172 7.943 7.539 7.052 6.536 6.231
14 8.648 8.623 8.385 7.967 7.461 6.923 6.604
15 9.094 9.068 8.821 8.389 7.864 7.305 6.973
16 9.534 9.507 9.253 8.806 8.262 7.682 7.338

17 9.969 9.942 9.679 9.218 8.656 8.056 7.699
18 10.399 10.371 10.100 9.626 9.046 8.426 8.057
19 10.823 10.794 10.516 10.029 9.432 8.793 8.411
20 11.241 11.211 10.929 10.430 9.815 9.156 8.763
21 11.664 11.633 11.339 10.826 10.194 9.516 9.111

22 12.075 12.045 11.744 11.219 10.571 9.874 9.457
23 12.486 12.454 12.147 11.609 10.944 10.229 9.801
24 12.893 12.861 12.546 11.996 11.315 10.581 10.142
25 13.297 13.264 12.942 12.380 11.683 10.931 10.481
26 13.698 13.665 13.336 12.761 12.048 11.279 10.817

27 14.097 14.062 13.726 13.140 12.411 11.625 11.152
28 14.493 14.458 14.115 13.517 12.772 11.968 11.485
29 14.886 14.850 14.501 13.891 13.131 12.310 11.816
30 15.277 15.241 14.884 14.263 13.488 12.650 12.145
31 15.666 15.628 15.266 14.634 13.843 12.990 12.473

32 16.053 16.015 15.645 15.002 14.196 13.324 12.799
33 16.437 16.398 16.023 15.368 14.548 13.659 13.123
34 16.819 16.780 16.398 15.732 14.897 13.992 13.446
35 17.200 17.160 16.772 16.095 15.245 14.324 13.767
36 17.579 17.538 17.143 16.456 15.592 14.654 14.088

37 17.956 17.915 17.513 16.815 15.937 14.983 14.406
38 18.331 18.289 17.882 17.173 16.280 15.311 14.724
39 18.704 18.662 18.249 17.529 16.622 15.637 15.040
40 19.088 19.045 18.620 17.886 16.964 15.963 15.356
41 19.450 19.407 18.982 18.240 17.305 16.288 15.671

42 19.821 19.777 19.344 18.592 17.644 16.611 15.985
43 20.188 20.144 19.706 18.943 17.981 16.933 16.297
44 20.555 20.510 20.065 19.293 18.317 17.253 16.608
45 20.920 20.874 20.424 19.641 18.651 17.573 16.918
46 21.283 21.237 20.781 19.988 18.985 17.891 17.227

47 21.645 21.598 21.137 20.333 19.317 18.208 17.535
48 22.006 21.958 21.491 20.678 19.648 18.524 17.841
49 22.365 22.317 21.844 21.021 19.978 18.840 18.147

(continued)
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Table 2.3 Dimensionless Water Influx, WeD, for Infinite Aquifer (Permission to publish by the SPE) (continued)

Z ′
D

tD 0.05 0.1 0.3 0.5 0.7 0.9 1.0

50 22.722 22.674 22.196 21.363 20.307 19.154 18.452
51 23.081 23.032 22.547 21.704 20.635 19.467 18.757

52 23.436 23.387 22.897 22.044 20.962 19.779 19.060
53 23.791 23.741 23.245 22.383 21.288 20.091 19.362
54 24.145 24.094 23.593 22.721 21.613 20.401 19.664
55 24.498 24.446 23.939 23.058 21.937 20.711 19.965
56 24.849 24.797 24.285 23.393 22.260 21.020 20.265

57 25.200 25.147 24.629 23.728 22.583 21.328 20.564
58 25.549 25.496 24.973 24.062 22.904 21.636 20.862
59 25.898 25.844 25.315 24.395 23.225 21.942 21.160
60 26.246 26.191 25.657 24.728 23.545 22.248 21.457
61 26.592 26.537 25.998 25.059 23.864 22.553 21.754

62 26.938 26.883 26.337 25.390 24.182 22.857 22.049
63 27.283 27.227 26.676 25.719 24.499 23.161 22.344
64 27.627 27.570 27.015 26.048 24.616 23.464 22.639
65 27.970 27.913 27.352 26.376 25.132 23.766 22.932
66 28.312 28.255 27.688 26.704 25.447 24.088 23.225

67 28.653 28.596 28.024 27.030 25.762 24.369 23.518
68 28.994 28.936 28.359 27.356 26.075 24.669 23.810
69 29.334 29.275 28.693 27.681 26.389 24.969 24.101
70 29.673 29.614 29.026 28.008 26.701 25.268 24.391
71 30.011 29.951 29.359 28.329 27.013 25.566 24.881

72 30.349 30.288 29.691 28.652 27.324 25.864 24.971
73 30.686 30.625 30.022 28.974 27.634 26.161 25.260
74 31.022 30.960 30.353 29.296 27.944 26.458 25.548
75 31.357 31.295 30.682 29.617 28.254 26.754 25.836
76 31.692 31.629 31.012 29.937 28.562 27.049 26.124

77 32.026 31.963 31.340 30.257 28.870 27.344 26.410
78 32.359 32.296 31.668 30.576 29.178 27.639 26.697
79 32.692 32.628 31.995 30.895 29.485 27.933 25.983
80 33.024 32.959 32.322 31.212 29.791 28.226 27.268
81 33.355 33.290 32.647 31.530 30.097 28.519 27.553

82 33.686 33.621 32.973 31.846 30.402 28.812 27.837
83 34.016 33.950 33.297 32.163 30.707 29.104 28.121
84 34.345 34.279 33.622 32.478 31.011 29.395 28.404
85 34.674 34.608 33.945 32.793 31.315 29.686 28.687
86 35.003 34.935 34.268 33.107 31.618 29.976 28.970

87 35.330 35.263 34.590 33.421 31.921 30.266 29.252
88 35.657 35.589 34.912 33.735 32.223 30.556 29.534
89 35.984 35.915 35.233 34.048 32.525 30.845 29.815
90 36.310 36.241 35.554 34.360 32.826 31.134 30.096
91 36.636 36.566 35.874 34.672 33.127 31.422 30.376

92 36.960 36.890 36.194 34.983 33.427 31.710 30.656
93 37.285 37.214 36.513 35.294 33.727 31.997 30.935
94 37.609 37.538 36.832 35.604 34.026 32.284 31.215
95 37.932 37.861 37.150 35.914 34.325 32.570 31.493
96 38.255 38.183 37.467 36.223 34.623 32.857 31.772

97 38.577 38.505 37.785 36.532 34.921 33.142 32.050
98 38.899 38.826 38.101 36.841 35.219 33.427 32.327
99 39.220 39.147 38.417 37.149 35.516 33.712 32.605

100 39.541 39.467 38.733 37.456 35.813 33.997 32.881
105 41.138 41.062 40.305 38.987 37.290 35.414 34.260

110 42.724 42.645 41.865 40.508 38.758 36.821 35.630
115 44.299 44.218 43.415 42.018 40.216 38.221 36.993
120 45.864 45.781 44.956 43.520 41.666 39.612 38.347
125 47.420 47.334 46.487 45.012 43.107 40.995 39.694
130 48.966 48.879 48.009 46.497 44.541 42.372 41.035

135 50.504 50.414 49.523 47.973 45.967 43.741 42.368
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Table 2.3 Dimensionless Water Influx, WeD, for Infinite Aquifer (Permission to publish by the SPE) (continued)

Z ′
D

tD 0.05 0.1 0.3 0.5 0.7 0.9 1.0

140 52.033 51.942 51.029 49.441 47.386 45.104 43.696
145 53.555 53.462 52.528 50.903 48.798 46.460 45.017
150 55.070 54.974 54.019 52.357 50.204 47.810 46.333
155 56.577 56.479 55.503 53.805 51.603 49.155 47.643
160 58.077 57.977 56.981 55.246 52.996 50.494 48.947
165 59.570 59.469 58.452 56.681 54.384 51.827 50.247
170 61.058 60.954 59.916 58.110 55.766 53.156 51.542
175 62.539 62.433 61.375 59.534 57.143 54.479 52.832
180 64.014 63.906 62.829 60.952 58.514 55.798 54.118
185 65.484 65.374 64.276 62.365 59.881 57.112 55.399
190 66.948 66.836 65.718 63.773 61.243 58.422 56.676
195 68.406 68.293 67.156 65.175 62.600 59.727 57.949
200 69.860 69.744 68.588 66.573 63.952 61.028 59.217
205 71.309 71.191 70.015 67.967 65.301 62.326 60.482
210 72.752 72.633 71.437 69.355 66.645 63.619 61.744
215 74.191 74.070 72.855 70.740 67.985 64.908 63.001
220 75.626 75.503 74.269 72.120 69.321 66.194 64.255
225 77.056 76.931 75.678 73.496 70.653 67.476 65.506
230 78.482 78.355 77.083 74.868 71.981 68.755 66.753
235 79.903 79.774 78.484 76.236 73.306 70.030 67.997
240 81.321 81.190 79.881 77.601 74.627 71.302 69.238
245 82.734 82.602 81.275 78.962 75.945 72.570 70.476
250 84.144 84.010 82.664 80.319 77.259 73.736 71.711
255 85.550 85.414 84.050 81.672 78.570 75.098 72.943
260 86.952 86.814 85.432 83.023 79.878 76.358 74.172
265 88.351 88.211 86.811 84.369 81.182 77.614 75.398
270 89.746 89.604 88.186 85.713 82.484 78.868 76.621
275 91.138 90.994 89.558 87.053 83.782 80.119 77.842
280 92.526 92.381 90.926 88.391 85.078 81.367 79.060
285 93.911 93.764 92.292 89.725 86.371 82.612 80.276
290 95.293 95.144 93.654 91.056 87.660 83.855 81.489
295 96.672 96.521 95.014 92.385 88.948 85.095 82.700
300 98.048 97.895 96.370 93.710 90.232 86.333 83.908
305 99.420 99.266 97.724 95.033 91.514 87.568 85.114
310 100.79 100.64 99.07 96.35 92.79 88.80 86.32
315 102.16 102.00 100.42 97.67 94.07 90.03 87.52
320 103.52 103.36 101.77 98.99 95.34 91.26 88.72
325 104.88 104.72 103.11 100.30 96.62 92.49 89.92
330 106.24 106.08 104.45 101.61 97.89 93.71 91.11
335 107.60 107.43 105.79 102.91 99.15 94.93 92.30
340 108.95 108.79 107.12 104.22 100.42 96.15 93.49
345 110.30 110.13 108.45 105.52 101.68 97.37 94.68
350 111.65 111.48 109.78 106.82 102.94 98.58 95.87
355 113.00 112.82 111.11 108.12 104.20 99.80 97.06
360 114.34 114.17 112.43 109.41 105.45 101.01 98.24
365 115.68 115.51 113.76 110.71 106.71 102.22 99.42
370 117.02 116.84 115.08 112.00 107.96 103.42 100.60
375 118.36 118.18 116.40 113.29 109.21 104.63 101.78
380 119.69 119.51 117.71 114.57 110.46 105.83 102.95
385 121.02 120.84 119.02 115.86 111.70 107.04 104.13
390 122.35 122.17 120.34 117.14 112.95 108.24 105.30
395 123.68 123.49 121.65 118.42 114.19 109.43 106.47
400 125.00 124.82 122.94 119.70 115.43 110.63 107.64
405 126.33 126.14 124.26 120.97 116.67 111.82 108.80
410 127.65 127.46 125.56 122.25 117.90 113.02 109.97
415 128.97 128.78 126.86 123.52 119.14 114.21 111.13
420 130.28 130.09 128.16 124.79 120.37 115.40 112.30
425 131.60 131.40 129.46 126.06 121.60 116.59 113.46
430 132.91 132.72 130.75 127.33 122.83 117.77 114.62
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Table 2.3 Dimensionless Water Influx, WeD, for Infinite Aquifer (Permission to publish by the SPE) (continued)

Z ′
D

tD 0.05 0.1 0.3 0.5 0.7 0.9 1.0

435 134.22 134.03 132.05 128.59 124.06 118.96 115.77
440 135.53 135.33 133.34 129.86 125.29 120.14 116.93
445 136.84 136.64 134.63 131.12 126.51 121.32 118.08
450 138.15 137.94 135.92 132.38 127.73 122.50 119.24
455 139.45 139.25 137.20 133.64 128.96 123.68 120.39

460 140.75 140.55 138.49 134.90 130.18 124.86 121.54
465 142.05 141.85 139.77 136.15 131.39 126.04 122.69
470 143.35 143.14 141.05 137.40 132.61 127.21 123.84
475 144.65 144.44 142.33 138.66 133.82 128.38 124.98
480 145.94 145.73 143.61 139.91 135.04 129.55 126.13

485 147.24 147.02 144.89 141.15 136.25 130.72 127.27
490 148.53 148.31 146.16 142.40 137.46 131.89 128.41
495 149.82 149.60 147.43 143.65 138.67 133.06 129.56
500 151.11 150.89 148.71 144.89 139.88 134.23 130.70
510 153.68 153.46 151.24 147.38 142.29 136.56 132.97

520 156.25 156.02 153.78 149.85 144.70 138.88 135.24
530 158.81 158.58 156.30 152.33 147.10 141.20 137.51
540 161.36 161.13 158.82 154.79 149.49 143.51 139.77
550 163.91 163.68 161.34 157.25 151.88 145.82 142.03
560 166.45 166.22 163.85 159.71 154.27 148.12 144.28

570 168.99 168.75 166.35 162.16 156.65 150.42 146.53
580 171.52 171.28 168.85 164.61 159.02 152.72 148.77
590 174.05 173.80 171.34 167.05 161.39 155.01 151.01
600 176.57 176.32 173.83 169.48 163.76 157.29 153.25
610 179.09 178.83 176.32 171.92 166.12 159.58 155.48

620 181.60 181.34 178.80 174.34 168.48 161.85 157.71
630 184.10 183.85 181.27 176.76 170.83 164.13 159.93
640 186.60 186.35 183.74 179.18 173.18 166.40 162.15
650 189.10 188.84 186.20 181.60 175.52 168.66 164.37
660 191.59 191.33 188.66 184.00 177.86 170.92 166.58

670 194.08 193.81 191.12 186.41 180.20 173.18 168.79
680 196.57 196.29 193.57 188.81 182.53 175.44 170.99
690 199.04 198.77 196.02 191.21 184.86 177.69 173.20
700 201.52 201.24 198.46 193.60 187.19 179.94 175.39
710 203.99 203.71 200.90 195.99 189.51 182.18 177.59

720 206.46 206.17 203.34 198.37 191.83 184.42 179.78
730 208.92 208.63 205.77 200.75 194.14 186.66 181.97
740 211.38 211.09 208.19 203.13 196.45 188.89 184.15
750 213.83 213.54 210.62 205.50 198.76 191.12 186.34
760 216.28 215.99 213.04 207.87 201.06 193.35 188.52

770 218.73 218.43 215.45 210.24 203.36 195.57 190.69
780 221.17 220.87 217.86 212.60 205.66 197.80 192.87
790 223.61 223.31 220.27 214.96 207.95 200.01 195.04
800 226.05 225.74 222.68 217.32 210.24 202.23 197.20
810 228.48 228.17 225.08 219.67 212.53 204.44 199.37

820 230.91 230.60 227.48 222.02 214.81 206.65 201.53
830 233.33 233.02 229.87 224.36 217.09 208.86 203.69
840 235.76 235.44 232.26 226.71 219.37 211.06 205.85
850 238.18 237.86 234.65 229.05 221.64 213.26 208.00
860 240.59 240.27 237.04 231.38 223.92 215.46 210.15

870 243.00 242.68 239.42 233.72 226.19 217.65 212.30
880 245.41 245.08 241.80 236.05 228.45 219.85 214.44
890 247.82 247.49 244.17 238.37 230.72 222.04 216.59
900 250.22 249.89 246.55 240.70 232.98 224.22 218.73
910 252.62 252.28 248.92 243.02 235.23 226.41 220.87

920 255.01 254.68 251.28 245.34 237.49 228.59 223.00
930 257.41 257.07 253.65 247.66 239.74 230.77 225.14
940 259.80 259.46 256.01 249.97 241.99 232.95 227.27
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Table 2.3 Dimensionless Water Influx, WeD, for Infinite Aquifer (Permission to publish by the SPE) (continued)

Z ′
D

tD 0.05 0.1 0.3 0.5 0.7 0.9 1.0

950 262.19 261.84 258.36 252.28 244.24 235.12 229.39
960 264.57 264.22 260.72 254.59 246.48 237.29 231.52

970 266.95 266.60 263.07 256.89 248.72 239.46 233.65
980 269.33 268.98 265.42 259.19 250.96 241.63 235.77
990 271.71 271.35 267.77 261.49 253.20 243.80 237.89

1000 274.08 273.72 270.11 263.79 255.44 245.96 240.00
1010 276.35 275.99 272.35 265.99 257.58 248.04 242.04

1020 278.72 278.35 274.69 268.29 259.81 250.19 244.15
1030 281.08 280.72 277.03 270.57 262.04 252.35 246.26
1040 283.44 283.08 279.36 272.86 264.26 254.50 248.37
1050 285.81 285.43 281.69 275.15 266.49 256.66 250.48
1060 288.16 287.79 284.02 277.43 268.71 258.81 252.58

1070 290.52 290.14 286.35 279.71 270.92 260.95 254.69
1080 292.87 292.49 288.67 281.99 273.14 263.10 256.79
1090 295.22 294.84 290.99 284.26 275.35 265.24 258.89
1100 297.57 297.18 293.31 286.54 277.57 267.38 260.98
1110 299.91 299.53 295.63 288.81 279.78 269.52 263.08

1120 302.28 301.87 297.94 291.07 281.98 271.66 265.17
1130 304.60 304.20 300.25 293.34 284.19 273.80 267.26
1140 306.93 308.54 302.56 295.61 286.39 275.93 269.35
1150 309.27 308.87 304.87 297.87 288.59 278.06 271.44
1160 311.60 311.20 307.18 300.13 290.79 280.19 273.52

1170 313.94 313.53 309.48 302.38 292.99 282.32 275.61
1180 316.26 315.86 311.78 304.64 295.19 284.44 277.69
1190 318.59 318.18 314.08 306.89 297.38 286.57 279.77
1200 320.92 320.51 316.38 309.15 299.57 288.69 281.85
1210 323.24 322.83 318.67 311.39 301.76 290.81 283.92

1220 325.56 325.14 320.96 313.64 303.95 292.93 286.00
1230 327.88 327.46 323.25 315.89 306.13 295.05 288.07
1240 330.19 329.77 325.54 318.13 308.32 297.16 290.14
1250 332.51 332.08 327.83 320.37 310.50 299.27 292.21
1260 334.82 334.39 330.11 322.61 312.68 301.38 294.28

1270 337.13 336.70 332.39 324.85 314.85 303.49 296.35
1280 339.44 339.01 334.67 327.08 317.03 305.60 298.41
1290 341.74 341.31 336.95 329.32 319.21 307.71 300.47
1300 344.05 343.61 339.23 331.55 321.38 309.81 302.54
1310 346.35 345.91 341.50 333.78 323.55 311.92 304.60

1320 348.65 348.21 343.77 336.01 325.72 314.02 306.65
1330 350.95 350.50 346.04 338.23 327.89 316.12 308.71
1340 353.24 352.80 348.31 340.46 330.05 318.22 310.77
1350 355.54 355.09 350.58 342.68 332.21 320.31 312.82
1360 357.83 357.38 352.84 344.90 334.38 322.41 314.87

1370 360.12 359.67 355.11 347.12 336.54 324.50 316.92
1380 362.41 361.95 357.37 349.34 338.70 326.59 318.97
1390 364.69 364.24 359.63 351.56 340.85 328.68 321.02
1400 366.98 366.52 361.88 353.77 343.01 330.77 323.06
1410 369.26 368.80 364.14 355.98 345.16 332.86 325.11

1420 371.54 371.08 366.40 358.19 347.32 334.94 327.15
1430 373.82 373.35 368.65 360.40 349.47 337.03 329.19
1440 376.10 375.63 370.90 362.61 351.62 339.11 331.23
1450 378.38 377.90 373.15 364.81 353.76 341.19 333.27
1460 380.65 380.17 375.39 367.02 355.91 343.27 335.31

1470 382.92 382.44 377.64 369.22 358.06 345.35 337.35
1480 385.19 384.71 379.88 371.42 360.20 347.43 339.38
1490 387.46 386.98 382.13 373.62 362.34 349.50 341.42
1500 389.73 389.25 384.37 375.82 364.48 351.58 343.45
1525 395.39 394.90 389.96 381.31 369.82 356.76 348.52
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Table 2.3 Dimensionless Water Influx, WeD, for Infinite Aquifer (Permission to publish by the SPE) (continued)

Z ′
D

tD 0.05 0.1 0.3 0.5 0.7 0.9 1.0

1550 401.04 400.55 395.55 386.78 375.16 361.93 353.59
1575 406.68 406.18 401.12 392.25 380.49 367.09 358.65
1600 412.32 411.81 406.69 397.71 385.80 372.24 363.70
1625 417.94 417.42 412.24 403.16 391.11 377.39 368.74
1650 423.55 423.03 417.79 408.60 396.41 382.53 373.77

1675 429.15 428.63 423.33 414.04 401.70 387.66 378.80
1700 434.75 434.22 428.85 419.46 406.99 392.78 383.82
1725 440.33 439.79 434.37 424.87 412.26 397.89 388.83
1750 445.91 445.37 439.89 430.28 417.53 403.00 393.84
1775 451.48 450.93 445.39 435.68 422.79 408.10 398.84

1880 457.04 456.48 450.88 441.07 428.04 413.20 403.83
1825 462.59 462.03 456.37 446.46 433.29 418.28 408.82
1850 468.13 467.56 461.85 451.83 438.53 423.36 413.80
1875 473.67 473.09 467.32 457.20 443.76 428.43 418.77
1900 479.19 478.61 472.78 462.56 448.98 433.50 423.73

1925 484.71 484.13 478.24 467.92 454.20 438.56 428.69
1950 490.22 489.63 483.69 473.26 459.41 443.61 433.64
1975 495.73 495.13 489.13 478.60 464.61 448.66 438.59
2000 501.22 500.62 494.56 483.93 469.81 453.70 443.53
2025 506.71 506.11 499.99 489.26 475.00 458.73 448.47

2050 512.20 511.58 505.41 494.58 480.18 463.76 453.40
2075 517.67 517.05 510.82 499.89 485.36 468.78 458.32
2100 523.14 522.52 516.22 505.19 490.53 473.80 463.24
2125 528.60 527.97 521.62 510.49 495.69 478.81 468.15
2150 534.05 533.42 527.02 515.78 500.85 483.81 473.06

2175 539.50 538.86 532.40 521.07 506.01 488.81 477.96
2200 544.94 544.30 537.78 526.35 511.15 493.81 482.85
2225 550.38 549.73 543.15 531.62 516.29 498.79 487.74
2250 555.81 555.15 548.52 536.89 521.43 503.78 492.63
2275 561.23 560.56 553.88 542.15 526.56 508.75 497.51

2300 566.64 565.97 559.23 547.41 531.68 513.72 502.38
2325 572.05 571.38 564.58 552.66 536.80 518.69 507.25
2350 577.46 576.78 569.92 557.90 541.91 523.65 512.12
2375 582.85 582.17 575.26 563.14 547.02 528.61 516.98
2400 588.24 587.55 580.59 568.37 552.12 533.56 521.83

2425 593.63 592.93 585.91 573.60 557.22 538.50 526.68
2450 599.01 598.31 591.23 578.82 562.31 543.45 531.53
2475 604.38 603.68 596.55 584.04 567.39 548.38 536.37
2500 609.75 609.04 601.85 589.25 572.47 553.31 541.20
2550 620.47 619.75 612.45 599.65 582.62 563.16 550.86

2600 631.17 630.43 623.03 610.04 592.75 572.99 560.50
2650 641.84 641.10 633.59 620.40 602.86 582.80 570.13
2700 652.50 651.74 644.12 630.75 612.95 592.60 579.73
2750 663.13 662.37 654.64 641.07 623.02 602.37 589.32
2800 673.75 672.97 665.14 651.38 633.07 612.13 598.90

2850 684.34 683.56 675.61 661.67 643.11 621.88 608.45
2900 694.92 694.12 686.07 671.94 653.12 631.60 617.99
2950 705.48 704.67 696.51 682.19 663.13 641.32 627.52
3000 716.02 715.20 706.94 692.43 673.11 651.01 637.03
3050 726.54 725.71 717.34 702.65 683.08 660.69 646.53

3100 737.04 736.20 727.73 712.85 693.03 670.36 656.01
3150 747.53 746.68 738.10 723.04 702.97 680.01 665.48
3200 758.00 757.14 748.45 733.21 712.89 689.64 674.93
3250 768.45 767.58 758.79 743.36 722.80 699.27 684.37
3300 778.89 778.01 769.11 753.50 732.69 708.87 693.80

3350 789.31 788.42 779.42 763.62 742.57 718.47 703.21
3400 799.71 798.81 789.71 773.73 752.43 728.05 712.62
3450 810.10 809.19 799.99 783.82 762.28 737.62 722.00
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Table 2.3 Dimensionless Water Influx, WeD, for Infinite Aquifer (Permission to publish by the SPE) (continued)

Z ′
D

tD 0.05 0.1 0.3 0.5 0.7 0.9 1.0

3500 820.48 819.55 810.25 793.90 772.12 747.17 731.38
3550 830.83 829.90 820.49 803.97 781.94 756.72 740.74

3600 841.18 840.24 830.73 814.02 791.75 766.24 750.09
3650 851.51 850.56 840.94 824.06 801.55 775.76 759.43
3700 861.83 860.86 851.15 834.08 811.33 785.27 768.76
3750 872.13 871.15 861.34 844.09 821.10 794.76 778.08
3800 882.41 881.43 871.51 854.09 830.86 804.24 787.38

3850 892.69 891.70 881.68 864.08 840.61 813.71 796.68
3900 902.95 901.95 891.83 874.05 850.34 823.17 805.96
3950 913.20 912.19 901.96 884.01 860.06 832.62 815.23
4000 923.43 922.41 912.09 893.96 869.77 842.06 824.49
4050 933.65 932.62 922.20 903.89 879.47 851.48 833.74

4100 943.86 942.82 932.30 913.82 889.16 860.90 842.99
4150 954.06 953.01 942.39 923.73 898.84 870.30 852.22
4200 964.25 963.19 952.47 933.63 908.50 879.69 861.44
4250 974.42 973.35 962.53 943.52 918.16 889.08 870.65
4300 984.58 983.50 972.58 953.40 927.60 898.45 879.85

4350 994.73 993.64 982.62 963.27 937.43 907.81 889.04
4400 1004.9 1003.8 992.7 973.1 947.1 917.2 898.2
4450 1015.0 1013.9 1002.7 983.0 956.7 926.5 907.4
4500 1025.1 1024.0 1012.7 992.8 966.3 935.9 916.6
4550 1035.2 1034.1 1022.7 1002.6 975.9 945.2 925.7
4600 1045.3 1044.2 1032.7 1012.4 985.5 954.5 934.9
4650 1055.4 1054.2 1042.6 1022.2 995.0 963.8 944.0
4700 1065.5 1064.3 1052.6 1032.0 1004.6 973.1 953.1
4750 1075.5 1074.4 1062.6 1041.8 1014.1 982.4 962.2
4800 1085.6 1084.4 1072.5 1051.6 1023.7 991.7 971.4
4850 1095.6 1094.4 1082.4 1061.4 1033.2 1000.9 980.5
4900 1105.6 1104.5 1092.4 1071.1 1042.8 1010.2 989.5
4950 1115.7 1114.5 1102.3 1080.9 1052.3 1019.4 998.6
5000 1125.7 1124.5 1112.2 1090.6 1061.8 1028.7 1007.7
5100 1145.7 1144.4 1132.0 1110.0 1080.8 1047.2 1025.8
5200 1165.6 1164.4 1151.7 1129.4 1099.7 1065.6 1043.9
5300 1185.5 1184.3 1171.4 1148.8 1118.6 1084.0 1062.0
5400 1205.4 1204.1 1191.1 1168.2 1137.5 1102.4 1080.0
5500 1225.3 1224.0 1210.7 1187.5 1156.4 1120.7 1098.0
5600 1245.1 1243.7 1230.3 1206.7 1175.2 1139.0 1116.0
5700 1264.9 1263.5 1249.9 1226.0 1194.0 1157.3 1134.0
5800 1284.6 1283.2 1269.4 1245.2 1212.8 1175.5 1151.9
5900 1304.3 1302.9 1288.9 1264.4 1231.5 1193.8 1169.8
6000 1324.0 1322.6 1308.4 1283.5 1250.2 1211.9 1187.7
6100 1343.6 1342.2 1327.9 1302.6 1268.9 1230.1 1205.5
6200 1363.2 1361.8 1347.3 1321.7 1287.5 1248.3 1223.3
6300 1382.8 1381.4 1366.7 1340.8 1306.2 1266.4 1241.1
6400 1402.4 1400.9 1386.0 1359.8 1324.7 1284.5 1258.9
6500 1421.9 1420.4 1405.3 1378.8 1343.3 1302.5 1276.6
6600 1441.4 1439.9 1424.6 1397.8 1361.9 1320.6 1294.3
6700 1460.9 1459.4 1443.9 1416.7 1380.4 1338.6 1312.0
6800 1480.3 1478.8 1463.1 1435.6 1398.9 1356.6 1329.7
6900 1499.7 1498.2 1482.4 1454.5 1417.3 1374.5 1347.4
7000 1519.1 1517.5 1501.5 1473.4 1435.8 1392.5 1365.0
7100 1538.5 1536.9 1520.7 1492.3 1454.2 1410.4 1382.6
7200 1557.8 1556.2 1539.8 1511.1 1472.6 1428.3 1400.2
7300 1577.1 1575.5 1559.0 1529.9 1491.0 1446.2 1417.8
7400 1596.4 1594.8 1578.1 1548.6 1509.3 1464.1 1435.3
7500 1615.7 1614.0 1597.1 1567.4 1527.6 1481.9 1452.8
7600 1634.9 1633.2 1616.2 1586.1 1545.9 1499.7 1470.3
7700 1654.1 1652.4 1635.2 1604.8 1564.2 1517.5 1487.8

(continued)
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Table 2.3 Dimensionless Water Influx, WeD, for Infinite Aquifer (Permission to publish by the SPE) (continued)

Z ′
D

tD 0.05 0.1 0.3 0.5 0.7 0.9 1.0

7800 1673.3 1671.6 1654.2 1623.5 1582.5 1535.3 1505.3
7900 1692.5 1690.7 1673.1 1642.2 1600.7 1553.0 1522.7
8000 1711.6 1709.9 1692.1 1660.8 1619.0 1570.8 1540.1
8100 1730.8 1729.0 1711.0 1679.4 1637.2 1588.5 1557.6

8200 1749.9 1748.1 1729.9 1698.0 1655.3 1606.2 1574.9
8300 1768.9 1767.1 1748.8 1716.6 1673.5 1623.9 1592.3
8400 1788.0 1786.2 1767.7 1735.2 1691.6 1641.5 1609.7
8500 1807.0 1805.2 1786.5 1753.7 1709.8 1659.2 1627.0
8600 1826.0 1824.2 1805.4 1772.2 1727.9 1676.8 1644.3

8700 1845.0 1843.2 1824.2 1790.7 1746.0 1694.4 1661.6
8800 1864.0 1862.1 1842.9 1809.2 1764.0 1712.0 1678.9
8900 1883.0 1881.1 1861.7 1827.7 1782.1 1729.6 1696.2
9000 1901.9 1900.0 1880.5 1846.1 1800.1 1747.1 1713.4
9100 1920.8 1918.9 1899.2 1864.5 1818.1 1764.7 1730.7

9200 1939.7 1937.4 1917.9 1882.9 1836.1 1782.2 1747.9
9300 1958.6 1956.6 1936.6 1901.3 1854.1 1799.7 1765.1
9400 1977.4 1975.4 1955.2 1919.7 1872.0 1817.2 1782.3
9500 1996.3 1994.3 1973.9 1938.0 1890.0 1834.7 1799.4
9600 2015.1 2013.1 1992.5 1956.4 1907.9 1852.1 1816.6

9700 2033.9 2031.9 2011.1 1974.7 1925.8 1869.6 1833.7
9800 2052.7 2050.6 2029.7 1993.0 1943.7 1887.0 1850.9
9900 2071.5 2069.4 2048.3 2011.3 1961.6 1904.4 1868.0

1.00 × 104 2.090 × 103 2.088 × 103 2.067 × 103 2.029 × 103 1.979 × 103 1.922 × 103 1.885 × 103

1.25 × 104 2.553 × 103 2.551 × 103 2.526 × 103 2.481 × 103 2.421 × 103 2.352 × 103 2.308 × 103

1.50 × 104 3.009 × 103 3.006 × 103 2.977 × 103 2.925 × 103 2.855 × 103 2.775 × 103 2.724 × 103

1.75 × 104 3.457 × 103 3.454 × 103 3.421 × 103 3.362 × 103 3.284 × 103 3.193 × 103 3.135 × 103

2.00 × 104 3.900 × 103 3.897 × 103 3.860 × 103 3.794 × 103 3.707 × 103 3.605 × 103 3.541 × 103

2.50 × 104 4.773 × 103 4.768 × 103 4.724 × 103 4.646 × 103 4.541 × 103 4.419 × 103 4.341 × 103

3.00 × 104 5.630 × 103 5.625 × 103 5.574 × 103 5.483 × 103 5.361 × 103 5.219 × 103 5.129 × 103

3.50 × 104 6.476 × 103 6.470 × 103 6.412 × 103 6.309 × 103 6.170 × 103 6.009 × 103 5.906 × 103

4.00 × 104 7.312 × 103 7.305 × 103 7.240 × 103 7.125 × 103 6.970 × 103 6.790 × 103 6.675 × 103

4.50 × 104 8.139 × 103 8.132 × 103 8.060 × 103 7.933 × 103 7.762 × 103 7.564 × 109 7.437 × 103

5.00 × 104 8.959 × 103 8.951 × 103 8.872 × 103 8.734 × 103 8.548 × 103 8.331 × 103 8.193 × 103

6.00 × 104 1.057 × 104 1.057 × 104 1.047 × 104 1.031 × 104 1.010 × 104 9.846 × 103 9.684 × 103

7.00 × 104 1.217 × 104 1.217 × 104 1.206 × 104 1.188 × 104 1.163 × 104 1.134 × 104 1.116 × 104

8.00 × 104 1.375 × 104 1.375 × 104 1.363 × 104 1.342 × 104 1.315 × 104 1.283 × 104 1.262 × 104

9.00 × 104 1.532 × 104 1.531 × 104 1.518 × 104 1.496 × 104 1.465 × 104 1.430 × 104 1.407 × 104

1.00 × 105 1.687 × 104 1.686 × 104 1.672 × 104 1.647 × 104 1.614 × 104 1.576 × 104 1.551 × 104

1.25 × 105 2.071 × 104 2.069 × 104 2.052 × 104 2.023 × 104 1.982 × 104 1.936 × 104 1.906 × 104

1.50 × 105 2.448 × 104 2.446 × 104 2.427 × 104 2.392 × 104 2.345 × 104 2.291 × 104 2.256 × 104

2.00 × 105 3.190 × 104 3.188 × 104 3.163 × 104 3.119 × 104 3.059 × 104 2.989 × 104 2.945 × 104

2.50 × 105 3.918 × 104 3.916 × 104 3.885 × 104 3.832 × 104 3.760 × 104 3.676 × 104 3.622 × 104

3.00 × 105 4.636 × 104 4.633 × 104 4.598 × 104 4.536 × 104 4.452 × 104 4.353 × 104 4.290 × 104

4.00 × 105 6.048 × 104 6.044 × 104 5.999 × 104 5.920 × 104 5.812 × 104 5.687 × 104 5.606 × 104

5.00 × 105 7.438 × 104 7.431 × 104 7.376 × 104 7.280 × 104 7.150 × 104 6.998 × 104 6.900 × 104

6.00 × 105 8.805 × 104 8.798 × 104 8.735 × 104 8.623 × 104 8.471 × 104 8.293 × 104 8.178 × 104

7.00 × 105 1.016 × 105 1.015 × 105 1.008 × 105 9.951 × 104 9.777 × 104 9.573 × 104 9.442 × 104

8.00 × 105 1.150 × 105 1.149 × 105 1.141 × 105 1.127 × 105 1.107 × 105 1.084 × 105 1.070 × 105

9.00 × 105 1.283 × 105 1.282 × 105 1.273 × 105 1.257 × 105 1.235 × 105 1.210 × 105 1.194 × 105

1.00 × 106 1.415 × 105 1.412 × 105 1.404 × 105 1.387 × 105 1.363 × 105 1.335 × 105 1.317 × 105

1.50 × 106 2.059 × 105 2.060 × 105 2.041 × 105 2.016 × 105 1.982 × 105 1.943 × 105 1.918 × 105

2.00 × 106 2.695 × 105 2.695 × 105 2.676 × 105 2.644 × 105 2.601 × 105 2.551 × 105 2.518 × 105

2.50 × 106 3.320 × 105 3.319 × 105 3.296 × 105 3.254 × 105 3.202 × 105 3.141 × 105 3.101 × 105

3.00 × 106 3.937 × 105 3.936 × 105 3.909 × 105 3.864 × 105 3.803 × 105 3.731 × 105 3.684 × 105

4.00 × 106 5.154 × 105 5.152 × 105 5.118 × 105 5.060 × 105 4.981 × 105 4.888 × 105 4.828 × 105

5.00 × 106 6.352 × 105 6.349 × 105 6.308 × 105 6.238 × 105 6.142 × 105 6.029 × 105 5.956 × 105

(continued)
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Table 2.3 Dimensionless Water Influx, WeD, for Infinite Aquifer (Permission to publish by the SPE) (continued)

Z ′
D

tD 0.05 0.1 0.3 0.5 0.7 0.9 1.0

6.00 × 106 7.536 × 105 7.533 × 105 7.485 × 105 7.402 × 105 7.290 × 105 7.157 × 105 7.072 × 105

7.00 × 106 8.709 × 105 8.705 × 105 8.650 × 105 8.556 × 105 8.427 × 105 8.275 × 105 8.177 × 105

8.00 × 106 9.972 × 105 9.867 × 105 9.806 × 105 9.699 × 105 9.555 × 105 9.384 × 105 9.273 × 105

9.00 × 106 1.103 × 106 1.102 × 106 1.095 × 106 1.084 × 106 1.067 × 106 1.049 × 106 1.036 × 106

1.00 × 107 1.217 × 106 1.217 × 106 1.209 × 106 1.196 × 106 1.179 × 106 1.158 × 106 1.144 × 106

1.50 × 107 1.782 × 106 1.781 × 106 1.771 × 106 1.752 × 106 1.727 × 106 1.697 × 106 1.678 × 106

2.00 × 107 2.337 × 106 2.336 × 106 2.322 × 106 2.298 × 106 2.266 × 106 2.227 × 106 2.202 × 106

2.50 × 107 2.884 × 106 2.882 × 106 2.866 × 106 2.837 × 106 2.797 × 106 2.750 × 106 2.720 × 106

3.00 × 107 3.425 × 106 3.423 × 106 3.404 × 106 3.369 × 106 3.323 × 106 3.268 × 106 3.232 × 106

4.00 × 107 4.493 × 106 4.491 × 106 4.466 × 106 4.422 × 106 4.361 × 106 4.290 × 106 4.244 × 106

5.00 × 107 5.547 × 106 5.544 × 106 5.514 × 106 5.460 × 106 5.386 × 106 5.299 × 106 5.243 × 106

6.00 × 107 6.590 × 106 6.587 × 106 6.551 × 106 6.488 × 106 6.401 × 106 6.299 × 106 6.232 × 106

7.00 × 107 7.624 × 106 7.620 × 106 7.579 × 106 7.507 × 106 7.407 × 106 7.290 × 106 7.213 × 106

8.00 × 107 8.651 × 106 8.647 × 106 8.600 × 106 8.519 × 106 8.407 × 106 8.274 × 106 8.188 × 106

9.00 × 107 9.671 × 106 9.666 × 106 9.615 × 106 9.524 × 106 9.400 × 106 9.252 × 106 9.156 × 106

1.00 × 108 1.069 × 107 1.067 × 107 1.062 × 107 1.052 × 107 1.039 × 107 1.023 × 107 1.012 × 107

1.50 × 108 1.567 × 107 1.567 × 107 1.555 × 107 1.541 × 107 1.522 × 107 1.499 × 107 1.483 × 107

2.00 × 108 2.059 × 107 2.059 × 107 2.048 × 107 2.029 × 107 2.004 × 107 1.974 × 107 1.954 × 107

2.50 × 108 2.546 × 107 2.545 × 107 2.531 × 107 2.507 × 107 2.476 × 107 2.439 × 107 2.415 × 107

3.00 × 108 3.027 × 107 3.026 × 107 3.010 × 107 2.984 × 107 2.947 × 107 2.904 × 107 2.875 × 107

4.00 × 108 3.979 × 107 3.978 × 107 3.958 × 107 3.923 × 107 3.875 × 107 3.819 × 107 3.782 × 107

5.00 × 108 4.920 × 107 4.918 × 107 4.894 × 107 4.851 × 107 4.793 × 107 4.724 × 107 4.679 × 107

6.00 × 108 5.852 × 107 5.850 × 107 5.821 × 107 5.771 × 107 5.702 × 107 5.621 × 107 5.568 × 107

7.00 × 108 6.777 × 107 6.774 × 107 6.741 × 107 6.684 × 107 6.605 × 107 6.511 × 107 6.450 × 107

8.00 × 108 7.700 × 107 7.693 × 107 7.655 × 107 7.590 × 107 7.501 × 107 7.396 × 107 7.327 × 107

9.00 × 108 8.609 × 107 8.606 × 107 8.564 × 107 8.492 × 107 8.393 × 107 8.275 × 107 8.199 × 107

1.00 × 109 9.518 × 107 9.515 × 107 9.469 × 107 9.390 × 107 9.281 × 107 9.151 × 107 9.066 × 107

1.50 × 109 1.401 × 108 1.400 × 108 1.394 × 108 1.382 × 108 1.367 × 108 1.348 × 108 1.336 × 108

2.00 × 109 1.843 × 108 1.843 × 108 1.834 × 108 1.819 × 108 1.799 × 108 1.774 × 108 1.758 × 108

2.50 × 109 2.281 × 108 2.280 × 108 2.269 × 108 2.251 × 108 2.226 × 108 2.196 × 108 2.177 × 108

3.00 × 109 2.714 × 108 2.713 × 108 2.701 × 108 2.680 × 108 2.650 × 108 2.615 × 108 2.592 × 108

4.00 × 109 3.573 × 108 3.572 × 108 3.558 × 108 3.528 × 108 3.489 × 108 3.443 × 108 3.413 × 108

5.00 × 109 4.422 × 108 4.421 × 108 4.401 × 108 4.367 × 108 4.320 × 108 4.263 × 108 4.227 × 108

6.00 × 109 5.265 × 108 5.262 × 108 5.240 × 108 5.199 × 108 5.143 × 108 5.077 × 108 5.033 × 108

7.00 × 109 6.101 × 108 6.098 × 108 6.072 × 108 6.025 × 108 5.961 × 108 5.885 × 108 5.835 × 108

8.00 × 109 6.932 × 108 6.930 × 108 6.900 × 108 6.847 × 108 6.775 × 108 6.688 × 108 6.632 × 108

9.00 × 109 7.760 × 108 7.756 × 108 7.723 × 108 7.664 × 108 7.584 × 108 7.487 × 108 7.424 × 108

1.00 × 1010 8.583 × 108 8.574 × 108 8.543 × 108 8.478 × 108 8.389 × 108 8.283 × 108 8.214 × 108

1.50 × 1010 1.263 × 109 1.264 × 109 1.257 × 109 1.247 × 109 1.235 × 109 1.219 × 109 1.209 × 109

2.00 × 1010 1.666 × 109 1.666 × 109 1.659 × 109 1.646 × 109 1.630 × 109 1.610 × 109 1.596 × 109

2.50 × 1010 2.065 × 109 2.063 × 109 2.055 × 109 2.038 × 109 2.018 × 109 1.993 × 109 1.977 × 109

3.00 × 1010 2.458 × 109 2.458 × 109 2.447 × 109 2.430 × 109 2.405 × 109 2.376 × 109 2.357 × 109

4.00 × 1010 3.240 × 109 3.239 × 109 3.226 × 109 3.203 × 109 3.171 × 109 3.133 × 109 3.108 × 109

5.00 × 1010 4.014 × 109 4.013 × 109 3.997 × 109 3.968 × 109 3.929 × 109 3.883 × 109 3.852 × 109

6.00 × 1010 4.782 × 109 4.781 × 109 4.762 × 109 4.728 × 109 4.682 × 109 4.627 × 109 4.591 × 109

7.00 × 1010 5.546 × 109 5.544 × 109 5.522 × 109 5.483 × 109 5.430 × 109 5.366 × 109 5.325 × 109

8.00 × 1010 6.305 × 109 6.303 × 109 6.278 × 109 6.234 × 109 6.174 × 109 6.102 × 109 6.055 × 109

9.00 × 1010 7.060 × 109 7.058 × 109 7.030 × 109 6.982 × 109 6.914 × 109 6.834 × 109 6.782 × 109

1.00 × 1011 7.813 × 109 7.810 × 109 7.780 × 109 7.726 × 109 7.652 × 109 7.564 × 109 7.506 × 109

1.50 × 1011 1.154 × 1010 1.153 × 1010 1.149 × 1010 1.141 × 1010 1.130 × 1010 1.118 × 1010 1.109 × 1010

2.00 × 1011 1.522 × 1010 1.521 × 1010 1.515 × 1010 1.505 × 1010 1.491 × 1010 1.474 × 1010 1.463 × 1010

2.50 × 1011 1.886 × 1010 1.885 × 1010 1.878 × 1010 1.866 × 1010 1.849 × 1010 1.828 × 1010 1.814 × 1010

3.00 × 1011 2.248 × 1010 2.247 × 1010 2.239 × 1010 2.224 × 1010 2.204 × 1010 2.179 × 1010 2.163 × 1010

4.00 × 1011 2.965 × 1010 2.964 × 1010 2.953 × 1010 2.934 × 1010 2.907 × 1010 2.876 × 1010 2.855 × 1010

5.00 × 1011 3.677 × 1010 3.675 × 1010 3.662 × 1010 3.638 × 1010 3.605 × 1010 3.566 × 1010 3.540 × 1010

(continued)
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Table 2.3 Dimensionless Water Influx, WeD, for Infinite Aquifer (Permission to publish by the SPE) (continued)

Z ′
D

tD 0.05 0.1 0.3 0.5 0.7 0.9 1.0

6.00 × 1011 4.383 × 1010 4.381 × 1010 4.365 × 1010 4.337 × 1010 4.298 × 1010 4.252 × 1010 4.221 × 1010

7.00 × 1011 5.085 × 1010 5.082 × 1010 5.064 × 1010 5.032 × 1010 4.987 × 1010 4.933 × 1010 4.898 × 1010

8.00 × 1011 5.783 × 1010 5.781 × 1010 5.706 × 1010 5.723 × 1010 5.673 × 1010 5.612 × 1010 5.572 × 1010

9.00 × 1011 6.478 × 1010 6.746 × 1010 6.453 × 1010 6.412 × 1010 6.355 × 1010 6.288 × 1010 6.243 × 1010

1.00 × 1012 7.171 × 1010 7.168 × 1010 7.143 × 1010 7.098 × 1010 7.035 × 1010 6.961 × 1010 6.912 × 1010

1.50 × 1012 1.060 × 1011 1.060 × 1011 1.056 × 1011 1.050 × 1011 1.041 × 1011 1.030 × 1011 1.022 × 1011

2.00 × 1012 1.400 × 1011 1.399 × 1011 1.394 × 1011 1.386 × 1011 1.374 × 1011 1.359 × 1011 1.350 × 1011

Table 2.4 Dimensionless Water Influx, WeD, for r\D = 4 (Permission to publish by the SPE)

Z ′
D

tD 0.05 0.1 0.3 0.5 0.7 0.9 1.0

2 2.398 2.389 2.284 2.031 1.824 1.620 1.507
3 3.006 2.993 2.874 2.629 2.390 2.149 2.012
4 3.552 3.528 3.404 3.158 2.893 2.620 2.466
5 4.053 4.017 3.893 3.627 3.341 3.045 2.876
6 4.490 4.452 4.332 4.047 3.744 3.430 3.249

7 4.867 4.829 4.715 4.420 4.107 3.778 3.587
8 5.191 5.157 5.043 4.757 4.437 4.096 3.898
9 5.464 5.434 5.322 5.060 4.735 4.385 4.184

10 5.767 5.739 5.598 5.319 5.000 4.647 4.443
11 5.964 5.935 5.829 5.561 5.240 4.884 4.681

12 6.188 6.158 6.044 5.780 5.463 5.107 4.903
13 6.380 6.350 6.240 5.983 5.670 5.316 5.113
14 6.559 6.529 6.421 6.171 5.863 5.511 5.309
15 6.725 6.694 6.589 6.345 6.044 5.695 5.495
16 6.876 6.844 6.743 6.506 6.213 5.867 5.671

17 7.014 6.983 6.885 6.656 6.371 6.030 5.838
18 7.140 7.113 7.019 6.792 6.523 6.187 5.999
19 7.261 7.240 7.140 6.913 6.663 6.334 6.153
20 7.376 7.344 7.261 7.028 6.785 6.479 6.302
22 7.518 7.507 7.451 7.227 6.982 6.691 6.524

24 7.618 7.607 7.518 7.361 7.149 6.870 6.714
26 7.697 7.685 7.607 7.473 7.283 7.026 6.881
28 7.752 7.752 7.674 7.563 7.395 7.160 7.026
30 7.808 7.797 7.741 7.641 7.484 7.283 7.160
34 7.864 7.864 7.819 7.741 7.618 7.451 7.350

38 7.909 7.909 7.875 7.808 7.719 7.585 7.496
42 7.931 7.931 7.909 7.864 7.797 7.685 7.618
46 7.942 7.942 7.920 7.898 7.842 7.752 7.697
50 7.954 7.954 7.942 7.920 7.875 7.808 7.764
60 7.968 7.968 7.965 7.954 7.931 7.898 7.864

70 7.976 7.976 7.976 7.968 7.965 7.942 7.920
80 7.982 7.982 7.987 7.976 7.976 7.965 7.954
90 7.987 7.987 7.987 7.984 7.983 7.976 7.965

100 7.987 7.987 7.987 7.987 7.987 7.983 7.976
120 7.987 7.987 7.987 7.987 7.987 7.987 7.987

Table 2.5 Dimensionless Water Influx, WeD, for r\D = 6 (Permission to publish by the SPE)

Z ′
D

tD 0.05 0.1 0.3 0.5 0.7 0.9 1.0

6 4.780 4.762 4.597 4.285 3.953 3.611 3.414
7 5.309 5.289 5.114 4.779 4.422 4.053 3.837
8 5.799 5.778 5.595 5.256 4.875 4.478 4.247
9 6.252 6.229 6.041 5.712 5.310 4.888 4.642

10 6.750 6.729 6.498 6.135 5.719 5.278 5.019

(continued)
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Table 2.5 Dimensionless Water Influx, WeD, for r\D = 6 (Permission to publish by the SPE)
(continued)

Z ′
D

tD 0.05 0.1 0.3 0.5 0.7 0.9 1.0

11 7.137 7.116 6.916 6.548 6.110 5.648 5.378
12 7.569 7.545 7.325 6.945 6.491 6.009 5.728
13 7.967 7.916 7.719 7.329 6.858 6.359 6.067
14 8.357 8.334 8.099 7.699 7.214 6.697 6.395
15 8.734 8.709 8.467 8.057 7.557 7.024 6.713

16 9.093 9.067 8.819 8.398 7.884 7.336 7.017
17 9.442 9.416 9.160 8.730 8.204 7.641 7.315
18 9.775 9.749 9.485 9.047 8.510 7.934 7.601
19 10.09 10.06 9.794 9.443 8.802 8.214 7.874
20 10.40 10.37 10.10 9.646 9.087 8.487 8.142

22 10.99 10.96 10.67 10.21 9.631 9.009 8.653
24 11.53 11.50 11.20 10.73 10.13 9.493 9.130
26 12.06 12.03 11.72 11.23 10.62 9.964 9.594
28 12.52 12.49 12.17 11.68 11.06 10.39 10.01
30 12.95 12.92 12.59 12.09 11.46 10.78 10.40

35 13.96 13.93 13.57 13.06 12.41 11.70 11.32
40 14.69 14.66 14.33 13.84 13.23 12.53 12.15
45 15.27 15.24 14.94 14.48 13.90 13.23 12.87
50 15.74 15.71 15.44 15.01 14.47 13.84 13.49
60 16.40 16.38 16.15 15.81 15.34 14.78 14.47

70 16.87 16.85 16.67 16.38 15.99 15.50 15.24
80 17.20 17.18 17.04 16.80 16.48 16.06 15.83
90 17.43 17.42 17.30 17.10 16.85 16.50 16.29

100 17.58 17.58 17.49 17.34 17.12 16.83 16.66
110 17.71 17.69 17.63 17.50 17.34 17.09 16.93

120 17.78 17.78 17.73 17.63 17.49 17.29 17.17
130 17.84 17.84 17.79 17.73 17.62 17.45 17.34
140 17.88 17.88 17.85 17.79 17.71 17.57 17.48
150 17.92 17.91 17.88 17.84 17.77 17.66 17.58
175 17.95 17.95 17.94 17.92 17.87 17.81 17.76

200 17.97 17.97 17.96 17.95 17.93 17.88 17.86
225 17.97 17.97 17.97 17.96 17.95 17.93 17.91
250 17.98 17.98 17.98 17.97 17.96 17.95 17.95
300 17.98 17.98 17.98 17.98 17.98 17.97 17.97
350 17.98 17.98 17.98 17.98 17.98 17.98 17.98

400 17.98 17.98 17.98 17.98 17.98 17.98 17.98
450 17.98 17.98 17.98 17.98 17.98 17.98 17.98
500 17.98 17.98 17.98 17.98 17.98 17.98 17.98

Table 2.6 Dimensionless Water Influx, WeD, for r\D = 8 (Permission to publish by the SPE)

Z ′
D

tD 0.05 0.1 0.3 0.5 0.7 0.9 1.0

9 6.301 6.278 6.088 5.756 5.350 4.924 4.675
10 6.828 6.807 6.574 6.205 5.783 5.336 5.072
11 7.250 7.229 7.026 6.650 6.204 5.732 5.456
12 7.725 7.700 7.477 7.086 6.621 6.126 5.836
13 8.173 8.149 7.919 7.515 7.029 6.514 6.210

14 8.619 8.594 8.355 7.937 7.432 6.895 6.578
15 9.058 9.032 8.783 8.351 7.828 7.270 6.940
16 9.485 9.458 9.202 8.755 8.213 7.634 7.293
17 9.907 9.879 9.613 9.153 8.594 7.997 7.642
18 10.32 10.29 10.01 9.537 8.961 8.343 7.979

19 10.72 10.69 10.41 9.920 9.328 8.691 8.315
20 11.12 11.08 10.80 10.30 9.687 9.031 8.645
22 11.89 11.86 11.55 11.02 10.38 9.686 9.280
24 12.63 12.60 12.27 11.72 11.05 10.32 9.896
26 13.36 13.32 12.97 12.40 11.70 10.94 10.49

(continued)
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Table 2.6 Dimensionless Water Influx, WeD, for r\D = 8 (Permission to publish by the SPE)
(continued)

Z ′
D

tD 0.05 0.1 0.3 0.5 0.7 0.9 1.0

28 14.06 14.02 13.65 13.06 12.33 11.53 11.07
30 14.73 14.69 14.30 13.68 12.93 12.10 11.62
34 16.01 15.97 15.54 14.88 14.07 13.18 12.67
38 17.21 17.17 16.70 15.99 15.13 14.18 13.65
40 17.80 17.75 17.26 16.52 15.64 14.66 14.12

45 19.15 19.10 18.56 17.76 16.83 15.77 15.21
50 20.42 20.36 19.76 18.91 17.93 16.80 16.24
55 21.46 21.39 20.80 19.96 18.97 17.83 17.24
60 22.40 22.34 21.75 20.91 19.93 18.78 18.19
70 23.97 23.92 23.36 22.55 21.58 20.44 19.86

80 25.29 25.23 24.71 23.94 23.01 21.91 21.32
90 26.39 26.33 25.85 25.12 24.24 23.18 22.61

100 27.30 27.25 26.81 26.13 25.29 24.29 23.74
120 28.61 28.57 28.19 27.63 26.90 26.01 25.51
140 29.55 29.51 29.21 28.74 28.12 27.33 26.90

160 30.23 30.21 29.96 29.57 29.04 28.37 27.99
180 30.73 30.71 30.51 30.18 29.75 29.18 28.84
200 31.07 31.04 30.90 30.63 30.26 29.79 29.51
240 31.50 31.49 31.39 31.22 30.98 30.65 30.45
280 31.72 31.71 31.66 31.56 31.39 31.17 31.03

320 31.85 31.84 31.80 31.74 31.64 31.49 31.39
360 31.90 31.90 31.88 31.85 31.78 31.68 31.61
400 31.94 31.94 31.93 31.90 31.86 31.79 31.75
450 31.96 31.96 31.95 31.94 31.91 31.88 31.85
500 31.97 31.97 31.96 31.96 31.95 31.93 31.90

550 31.97 31.97 31.97 31.96 31.96 31.95 31.94
600 31.97 31.97 31.97 31.97 31.97 31.96 31.95
700 31.97 31.97 31.97 31.97 31.97 31.97 31.97
800 31.97 31.97 31.97 31.97 31.97 31.97 31.97

Table 2.7 Dimensionless Water Influx, WeD, for r\D = 10 (Permission to publish by the SPE)

Z ′
D

tD 0.05 0.1 0.3 0.5 0.7 0.9 1.0

22 12.07 12.04 11.74 11.21 10.56 9.865 9.449
24 12.86 12.83 12.52 11.97 11.29 10.55 10.12
26 13.65 13.62 13.29 12.72 12.01 11.24 10.78
28 14.42 14.39 14.04 13.44 12.70 11.90 11.42
30 15.17 15.13 14.77 14.15 13.38 12.55 12.05

32 15.91 15.87 15.49 14.85 14.05 13.18 12.67
34 16.63 16.59 16.20 15.54 14.71 13.81 13.28
36 17.33 17.29 16.89 16.21 15.35 14.42 13.87
38 18.03 17.99 17.57 16.86 15.98 15.02 14.45
40 18.72 18.68 18.24 17.51 16.60 15.61 15.02

42 19.38 19.33 18.89 18.14 17.21 16.19 15.58
44 20.03 19.99 19.53 18.76 17.80 16.75 16.14
46 20.67 20.62 20.15 19.36 18.38 17.30 16.67
48 21.30 21.25 20.76 19.95 18.95 17.84 17.20
50 21.92 21.87 21.36 20.53 19.51 18.38 17.72

52 22.52 22.47 21.95 21.10 20.05 18.89 18.22
54 23.11 23.06 22.53 21.66 20.59 19.40 18.72
56 23.70 23.64 23.09 22.20 21.11 19.89 19.21
58 24.26 24.21 23.65 22.74 21.63 20.39 19.68
60 24.82 24.77 24.19 23.26 22.13 20.87 20.15

(continued)
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Table 2.7 Dimensionless Water Influx, WeD, for r\D = 10 (Permission to publish by the SPE)
(continued)

Z ′
D

tD 0.05 0.1 0.3 0.5 0.7 0.9 1.0

65 26.18 26.12 25.50 24.53 23.34 22.02 21.28
70 27.47 27.41 26.75 25.73 24.50 23.12 22.36
75 28.71 28.55 27.94 26.88 25.60 24.17 23.39
80 29.89 29.82 29.08 27.97 26.65 25.16 24.36
85 31.02 30.95 30.17 29.01 27.65 26.10 25.31

90 32.10 32.03 31.20 30.00 28.60 27.03 26.25
95 33.04 32.96 32.14 30.95 29.54 27.93 27.10

100 33.94 33.85 33.03 31.85 30.44 28.82 27.98
110 35.55 35.46 34.65 33.49 32.08 30.47 29.62
120 36.97 36.90 36.11 34.98 33.58 31.98 31.14

130 38.28 38.19 37.44 36.33 34.96 33.38 32.55
140 39.44 39.37 38.64 37.56 36.23 34.67 33.85
150 40.49 40.42 39.71 38.67 37.38 35.86 35.04
170 42.21 42.15 41.51 40.54 39.33 37.89 37.11
190 43.62 43.55 42.98 42.10 40.97 39.62 38.90

210 44.77 44.72 44.19 43.40 42.36 41.11 40.42
230 45.71 45.67 45.20 44.48 43.54 42.38 41.74
250 46.48 46.44 46.01 45.38 44.53 43.47 42.87
270 47.11 47.06 46.70 46.13 45.36 44.40 43.84
290 47.61 47.58 47.25 46.75 46.07 45.19 44.68

310 48.03 48.00 47.72 47.26 46.66 45.87 45.41
330 48.38 48.35 48.10 47.71 47.16 46.45 46.03
350 48.66 48.64 48.42 48.08 47.59 46.95 46.57
400 49.15 49.14 48.99 48.74 48.38 47.89 47.60
450 49.46 49.45 49.35 49.17 48.91 48.55 48.31

500 49.65 49.64 49.58 49.45 49.26 48.98 48.82
600 49.84 49.84 49.81 49.74 49.65 49.50 49.41
700 49.91 49.91 49.90 49.87 49.82 49.74 49.69
800 49.94 49.94 49.93 49.92 49.90 49.85 49.83
900 49.96 49.96 49.94 49.94 49.93 49.91 49.90

1000 49.96 49.96 49.96 49.96 49.94 49.93 49.93
1200 49.96 49.96 49.96 49.96 49.96 49.96 49.96

The boundary pressure history is given below:

Time (days) p (psi)

0 3000
30 2956
60 2917
90 2877

120 2844
150 2811
180 2791
210 2773
240 2755

Calculate the cumulative water influx as a function of time
by using the bottom-water drive solution and compare with
the edge-water drive approach.

Solution Step 1. Calculate the dimensionless radius for
an infinite-acting aquifer:

rD = ∞

Step 2. Calculate zD from Equation 2.3.28:

zD = h
re

√
Fk

= 200

2000
√

0. 04
= 0. 5

Step 3. Calculate the water influx constant B:
B = 1. 119 φctr2

e h

= 1. 119(0. 1)(8 × 10−6)(2000)2(200)

= 716 bbl/psi
Step 4. Calculate the dimensionless time tD:

tD =6.328×10−3 kt
φµwctr2

e

=6.328×10−3
[

50
(0.1)(0.395)(8×10−6)(2000)2

]
t

=0.2503t

Step 5. Calculate the water influx by using the bottom-
water model and edge-water model. Note that the
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difference between the two models lies in the
approach used in calculating the dimensionless
water influx WeD:

We = B
∑

�pWeD

Bottom-water Edge-water
t tD �p model model

(days) (psi) WeD We (Mbbl) WeD We (Mbbl)

0 0 0 – – – –
30 7.5 22 5.038 79 6.029 95
60 15.0 41.5 8.389 282 9.949 336
90 22.5 39.5 11.414 572 13.459 678

120 30.0 36.5 14.994 933 16.472 1103
150 37.5 33.0 16.994 1353 19.876 1594
180 45.0 26.5 19.641 1810 22.897 2126
210 52.5 19.0 22.214 2284 25.827 2676
240 60.0 18.0 24.728 2782 28.691 3250

Linear water drive
As shown by van Everdingen and Hurst, the water influx
from a linear aquifer is proportional to the square root
of time. The van Everdingen and Hurst dimensionless
water influx is replaced by the square root of time, as
given by:

We = BL
∑[

�pn
√

t − tn
]

where:

BL = linear-aquifer water influx constant, bbl/psi/
√

time
t = time (any convenient time units, e.g., months,

years)
�p= pressure drop as defined previously for the

radial edge-water drive

The linear-aquifer water influx constant BL is determined for
the material balance equation as described in Chapter 4.

2.3.5 The Carter and Tracy water influx model
The van Everdingen and Hurst methodology provides the
exact solution to the radial diffusivity equation and there-
fore is considered the correct technique for calculating
water influx. However, because superposition of solutions
is required, their method involves tedious calculations. To
reduce the complexity of water influx calculations, Carter
and Tracy (1960) proposed a calculation technique that does
not require superposition and allows direct calculation of
water influx.

The primary difference between the Carter–Tracy tech-
nique and the van Everdingen and Hurst technique is
that Carter–Tracy assumes constant water influx rates over
each finite time interval. Using the Carter–Tracy tech-
nique, the cumulative water influx at any time, tn, can
be calculated directly from the previous value obtained at
tn−1, or:
(We)n = (We)n−1 + [(tD)n − (tD)n−1

]

×
[

B�pn − (We)n−1(p\
D)n

(pD)n − (tD)n−1(p\
D)n

]
[2.3.31]

where:

B = the van Everdingen and Hurst water influx
constant as defined by Equation 2.3.21

tD = the dimensionless time as defined by
Equation 2.3.15

n = the current time step
n − 1 = the previous time step
�pn = total pressure drop, pi − pn, psi

pD = dimensionless pressure
p\

D = dimensionless pressure derivative

Values of the dimensionless pressure pD as a function of
tD and rD are tabulated in Chapter 1, Table 1.2. In addi-
tion to the curve-fit equations given in Chapter 1 (Equations
1.2.79 through 1.2.84, Edwardson et al. (1962) developed
the following approximation of pD for an infinite-acting
aquifer:

pD = 370. 529
√

tD + 137. 582tD + 5. 69549 (tD)1.5

328. 834 + 265. 488
√

tD + 45. 2157tD + (tD)1.5

[2.3.32]

The dimensionless pressure derivative can then be approxi-
mated by:

p\
D = E

F
[2.3.33]

where:

E = 716. 441 + 46. 7984(tD)0.5 + 270. 038tD + 71. 0098(tD)1.5

F = 1296. 86(tD)0.5 + 1204. 73tD + 618. 618(tD)1.5

+ 538. 072(tD)2 + 142. 41(tD)2.5

When the dimensionless time tD > 100, the following approx-
imation can be used for pD:

pD = 1
2
[ln(tD) + 0. 80907]

with the derivative given by:

p\
D = 1

2tD

Fanchi (1985) matched the van Everdingen and Hurst tabu-
lated values of the dimensionless pressure pD as a function
of tD and rD in Table 1.2 by using a regression model and
proposed the following expression:

pD = a0 + a1tD + a2 ln(tD) + a2[ln(tD)]2

in which the regression coefficients are given below:

reD a0 a1 a2 a3

1.5 0.10371 1.6665700 −0.04579 −0.01023
2.0 0.30210 0.6817800 −0.01599 −0.01356
3.0 0.51243 0.2931700 0.015340 −0.06732
4.0 0.63656 0.1610100 0.158120 −0.09104
5.0 0.65106 0.1041400 0.309530 −0.11258
6.0 0.63367 0.0694000 0.41750 −0.11137
8.0 0.40132 0.0410400 0.695920 −0.14350

10.0 0.14386 0.0264900 0.896460 −0.15502
∞ 0.82092 −0.000368 0.289080 0.028820

It should be noted that the Carter and Tracy method is
not an exact solution to the diffusivity equation and should
be considered as an approximation.

Example 2.9 Rework Example 2.7 by using the Carter
and Tracy method.

Solution Example 2.7 shows the following preliminary
results:

● water influx constant B = 20. 4 bbl/psi;
● tD = 0. 9888t.
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Step 1. For each time step n, calculate the total pressure
drop �pn = pi − pn and the corresponding tD:

n t1 (days) pn �pn tD

0 0 2500 0 0
1 182.5 2490 10 180.5
2 365.0 2472 28 361.0
3 547.5 2444 56 541.5
4 730.0 2408 92 722.0

Step 2. Since the values of tD are greater than 100, use
Equation 1.2.80 to calculate pD and its derivative p\

D.
That is:

pD = 1
2
[ln(tD) + 0. 80907]

p\
D = 1

2tD

n t tD pD p\
D

0 0 0 – –
1 182.5 180.5 3.002 2. 770 × 10−3

2 365.0 361.0 3.349 1. 385 × 10−3

3 547.5 541.5 3.552 0. 923 × 10−3

4 730.0 722.0 3.696 0. 693 × 10−3

Step 3. Calculate cumulative water influx by applying Equa-
tion 2.3.31
We after 182.5 days:(

We
)

n = (We
)

n−1 + [(tD)n − (tD)n−1
]

×

B�pn − (We

)
n−1

(
p\

D

)
n

(pD)n − (tD)n−1

(
p\

D

)
n




= 0 + [180. 5 − 0]

×
[

(20. 4)(10) − (0)(2. 77 × 10−3)
3. 002 − (0)(2. 77 × 10−3)

]

= 12 266 bbl

We after 365 days:
We = 12 266 + [361 − 180. 5]

×
[

(20. 4)(28) − (12 266)(1. 385 × 10−3)
3. 349 − (180. 5)(1. 385 × 10−3)

]

= 42 545 bbl
We after 547.5 days:

We = 42 546 + [541. 5 − 361]

×
[

(20. 4)(56) − (42 546)(0. 923 × 10−3)
3. 552 − (361)(0. 923 × 10−3)

]

= 104 406 bbl
We after 720 days:
We = 104 406 + [722 − 541. 5]

×
[

(20. 4)(92) − (104 406)(0. 693 × 10−3)
3. 696 − (541. 5)(0. 693 × 10−3)

]

= 202 477 bbl
The following table compares the results of the
Carter and Tracy water influx calculations with those
of the van Everdingen and Hurst method.

Time (months) Carter and van Everdingen
Tracy, and Hurst,

We (bbl) We, bbl

0 0 0
6 12 266 7085

12 42 546 32 435
18 104 400 85 277
24 202 477 175 522

The above comparison indicates that the Carter and Tracy
method considerably overestimates the water influx. How-
ever, this is due to the fact that a large time step of 6 months
was used in the Carter and Tracy method to determine the
water influx. The accuracy of this method can be increased
substantially by restricting the time step to one month. Recal-
culating the water influx on a monthly basis produces an
excellent match with the van Everdingen and Hurst method
as shown below.

Time Time p �p tD pD p\
D Carter–Tracy van Everdingen

(months) (days) (psi) (psi) We (bbl) and Hurst We (bbl)

0 0 2500.0 0.00 0 0.00 0 0.0 0
1 30 2498.9 1.06 30.0892 2.11 0.01661 308.8
2 61 2497.7 2.31 60.1784 2.45 0.00831 918.3
3 91 2496.2 3.81 90.2676 2.66 0.00554 1860.3
4 122 2494.4 5.56 120.357 2.80 0.00415 3171.7
5 152 2492.4 7.55 150.446 2.91 0.00332 4891.2
6 183 2490.2 9.79 180.535 3.00 0.00277 7057.3 7088.9
7 213 2487.7 12.27 210.624 3.08 0.00237 9709.0
8 243 2485.0 15.00 240.713 3.15 0.00208 12 884.7
9 274 2482.0 17.98 270.802 3.21 0.00185 16 622.8

10 304 2478.8 21.20 300.891 3.26 0.00166 20 961.5
11 335 2475.3 24.67 330.981 3.31 0.00151 25 938.5
12 365 2471.6 28.38 361.070 3.35 0.00139 31 591.5 32 435.0
13 396 2467.7 32.34 391.159 3.39 0.00128 37 957.8
14 426 2463.5 36.55 421.248 3.43 0.00119 45 074.5
15 456 2459.0 41.00 451.337 3.46 0.00111 52 978.6
16 487 2454.3 45.70 481.426 3.49 0.00104 61 706.7
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Time Time p �p tD pD p\
D Carter–Tracy van Everdingen

(months) (days) (psi) (psi) We (bbl) and Hurst We (bbl)

17 517 2449.4 50.64 511.516 3.52 0.00098 71 295.3
18 547 2444.3 55.74 541.071 3.55 0.00092 81 578.8 85 277.0
19 578 2438.8 61.16 571.130 3.58 0.00088 92 968.2
20 608 2433.2 66.84 601.190 3.60 0.00083 105 323.
21 638 2427.2 72.75 631.249 3.63 0.00079 118 681.
22 669 2421.1 78.92 661.309 3.65 0.00076 133 076.
23 699 2414.7 85.32 691.369 3.67 0.00072 148 544.
24 730 2408.0 91.98 721.428 3.70 0.00069 165 119. 175 522.0

2.3.6 The Fetkovich method
Fetkovich (1971) developed a method of describing the
approximate water influx behavior of a finite aquifer for
radial and linear geometries. In many cases, the results of
this model closely match those determined using the van
Everdingen and Hurst approach. The Fetkovich theory is
much simpler, and, like the Carter–Tracy technique, this
method does not require the use of superposition. Hence,
the application is much easier, and this method is also often
utilized in numerical simulation models.

The Fetkovich model is based on the premise that the pro-
ductivity index concept will adequately describe water influx
from a finite aquifer into a hydrocarbon reservoir. That is,
the water influx rate is directly proportional to the pressure
drop between the average aquifer pressure and the pressure
at the reservoir–aquifer boundary. The method neglects
the effects of any transient period. Thus, in cases where
pressures are changing rapidly at the aquifer–reservoir
interface, predicted results may differ somewhat from the
more rigorous van Everdingen and Hurst or Carter–Tracy
approaches. However, in many cases pressure changes at the
waterfront are gradual and this method offers an excellent
approximation to the two methods discussed above.

This approach begins with two simple equations. The first
is the productivity index (PI) equation for the aquifer, which
is analogous to the PI equation used to describe an oil or gas
well:

ew = dWe

dt
= J

(
pa − pr

)
[2.3.34]

where:

ew = water influx rate from aquifer, bbl/day
J = productivity index for the aquifer, bbl/day/psi

pa = average aquifer pressure, psi
pr = inner aquifer boundary pressure, psi

The second equation is an aquifer material balance equation
for a constant compressibility, which states that the amount
of pressure depletion in the aquifer is directly proportional
to the amount of water influx from the aquifer, or:

We = ctWi
(
pi − pa

)
f [2.3.35]

where:

Wi = initial volume of water in the aquifer, bbl
ct = total aquifer compressibility, cw + cf , psi−1

pi = initial pressure of the aquifer, psi
f = θ/360

Equation 2.3.25 suggests that the maximum possible water
influx occurs if pa = 0, or:

Wei = ctWipif [2.3.36]

where:

Wei = maximum water influx, bbl

Combining Equation 2.3.36 with 2.3.35 gives:

pa = pi

(
1 − We

ctWipi

)
= pi

(
1 − We

Wei

)
[2.3.37]

Equation 2.3.35 provides a simple expression to determine
the average aquifer pressure pa after removing We bbl of
water from the aquifer to the reservoir, i.e., cumulative water
influx.

Differentiating Equation 2.3.37 with respect to time gives:

dWe

dt
= −Wei

pi

d pa

dt
[2.3.38]

Fetkovich combined Equation 2.3.38 with 2.3.34 and inte-
grated to give the following form:

We = Wei

pi
(pi − pr) exp

(−Jpit
Wei

)
[2.3.39]

where:

We = cumulative water influx, bbl
pr = reservoir pressure, i.e., pressure at the oil or

gas–water contact
t = time, days

Equation 2.3.39 has no practical applications since it was
derived for a constant inner boundary pressure. To use this
solution in the case in which the boundary pressure is vary-
ing continuously as a function of time, the superposition
technique must be applied. Rather than using superposition,
Fetkovich suggested that, if the reservoir–aquifer bound-
ary pressure history is divided into a finite number of
time intervals, the incremental water influx during the nth
interval is:
(
�We

)
n = Wei

pi

[(
pa
)

n−1 − (pr
)

n

] [
1 − exp

(
− Jpi�tn

Wei

)]

[2.3.40]

where (pa)n−1 is the average aquifer pressure at the end of
the previous time step. This average pressure is calculated
from Equation 2.3.37 as:

(
pa
)

n−1 = pi

(
1 −

(
We
)

n−1

Wei

)
[2.3.41]

The average reservoir boundary pressure
(
pr
)

n is estimated
from:(
pr
)

n = (pr)n + (pr)n−1

2
[2.3.42]

The productivity index J used in the calculation is a func-
tion of the geometry of the aquifer. Fetkovich calculated
the productivity index from Darcy’s equation for bounded
aquifers. Lee and Wattenbarger (1996) pointed out that the
Fetkovich method can be extended to infinite-acting aquifers
by requiring that the ratio of water influx rate to pressure
drop is approximately constant throughout the productive
life of the reservoir. The productivity index J of the aquifer
is given by the following expressions:
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Type of outer J for radial J for linear Equation
aquifer boundary flow (bbl/day/psi) flow (bbl/day/psi)

Finite, no flow J = 0. 00708khf
µw
[
ln(rD) − 0. 75

] J = 0. 003381 kwh
µwL

[2.3.43]

Finite, constant pressure J = 0. 00708 khf
µw
[
ln (rD)

] J = 0. 001127 kwh
µwL

[2.3.44]

Infinite
J = 0. 00708 khf

µw ln
(
a/re

)

a = √0. 0142 kt/(φµwct)

J = 0. 001 kwh

µw
√

0. 0633 kt/(φµwct)
[2.3.45]

where:

w = width of the linear aquifer, ft
L = length of the linear aquifer, ft

rD = dimensionless radius, ra/re
k = permeability of the aquifer, md
t = time, days
θ = encroachment angle
h = thickness of the aquifer
f = θ/360

The following steps describe the methodology of using the
Fetkovich model in predicting the cumulative water influx:

Step 1. Calculate the initial volume of water in the aquifer
from:

Wi = π

5. 615
(
r2

a − r2
e

)
hφ

Step 2. Calculate the maximum possible water influx Wei by
applying Equation 2.3.36, or:

Wei = ctWipif

Step 3. Calculate the productivity index J based on the
boundary conditions and aquifer geometry.

Step 4. Calculate the incremental water influx (�We)n from
the aquifer during the nth time interval by using
Equation 2.3.40. For example, during the first time
step �t1:

(
�We

)
1 = Wei

pi

[
pi − (pr

)
1

] [
1 − exp

(−Jpi�t1

Wei

)]

with:
(
pr
)

1 = pi + (pr)1

2

For the second time interval �t2:

(
�We

)
2 = Wei

pi

[(
pa
)

1 −(pr
)

2

][
1−exp

(−Jpi�t2

Wei

)]

where
(
pa
)

1 is the average aquifer pressure at the
end of the first period and removing (�We)1 bar-
rels of water from the aquifer to the reservoir. From
Equation 2.3.41:

(
pa
)

1 = pi

(
1 −

(
�We

)
1

Wei

)

Step 5. Calculate the cumulative (total) water influx at the
end of any time period from:

We =
n∑

i=1

(
�We

)
i

Example 2.10 b Using the Fetkovich method, calculate
the water influx as a function of time for the following
reservoir–aquifer and boundary pressure data:

pi = 2740 psi, h = 100 ft, ct = 7 × 10−6 psi−1

µw = 0. 55 cp, k = 200 md, θ = 140◦
reservoir area = 40 363 acres,
aquifer area = 1 000 000 acres

Time (days) pr (psi)

0 2740
365 2500
730 2290

1095 2109
1460 1949

Figure 2.17 c shows the wedge reservoir–aquifer system
with an encroachment angle of 140◦.

Solution Step 1. Calculate the reservoir radius re

re =
(

θ

360

)√
43 560A

π
= 9200 ft

=
(

140
360

)√
(43 560)(2374)

π
= 9200 ft

Step 2. Calculate the equivalent aquifer radius ra :

ra =
(

140
360

)√
(43 560)(1 000 000)

π
= 46 000 ft

Step 3. Calculate the dimensionless radius rD:

rD = ra/re = 46 000/9200 = 5

Step 4. Calculate initial water-in-place Wi :

Wi = π
(
r2

a − r2
e

)
hθ/5. 615

= π(46 0002 − 92002)(100)(0. 25)
5. 615

= 28. 41 MMMbbl

Step 5. Calculate Wei from Equation 2.3.36:

Wei = ctWipi f

= 7 × 10−6 (28. 41 × 109) (2740)
(

140
360

)

= 211. 9 MMMbbl

bData for this example is given by L.P. Dake Fundamentals of Reservoir
Engineering 1978, Elsevier Publishing Company.
cData for this example is given by L.P. Dake Fundamentals of Reservoir
Engineering 1978, Elsevier Publishing Company.
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140°

Reservoir

Aquifer

Sealing
Fault

r2 = 700′

re = 9200′

re = 9200′

Figure 2.17 Aquifer-reservoir geometry for Example 2.10.

Step 6. Calculate the productivity index J of the radial
aquifer from Equation 2.3.43

J =
0. 00708

(
200
) (

100
) (140

360

)

0. 55 ln(5)

= 116. 5 bbl/day/psi

and therefore:

Jpi

Wei
= (116. 5)(2740)

211. 9 × 106 = 1. 506 × 10−3

Since the time step �t is fixed at 365 days, then:

1 − exp(−Jpi�t/Wei) = 1 − exp(−1.506×10−3×365)

= 0. 4229

Substituting in Equation 2.3.41 gives:

(
�We

)
n = Wei

pi

[(
pa
)

n−1 −(pr
)

n

]

×
[

1−exp
(

− Jpi�tn
Wei

)]

= 211.9×106

2740

[(
pa
)

n−1 −(pr
)

n

]
(0.4229)

=32705
[(

pa
)

n−1 −(pr
)

n

]

Step 7. Calculate the cumulative water influx as shown in
the following table.

n t pr
(
pr
)

n

(
pa
)

n−1

(
pa
)

n−1 (�We)n We

(days) − (pr
)

n (MMbbl) (MMbbl)

0 0 2740 2740 – – – –
1 365 2500 2620 2740 120 3.925 3.925
2 730 2290 2395 2689 294 9.615 13.540
3 1095 2109 2199 2565 366 11.970 25.510
4 1460 1949 2029 2409 381 12.461 37.971

Problems

1. Calculate the cumulative water influx that result from a
pressure drop of 200 psi at the oil–water contact with
an encroachment angle of 50◦. The reservoir–aquifer
system is characterized by the following properties:

Reservoir Aquifer

radius, ft 6000 20 000
porosity 0.18 0.15
cf , psi−1 4 × 10−6 3 × 10−6

cw, psi−1 5 × 10−6 4 × 10−6

h, ft 25 20

2. An active water drive oil reservoir is producing under
steady-state flowing conditions. The following data is
available:

pi = 4000 psi, p = 3000 psi,
Qo = 40 000 STB/day Bo = 1. 3 bbl/STB,
GOR = 700 scf/STB, Rs = 500 scf/STB
Z = 0. 82, T = 140◦F,
Qw = 0, Bw = 1. 0 bbl/STB

Calculate the Schilthuis water influx constant.
3. The pressure history of a water drive oil reservoir is

given below:

t (days) p (psi)

0 4000
120 3950
220 3910
320 3880
420 3840

The aquifer is under a steady-state flowing condition with
an estimated water influx constant of 80 bbl/day/psi.
Using the steady-state model, calculate and plot the
cumulative water influx as a function of time.

4. A water drive reservoir has the following boundary
pressure history:

Time (months) Boundary pressure (psi)

0 2610
6 2600

12 2580
18 2552
24 2515
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The aquifer–reservoir system is characterized by the
following data:

Reservoir Aquifer

radius, ft 2000 ∞
h, ft 25 30
k, md 60 80
φ, % 17 18
µw, cp 0.55 0.85
cw, psi−1 0. 7 × 10−6 0. 8 × 10−6

cf , psi−1 0. 2 × 10−6 0. 3 × 10−6

If the encroachment angle is 360◦, calculate the water
influx as a function of time by using:

(a) the van Everdingen and Hurst method;
(b) the Carter and Tracy Method.

5. The following table summarizes the original data avail-
able on the West Texas water drive reservoir:

Oil zone Aquifer

Geometry Circular Semicircular
Area, acres 640 Infinite
Initial reservoir pressure, psia 4000 4000
Initial oil saturation 0.80 0
Porosity, % 22 –
Boi, bbl/STB 1.36 –
Bwi, bbl/STB 1.00 1.05
co, psi 6 × 10−6 –
cw, psi−1 3 × 10−6 7 × 10−6

The geological data of the aquifer estimates the water
influx constant at 551 bbl/psi. After 1120 days of pro-
duction, the reservoir average pressure has dropped to
3800 psi and the field has produced 860 000 STB of oil.

The field condition after 1120 days of production is given
below:

p = 3800 psi, Np = 860 000 STB,
Bo = 1. 34 bbl/STB, Bw = 1. 05 bbl/STB,
We = 991 000 bbl,
tD = 32. 99 (dimensionless time after 1120 days),

Wp = 0 bbl

It is expected that the average reservoir pressure will
drop to 3400 psi after 1520 days (i.e., from the start of
production). Calculate the cumulative water influx after
1520 days.

6. A wedge reservoir–aquifer system with an encroach-
ment angle of 60◦ has the following boundary pressure
history:

Time (days) Boundary pressure (psi)

0 2850
365 2610
730 2400

1095 2220
1460 2060

Given the following aquifer data:

h = 120 ft, cf = 5 × 10−6 psi−1,
cw = 4 × 10−6 psi−1, µw = 0. 7 cp,
k = 60 md, φ = 12%,
reservoir area = 40 000 acres
aquifer area = 980 000 acres, T = 140◦F

calculate the cumulative influx as a function of time by
using:

(a) the van Everdingen and Hurst method;
(b) the Carter and Tracy method;
(c) the Fetkovich method.
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Efficient development and operation of a natural gas reser-
voir depend on understanding the reservoir characteristics
and the well performance. Predicting the future recovery of
the reservoir and the producing wells is the most important
part in the economic analysis of the field for further develop-
ment and expenditures. To forecast the performance of a gas
field and its existing production wells, sources of energy for
producing the hydrocarbon system must be identified and
their contributions to reservoir behavior evaluated.

The objective of this chapter is to document the methods
that can be used to evaluate and predict:

● vertical and horizontal gas well performance;
● conventional and non-conventional gas field performance.

3.1 Vertical Gas Well Performance

Determination of the flow capacity of a gas well requires
a relationship between the inflow gas rate and the sand
face pressure or flowing bottom-hole pressure. This inflow
performance relationship may be established by the proper
solution of Darcy’s equation. Solution of Darcy’s law depends
on the conditions of the flow existing in the reservoir or the
flow regime.

When a gas well is first produced after being shut in
for a period of time, the gas flow in the reservoir follows
an unsteady-state behavior until the pressure drops at the
drainage boundary of the well. Then the flow behavior passes
through a short transition period, after which it attains a
steady-state or semisteady (pseudosteady)-state condition.
The objective of this chapter is to describe the empiri-
cal as well as analytical expressions that can be used to
establish the inflow performance relationships under the
pseudosteady-state flow condition.

3.1.1 Gas flow under laminar (viscous) flowing conditions
The exact solution to the differential form of Darcy’s equa-
tion for compressible fluids under the pseudosteady-state
flow condition was given previously by Equation 1.2.138, as:

Qg = kh
[
ψ r − ψwf

]
1422T

[
ln
(
re/rw

)− 0. 75 + s
] [3.1.1]

with:

ψ r = m(pr) = 2
∫ pr

0

p
µZ

dp

ψwf = m(pwf ) = 2
∫ pwf

0

p
µZ

dp

where:

Qg = gas flow rate, Mscf/day
k = permeability, md

m(pr) = ψ r = average reservoir real-gas pseudo-
pressure, psi2/cp

T = temperature, ◦R
s = skin factor
h = thickness

re = drainage radius
rw = wellbore radius

Note that the shape factor CA, which is designed to account
for the deviation of the drainage area from the ideal circular
form as introduced in Chapter 1 and given in Table 1.4, can
be included in Darcy’s equation to give:

Qg = kh
[
ψ r − ψwf

]
1422T

[ 1
2 ln

(
4A/1. 781CAr2

w

)+ s
]

Qg

vwf

(Qg)max = AOF

vr
−

vwf = vr −
− Qg−1

J

Figure 3.1 Steady-state gas well flow.

with:

A = πr2
e

where:

A = drainage area, ft2

CA = shape factor with values as given in Table 1.4

For example, a circular drainage area has a shape factor of
31.62, i.e., CA = 31. 62, as shown in Table 1.4, and reduces
the above equation into Equation 3.1.1.

The productivity index J for a gas well can be written
analogously to that for oil wells with the definition as the
production rate per unit pressure drop. That is:

J = Qg[
ψ r − ψwf

] = kh
1422T

[ 1
2 ln

(
4A/1. 781CAr2

w

)+ s
]

For the most commonly used flow geometry, i.e., a circular
drainage area, the above equation is reduced to:

J = Qg

ψ r − ψwf
= kh

1422T
[
ln
(
re/rw

)− 0. 75 + s
] [3.1.2]

or:

Qg = J
(
ψ r − ψwf

)
[3.1.3]

With the absolute open flow potential (AOF), i.e., maximum
gas flow rate (Qg)max, as calculated by setting ψwf = 0, then:

AOF = (Qg
)

max = J (ψ r − 0)

or:

AOF = (Qg
)

max = Jψ r [3.1.4]

where:

J = productivity index, Mscf/day/psi2/cp
(Qg)max = Maximum gas flow rate, Mscf/day

AOF = Absolute open flow potential, Mscf/day

Equation 3.1.3 can be expressed in a linear relationship as:

ψwf = ψ r −
(

1
J

)
Qg [3.1.5]

Equation 3.1.5 indicates that a plot of ψwf vs. Qg would pro-
duce a straight line with a slope of 1/J and intercept of ψ r ,
as shown in Figure 3.1. If two different stabilized flow rates
are available, the line can be extrapolated and the slope is
determined to estimate AOF, J , and ψ r .

Equation 3.1.1 can be written alternatively in the following
integral form:

Qg = kh
1422T

[
ln
(
re/rw

)− 0. 75 + s
]
∫ pr

pwf

(
2p

µgZ

)
dp [3.1.6]
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Note that (p/µgZ ) is directly proportional to (1/µg Bg)
where Bg is the gas formation volume factor and defined as:

Bg = 0. 00504
ZT
p

[3.1.7]

where:

Bg = gas formation volume factor, bbl/scf
Z = gas compressibility factor
T = temperature, ◦R

Equation 3.1.6 can then be written in terms of Bg of Equation
3.1.7, as follows. Arrange Equation 3.1.6 to give:

p
ZT

= 0. 00504
Bg

Arrange Equation 3.1.7 in the following form:

Qg = kh
1422

[
ln
(
re/rw

)− 0. 75 + s
]
∫ pr

pwf

(
2
µg

p
TZ

)
dp

Combining the above two expressions:

Qg =
[

7. 08
(
10−6

)
kh

ln
(
re/rw

)− 0. 75 + s

]∫ pr

pwf

(
1

µgBg

)
dp [3.1.8]

where:

Qg = gas flow rate, Mscf/day
µg = gas viscosity, cp

k = permeability, md

Figure 3.2 shows a typical plot of the gas pressure func-
tions (2p/µZ ) and (1/µgBg) versus pressure. The integral in
Equations 3.1.6 and 3.1.8 represents the area under the curve
between pr and pwf . As illustrated in Figure 3.2, the pres-
sure function exhibits the following three distinct pressure
application regions.

High-pressure region
When the bottom-hole flowing pressure pwf and average
reservoir pressure pr are both higher than 3000 psi, the pres-
sure functions (2p/µgZ ) and (1/µgBg) are nearly constant,
as shown by Region III in Figure 3.2. This observation sug-
gests that the pressure term (1/µgBg) in Equation 3.1.8 can
be treated as a constant and can be removed outside the
integral, to give:

Qg =
[

7. 08
(
10−6

)
kh

ln
(
re/rw

)− 0. 75 + s

](
1

µgBg

)∫ pr

pwf

dp

or:

Qg = 7. 08
(
10−6

)
kh
(
pr − pwf

)
(
µgBg

)
avg

[
ln
(
re/rw

)− 0. 75 + s
] [3.1.9]

Low-Pressure

Region I Region II

Pressure2000

µgZ
or

1/µBg

3000

Region III

High-PressureIntermediate-
Pressure

Figure 3.2 Gas PVT data.

where:

Qg = gas flow rate, Mscf/day
Bg = gas formation volume factor, bbl/scf

k = permeability, md

The gas viscosity µg and formation volume factor Bg should
be evaluated at the average pressure pavg as given by:

pavg = pr + pwf

2
[3.1.10]

The method of determining the gas flow rate by using Equa-
tion 3.1.9 is commonly called the “pressure approximation
method.”

It should be pointed out the concept of the productivity
index J cannot be introduced into Equation 3.1.9 since this
equation is only valid for applications when both pwf and pr
are above 3000 psi.

Note that deviation from the circular drainage area can be
treated as an additional skin by including the shape factor
CA in Equation 3.1.9, to give:

Qg = 7. 08
(
10−6

)
kh
(
pr − pwf

)
(
µgBg

)
avg

[ 1
2 ln

(
4A/1. 781CAr2

w

)+ s
]

Intermediate-pressure region
Between 2000 and 3000 psi, the pressure function shows
distinct curvature. When the bottom-hole flowing pressure
and average reservoir pressure are both between 2000 and
3000 psi, the pseudopressure gas pressure approach (i.e.,
Equation 3.1.1) should be used to calculate the gas flow rate:

Qg = kh
[
ψ r − ψwf

]
1422T

[
ln
(
re/rw

)− 0. 75 + s
]

and for a non-circular drainage area, the above flow should
be modified to include the shape factor CA and the drainage
area, to give:

Qg = kh
[
ψ r − ψwf

]
1422T

[ 1
2 ln

(
4A/1. 781CAr2

w

)+ s
]

Low-pressure region
At low pressures, usually less than 2000 psi, the pressure
functions (2p/µZ ) and (1/µgBg) exhibit a linear relation-
ship with pressure as shown in Figure 3.2 and is identified
as Region I. Golan and Whitson (1986) indicated that the
product (µgZ ) is essentially constant when evaluating any
pressure below 2000 psi. Implementing this observation in
Equation 3.1.6 and integrating gives:

Qg = kh
1422T

[
ln
(
re/rw

)− 0. 75 + s
]
(

2
µgZ

)∫ pr

pwf

p dp

or:

Qg =
kh
(

p
2
r − p2

wf

)

1422T
(
µgZ

)
avg

[
ln
(
re/rw

)− 0. 75 + s
] [3.1.11]

and for a non-circular drainage area:

Qg =
kh
(

p
2
r − p2

wf

)

1422T
(
µgZ

)
avg

[ 1
2 ln

(
4A/1. 781CAr2

w

)+ s
]

where:

Qg = gas flow rate, Mscf/day
k = permeability, md

T = temperature, ◦R
Z = gas compressibility factor

µg = gas viscosity, cp
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It is recommended that the Z factor and gas viscosity be
evaluated at the average pressure pavg as defined by:

pavg =
√

p
2
r + p2

wf

2

It should be pointed out that, for the remainder of this chapter,
it will be assumed that the well is draining a circular area with
a shape factor of 31.16.

The method of calculating the gas flow rate by Equa-
tion 3.1.11 is called the “pressure-squared approximation
method.”

If both pr and pwf are lower than 2000 psi, Equation 3.1.11
can be expressed in terms of the productivity index J as:

Qg = J
(

p
2
r − p2

wf

)
[3.1.12]

with:

(
Qg
)

max = AOF = Jp
2
r [3.1.13]

where:

J = kh
1422T

(
µgZ

)
avg

[
ln
(
re/rw

)− 0. 75 + s
] [3.1.14]

Example 3.1 The PVT properties of a gas sample taken
from a dry gas reservoir are given below:

p (psi) µg (cp) Z ψ (psi2/cp) Bg (bbl/scf)

0 0.01270 1.000 0 –
400 0.01286 0.937 13. 2 × 106 0.007080

1200 0.01530 0.832 113. 1 × 106 0.002100
1600 0.01680 0.794 198. 0 × 106 0.001500
2000 0.01840 0.770 304. 0 × 106 0.001160
3200 0.02340 0.797 678. 0 × 106 0.000750
3600 0.02500 0.827 816. 0 × 106 0.000695
4000 0.02660 0.860 950. 0 × 106 0.000650

The reservoir is producing under the pseudosteady-state
condition. The following additional data is available:

k = 65 md, h = 15 ft, T = 600◦R

re = 1000 ft, rw = 0. 25 ft, s = −0. 4

Calculate the gas flow rate under the following conditions:

(a) pr = 4000 psi, pwf = 3200 psi;
(b) pr = 2000 psi, pwf = 1200 psi.

Use the appropriate approximation methods and compare
results with the exact solution.

Solution

(a) Calculation of Qg at pr = 4000 and pwf = 3200 psi:

Step 1. Select the approximation method. Because pr and
pwf are both greater than 3000, the pressure approx-
imation method is used, i.e., Equation 3.1.9.

Step 2. Calculate average pressure and determine the cor-
responding gas properties.

p = 4000 + 3200
2

= 3600 psi

µg = 0. 025 Bg = 0. 000695

Step 3. Calculate the gas flow rate by applying Equation
3.1.9:

Qg = 7. 08
(
10−6

)
kh
(
pr − pwf

)
(
µgBg

)
avg

[
ln
(
re/rw

)− 0. 75 + s
]

= 7. 08
(
10−6

) (
65
) (

15
) (

4000 − 3200
)

(
0. 025

) (
0. 000695

) [
ln
(
1000/0. 25

)− 0. 75 − 0. 4
]

= 44 490 Mscf/day

Step 4. Recalculate Qg by using the pseudopressure equa-
tion, i.e., Equation 3.1, to give:

Qg = kh
[
ψ r − ψwf

]
1422T

[
ln
(
re/rw

)− 0. 75 + s
]

=
(
65
) (

15
) (

950. 0 − 678. 0
)

106(
1422

) (
600
) [

ln
(
1000/0. 25

)− 0. 75 − 0. 4
]

= 43 509 Mscf/day
Comparing results of the pressure approximation
method with the pseudopressure approach indicates
that the gas flow rate can be approximated using the
“pressure method” with an absolute percentage error of
2.25%.

(b) Calculation of Qg at pr = 2000 and pwf = 1200:

Step 1. Select the appropriate approximation method.
Because pr and pwf ≤ 2000, use the pressure-
squared approximation.

Step 2. Calculate average pressure and the corresponding
µg and Z :

p =
√

20002 + 12002

2
= 1649 psi

µg = 0. 017, Z = 0. 791
Step 3. Calculate Qg by using the pressure-squared equa-

tion, i.e., Equation 3.1.11:

Qg =
kh
(

p
2
r − p2

wf

)

1422T
(
µgZ

)
avg

[
ln
(
re/rw

)− 0. 75 + s
]

=
(
65
) (

15
) (

20002 − 12002
)

1422
(
600
) (

0. 017
) (

0. 791
) [

ln
(
1000/0. 25

)− 0. 75 − 0. 4
]

= 30 453 Mscf/day

Step 4. Using the tabulated values of real-gas pseudopres-
sure, calculate the exact Qg by applying Equation
3.1.1:

Qg = kh
[
ψ r − ψwf

]
1422T

[
ln
(
re/rw

)− 0. 75 + s
]

=
(
65
) (

15
) (

304. 0 − 113. 1
)

106(
1422

) (
600
) [

ln
(
1000/0. 25

)− 0. 75 − 0. 4
]

= 30 536 Mscf/day

Comparing results of the two methods, the pressure-
squared approximation predicted the gas flow rate with
an average absolute error of 0.27%.

3.1.2 Gas flow under turbulent flow conditions
All of the mathematical formulations presented thus far in
this chapter are based on the assumption that laminar (vis-
cous) flow conditions are observed during the gas flow.
During radial flow, the flow velocity increases as the wellbore
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is approached. This increase of the gas velocity might cause
the development of a turbulent flow around the wellbore. If
turbulent flow does exist, it causes an additional pressure
drop similar to that caused by the mechanical skin effect.

As presented in Chapter 1 by Equations 1.2.152 through
1.2.154, the semisteady-state flow equation for compressible
fluids can be modified to account for the additional pressure
drop due to the turbulent flow by including the rate-dependent
skin factor DQg, where the term D is called the turbulent flow
factor. The resulting pseudosteady-state equations are given
in the following three forms:

(1) Pressure-squared approximation form:

Qg =
kh
(

p
2
r − p2

wf

)

1422T
(
µgZ

)
avg

[
ln
(
re/rw

)− 0. 75 + s + DQg
]

[3.1.15]

where D is the inertial or turbulent flow factor and is
given by Equation 1.2.148 as:

D = Fkh
1422T

[3.1.16]

and where the non-Darcy flow coefficient F is defined
by Equation 1.2.144 as:

F = 3. 161
(
10−12) [ βTγg

µgh2rw

]
[3.1.17]

where:

F = non-Darcy flow coefficient
k = permeability, md

T = temperature, ◦R
γg = gas gravity
rw = wellbore radius, ft
h = thickness, ft
β = turbulence parameter as given by Equation

1.2.145:
β = 1. 88(10−10)k−1.47φ−0.53

and φ is the porosity.
(2) Pressure approximation form:

Qg = 7. 08
(
10−6

)
kh
(
pr − pwf

)
(
µgBg

)
avg T

[
ln
(
re/rw

)− 0. 75 + s + DQg
]
[3.1.18]

(3) Real-gas pseudopressure form:

Qg = kh
(
ψ r − ψwf

)
1422T

[
ln
(
re/rw

)− 0. 75 + s + DQg
] [3.1.19]

Equations 3.1.15, 3.1.18, and 3.1.19 are essentially quadratic
relationships in Qg and, thus, they do not represent explicit
expressions for calculating the gas flow rate. There are two
separate empirical treatments that can be used to represent
the turbulent flow problem in gas wells. Both treatments,
with varying degrees of approximation, are directly derived
and formulated from the three forms of the pseudosteady-
state equations, i.e., Equations 3.1.15 through 3.1.17. These
two treatments are called:

(1) the simplified treatment approach;
(2) the laminar–inertial–turbulent (LIT) treatment.

These two empirical treatments of the gas flow equation are
presented below.

Simplified treatment approach
Based on the analysis for flow data obtained from a large
number of gas wells, Rawlins and Schellardt (1936) postu-
lated that the relationship between the gas flow rate and
pressure can be expressed in the pressure-squared form,

i.e., Equation 3.1.11, by including an exponent n to account
for the additional pressure drop due to the turbulent flow as:

Qg = kh
1422T

(
µgZ

)
avg

[
ln
(
re/rw

)− 0. 75 + s
] [p2

r − p2
wf ]n

Introducing the performance coefficient C into the above
equation, as defined by:

C = kh
1422T

(
µgZ

)
avg

[
ln
(
re/rw

)− 0. 75 + s
]

gives:

Qg = C[p2
r − p2

wf ]n [3.1.20]
where:

Qg = gas flow rate, Mscf/day
pr = average reservoir pressure, psi
n = exponent
C = performance coefficient, Mscf/day/psi2

The exponent n is intended to account for the additional
pressure drop caused by the high-velocity gas flow, i.e., tur-
bulence. Depending on the flowing conditions, the exponent
n may vary from 1.0 for completely laminar flow to 0.5 for
fully turbulent flow, i.e., 0. 5 ≤ n ≤ 1. 0.

The performance coefficient C in Equation 3.1.20 is
included to account for:

● reservoir rock properties;
● fluid properties;
● reservoir flow geometry.

It should be pointed out that Equation 3.1.20 is based on the
assumption that the gas flow obeys the pseudosteady-state
or the steady-state flowing condition as required by Darcy’s
equation. This condition implies that the well has established
a constant drainage radius re, and, therefore, the perfor-
mance coefficient C should remain constant. On the other
hand, during the unsteady-state (transient) flow condition,
the well drainage radius is continuously changing.

Equation 3.1.20 is commonly called the deliverability or
back-pressure equation. If the coefficients of the equation
(i.e., n and C) can be determined, the gas flow rate Qg at
any bottom-hole flow pressure pwf can be calculated and the
inflow performance relationship (IPR) curve constructed.

taking the logarithm of both sides of Equation 3.1.20 gives:

log(Qg) = log(C) + n log
(

p
2
r − p2

wf

)
[3.1.21]

Equation 3.1.21 suggests that a plot of Qg vs.
(

p
2
r − p2

wf

)
on a

log–log scale should yield a straight line having a slope of n.
In the natural gas industry, the plot is traditionally reversed
by plotting

(
p

2
r − p2

wf

)
vs. Qg on a logarithmic scale to pro-

duce a straight line with a slope of 1/n. This plot as shown
schematically in Figure 3.3 is commonly referred to as the
deliverability graph or the back-pressure plot.

The deliverability exponent n can be determined from any
two points on the straight line, i.e., (Qg1, �p2

1) and (Qg2, �p2
2),

according to the flowing expression:

n = log
(
Qg1
)− log

(
Qg2
)

log
(
�p2

1

)− log
(
�p2

2

) [3.1.22]

Given n, any point on the straight line can be used to compute
the performance coefficient C from:

C = Qg(
p

2
r − p2

wf

)n [3.1.23]

The coefficients of the back-pressure equation or any of the
other empirical equations are traditionally determined from
analyzing gas well testing data. Deliverability testing has
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log (Qg)

Figure 3.3 Well deliverability graph.

been used for more than 60 years by the petroleum industry
to characterize and determine the flow potential of gas wells.
There are essentially three types of deliverability tests:

(1) conventional deliverability (back-pressure) test;
(2) isochronal test;
(3) modified isochronal test.

These tests basically consist of flowing wells at multiple rates
and measuring the bottom-hole flowing pressure as a func-
tion of time. When the recorded data is properly analyzed,
it is possible to determine the flow potential and establish
the inflow performance relationships of the gas well. The
deliverability test is discussed later in this chapter for the
purpose of introducing basic techniques used in analyzing
the test data.

Laminar–inertial–turbulent (LIT) approach
Essentially, this approach is based on expressing the total
pressure drop in terms of the pressure drop due to Darcy’s
(laminar) flow and the additional pressure drop due to the
turbulent flow. That is:

(�p)Total = (�p)Laminar Flow + (�p)Turbulent Flow

The three forms of the semisteady-state equation as pre-
sented by Equations 3.1.15, 3.1.18, and 3.1.19, i.e., the
pseudopressure, pressure-squared, and pressure approach,
can be rearranged in quadratic forms for the purpose of
separating the “laminar” and “inertial–turbulent” terms and
composing these equations as follows
Pressure-squared quadratic form Equation 3.1.15 can be
written in a more simplified form as:

Qg =
kh
(

p
2
r − p2

wf

)

1422T
(
µgZ

)
avg

[
ln
(
re/rw

)− 0. 75 + s + DQg
]

Rearranging this equation gives:

p
2
r − p2

wf = aQg + bQ2
g [3.1.24]

with:

a =
(

1422TµgZ
kh

)[
ln
(

re

rw

)
− 0. 75 + s

]
[3.1.25]

b =
(

1422TµgZ
kh

)
D [3.1.26]

where:

a = laminar flow coefficient
b = inertial–turbulent flow coefficient

Qg = gas flow rate, Mscf/day
Z = gas deviation factor
k = permeability, md

µg = gas viscosity, cp

Gas Flow Rate Qg

Slope = b

Intercept = a

0
0

Figure 3.4 Graph of the pressure-squared data.

Equation 3.1.24 indicates that the first term on the right-
hand side of the equation (i.e., aQg) represents the pressure
drop due to laminar (Darcy) flow while the second term
represents aQ2

g, the pressure drop due to the turbulent flow.
The term aQg in Equation 3.1.26 represents the pressure-

squared drop due to laminar flow while the term bQ2
g

accounts for the pressure-squared drop due to inertial–
turbulent flow effects.

Equation 3.1.24 can be liberalized by dividing both sides
of the equation by Qg, to yield:

p
2
r − p2

wf

Qg
= a + bQg [3.1.27]

The coefficients a and b can be determined by plotting(
p

2
r − p2

wf /2
)

vs. Qg on a Cartesian scale and should yield a
straight line with a slope of b and intercept of a. As presented
later in this chapter, data from deliverability tests can be used
to construct the linear relationship as shown schematically
in Figure 3.4.

Given the values of a and b, the quadratic flow equation,
i.e., Equation 3.1.24, can be solved for Qg at any pwf from:

Qg =
−a +

√
a2 + 4b

(
p

2
r − p2

wf

)

2b
[3.1.28]

Furthermore, by assuming various values of pwf and calculat-
ing the corresponding Qg from Equation 3.1.28, the current
IPR of the gas well at the current reservoir pressure pr can
be generated.

It should be pointed out that the following assumptions
were made in developing Equation 3.1.24:

(1) single-phase flow;
(2) a homogeneous and isotropic reservoir;
(3) the permeability is independent of pressure;
(4) the product of the gas viscosity and compressibility

factor, i.e., (µgZ ), is constant.

This method is recommended for applications at pressures
below 2000 psi.
Pressure quadratic form The pressure approximation
equation, i.e., Equation 3.1.18, can be rearranged and
expressed in the following quadratic form:

Qg = 7. 08
(
10−6

)
kh
(
pr − pwf

)
(
µgBg

)
avg T

[
ln
(
re/rw

)− 0. 75 + s + DQg
]
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Gas Flow Rate Qg
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Intercept = a1

0
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Figure 3.5 Graph of the pressure method data.

Rearranging gives:
pr − pwf = a1Qg + b1Q2

g [3.1.29]

where:

a1 = 141. 2
(
10−3

) (
µgBg

)
kh

[
ln
(

re

rw

)
− 0. 75 + s

]
[3.1.30]

b1 =
[

141. 2
(
10−3

) (
µgBg

)
kh

]
D [3.1.31]

The term a1Qg represents the pressure drop due to laminar
flow, while the term b1Q2

g accounts for the additional pres-
sure drop due to the turbulent flow condition. In a linear
form, Equation 3.17 can be expressed as:
pr − pwf

Qg
= a1 + b1Qg [3.1.32]

The laminar flow coefficient a1 and inertial–turbulent flow
coefficient b1 can be determined from the linear plot of the
above equation as shown in Figure 3.5.

Once the coefficients a1 and b1 are determined the gas
flow rate can be determined at any pressure from:

Qg =
−a1 +

√
a2

1 + 4b1
(
pr − pwf

)
2b1

[3.1.33]

The application of Equation 3.1.29 is also restricted by the
assumptions listed for the pressure-squared approach. How-
ever, the pressure method is applicable at pressures higher
than 3000 psi.
Pseudopressure quadratic approach The pseudopressure
equation has the form:

Qg = kh
(
ψ r − ψwf

)
1422T

[
ln
(
re/rw

)− 0. 75 + s + DQg
]

This expression can be written in a more simplified form as:
ψ r − ψwf = a2Qg + b2Q2

g [3.1.34]

where:

a2 =
(

1422
kh

)[
ln
(

re

rw

)
− 0. 75 + s

]
[3.1.35]

b2 =
(

1422
kh

)
D [3.1.36]

The term a2Qg in Equation 3.1.34 represents the pseudopres-
sure drop due to laminar flow while the term b2Q2

g accounts
for the pseudopressure drop due to inertial–turbulent flow
effects.

Intercept = a2

Slope = b2

Gas Flow Rate Qg
0

Figure 3.6 Graph of real-gas pseudopressure data.

Equation 3.1.34 can be liberalized by dividing both sides
of the equation by Qg, to yield:

ψ r − ψwf

Qg
= a2 + b2Qg [3.1.37]

The above expression suggests that a plot of
(
ψ r − ψwf /Qg

)
vs. Qg on a Cartesian scale should yield a straight line with
a slope of b2 and intercept of a2 as shown in Figure 3.6.

Given the values of a2 and b2, the gas flow rate at any pwf
is calculated from:

Qg =
−a2 +

√
a2

2 + 4b2
(
ψ r − ψwf

)
2b2

[3.1.38]

It should be pointed out that the pseudopressure approach is
more rigorous than either the pressure-squared or pressure
method and is applicable to all ranges of pressure.

In the next subsection, the back-pressure test is intro-
duced. However, the material is intended only to be an
introduction. There are several excellent books by the fol-
lowing authors that address transient flow and well testing
in great detail:

● Earlougher (1977);
● Matthews and Russell (1967);
● Lee (1982);
● Canadian Energy Resources Conservation Board (ERCB)

(1975).

3.1.3 Back-pressure test
Rawlins and Schellhardt (1936) proposed a method for test-
ing gas wells by gauging the ability of the well to flow against
particular pipeline back-pressures greater than atmospheric
pressure. This type of flow test is commonly referred to as
the “conventional deliverability test.” The required proce-
dure for conducting this back-pressure test consists of the
following steps:

Step 1. Shut in the gas well sufficiently long for the forma-
tion pressure to equalize at the volumetric average
pressure pr .

Step 2. Place the well on production at a constant flow rate
Qg1 for a sufficient time to allow the bottom-hole
flowing pressure to stabilize at pwf1, i.e., to reach the
pseudosteady state.

Step 3. Repeat step 2 for several rates and record the stabi-
lized bottom-hole flow pressure at each correspond-
ing flow rate. If three or four rates are used, the test
may be referred to as a three-point or four-point flow
test.
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Figure 3.7 Conventional back-pressure test.

The rate and pressure history of a typical four-point test is
shown in Figure 3.7. The figure illustrates a normal sequence
of rate changes where the rate is increased during the test.
Tests may also be run, however, using a reverse sequence.
Experience indicates that a normal rate sequence gives bet-
ter data in most wells. The most important factor to be
considered in performing the conventional deliverability test
is the length of the flow periods. It is required that each rate
be maintained sufficiently long for the well to stabilize, i.e., to
reach the pseudosteady state. The pseudosteady-state time
is defined as the time when the rate of change of pressure
with respect to time, i.e., dp/dt, is constant through the reser-
voir at a constant flow rate. This stabilization time for a well
in the center of a circular or square drainage area may be
estimated from:

tpss = 15. 8φµgictiA
k

[3.1.39]

with:
cti = Swcwi + (1 − Sw)cgi + cf

where:

tpss = stabilization (pseudosteady-state) time, days
cti = total compressibility coefficient at initial pressure,

psi−1

cwi = water compressibility coefficient at initial pressure,
psi−1

cf = formation compressibility coefficient, psi−1

cgi = gas compressibility coefficient at initial pressure,
psi−1

φ = porosity, fraction
µg = gas viscosity, cp

k = effective gas permeability, md
A = drainage area, ft2

In order to properly apply Equation 3.1.39, the fluid prop-
erties and system compressibility must be determined at
the average reservoir pressure. However, evaluating these
parameters at initial reservoir pressure has been found to
provide a good first-order approximation of the time required
to reach the pseudosteady-state condition and establish a
constant drainage area. The recorded bottom-hole flowing
pressure pwf versus flow rate Qg can be analyzed in several
graphical forms to determine the coefficients of the selected
flow gas flow equation. That is:

Back-pressure equation log(Qg)= log(C)+nlog(p
2
r −p2

wf )

Pressure-squared equation p
2
r − p2

wf = aQg + bQ2
g

Pressure equation
pr − pwf

Qg
= a1 + b1Qg

Pseudopressure equation ψ r − ψwf = a2Qg + b2Q2
g

The application of the back-pressure test data to determine
the coefficients of any of the empirical flow equations is
illustrated in the following example.

Example 3.2 A gas well was tested using a three-point
conventional deliverability test with an initial average reser-
voir pressure of 1952 psi. The recorded data during the test
is given below:

pwf (psia) m(pwf ) = ψwf (psi2/cp) Qg (Mscf/day)

1952 316 × 106 0
1700 245 × 106 2624.6
1500 191 × 106 4154.7
1300 141 × 106 5425.1

Figure 3.8 shows the gas pseudopressure ψ as a function of
pressure. Generate the current IPR by using the following
methods.

(a) simplified back-pressure equation;
(b) laminar–inertial–turbulent (LIT) methods:

(i) pressure-squared approach, Equation 3.1.29
(ii) pressure approach, Equation 3.1.33

(iii) pseudopressure approach, Equation 3.1.26;
(c) compare results of the calculation.

Solution

(a) Back-pressure equation:

Step 1. Prepare the following table:

pwf p2
wf (p

2
r − p2

wf ) Qg
(psi2 × 103) (psi2 × 103) (Mscf/day)

pr = 1952 3810 0 0
1700 2890 920 2624.6
1500 2250 1560 4154.7
1300 1690 2120 5425.1
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Figure 3.8 Real-gas potential versus pressure.
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Figure 3.9 Back-pressure curve.

Step 2. Plot (p
2
r − p2

wf ) vs. Qg on a log–log scale as shown in
Figure 3.9. Draw the best straight line through the
points.

Step 3. Using any two points on the straight line, calculate
the exponent n from Equation 3.1.22, as:

n = log
(
Qg1
)− log

(
Qg2
)

log
(
�p2

1

)− log
(
�p2

2

)

= log(4000) − log(1800)
log(1500) − log(600)

= 0. 87

Step 4. Determine the performance coefficient C from
Equation 3.1.23 by using the coordinate of any point
on the straight line, or:

C = Qg(
p

2
r − p2

wf

)n

= 1800
(600 000)0.87 = 0. 0169 Mscf/psi2

Step 5. The back-pressure equation is then expressed as:

Qg = 0. 0169(3 810 000 − p2
wf )

0.87

Step 6. Generate the IPR data by assuming various values of
pwf and calculate the corresponding Qg:

pwf Qg (Mscf/day)

1952 0
1800 1720
1600 3406
1000 6891
500 8465
0 8980

where the absolute open flow potential AOF =
(Qg)max = 8980 Mscf/day.

(b) LIT method:

(i) Pressure-squared method:

Step 1. Construct the following table:

pwf (p
2
r − p2

wf ) Qg (p
2
r − p2

wf )/Qg
(psi2 × 103) (Mscf/day)

pr = 1952 0 0 –
1700 920 2624.6 351
1500 1560 4154.7 375
1300 2120 5425.1 391

Step 2. Plot (p
2
r − p2

wf )/Qg vs. Qg on a Cartesian scale and
draw the best straight line as shown in Figure 3.10.

Step 3. Determine the intercept and the slope of the straight
line, to give:

intercept a = 318

slope b = 0. 01333

Step 4. The quadratic form of the pressure-squared
approach is given by Equation 3.1.24 as:

p
2
r − p2

wf = aQg + bQ2
g

(3 810 000 − p2
wf ) = 318Qg + 0. 01333Q2

g
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Figure 3.10 Pressure-squared method.

Step 5. Construct the IPR data by assuming various values
of pwf and solving for Qg by using Equation 3.1.28:

pwf (p
2
r − p2

wf ) Qg
psi2 × 103 (Mscf/day)

1952 0 0
1800 570 1675
1600 1250 3436
1000 2810 6862
500 3560 8304
0 3810 8763 = AOF = (Qg)max

(ii) Pressure method:

Step 1. Construct the following table:

pwf (pr − pwf ) Qg (Mscf/day) ( pr − pwf )/Qg

pr = 1952 0 0 –
1700 252 262.6 0.090
1500 452 4154.7 0.109
1300 652 5425.1 0.120

Step 2. Plot (pr − pwf )/Qg vs. Qg on a cartesan scale as
shown in Figure 3.11. Draw the best straight line
and determine the intercept and slope as:

intercept a1 = 0. 06

slope b1 = 1. 111 × 10−5

Step 3. The quadratic form of the pressure method is then
given by:

pr − pwf = a1Qg + b1Q2
g

or:

(1952 − pwf ) = 0. 06Qg + (1. 111 × 10−5)Q2
g

Step 4. Generate the IPR data by applying Equation 3.1.33:

pwf ( pr − pwf ) Qg (Mscf/day)

1952 0 0
1800 152 1879
1600 352 3543
1000 952 6942
500 1452 9046
0 1952 10 827

(iii) Pseudopressure approach:

Step 1. Construct the following table:

pwf ψ (psi2/ (ψ r − ψwf ) Qg (Mscf/ (ψ r − ψwf )/
cp) day) Qg

pr 316 × 106 0 0 –
= 1952

1700 245 × 106 71 × 106 262.6 27. 05 × 103

1500 191 × 106 125 × 106 4154.7 30. 09 × 103

1300 141 × 106 175 × 106 5425.1 32. 26 × 103

Step 2. Plot (ψ r − ψwf )/Qg on a Cartesian scale as shown
in Figure 3.12 and determine the intercept a2 and
slope b2 as:

a2 = 22. 28 × 103

b2 = 1. 727

Step 3. The quadratic form of the gas pseudopressure
method is given by Equation 3.1.34:

ψ r − ψwf = a2Qg + b2Q2
g

(316 × 106 − ψwf ) = 22. 28 × 103Qg + 1. 727Q2
g
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Figure 3.11 Pressure approximation method.
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Figure 3.12 Pseudopressure method.

Step 4. Generate the IPR data by assuming various values
of pwf , i.e., ψwf , and calculating the corresponding
Qg from Equation 3.1.38:

pwf m(p) or ψ ψ r − ψwf Qg (Mscf/day)

1952 316 × 106 0 0
1800 270 × 106 46 × 106 1794
1600 215 × 106 101 × 106 3503
1000 100 × 106 216 × 106 6331
500 40 × 106 276 × 106 7574
0 0 316 × 106 8342 = AOF (Qg)max

(c) Compare the gas flow rates as calculated by the
four different methods. Results of the IPR calculation are

documented below:

Gas flow rate (Mscf/day)

Pressure Back- p2 approach p approach ψ approach
pressure

1952 0 0 0 0
1800 1720 1675 1879 1811
1600 3406 3436 3543 3554
1000 6891 6862 6942 6460
500 8465 8304 9046 7742
0 8980 8763 10 827 8536

6.0% 5.4% 11% –
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Figure 3.13 IPR for all methods.

Since the pseudopressure analysis is considered more accu-
rate and rigorous than the other three methods, the accuracy
of each of the methods in predicting the IPR data is com-
pared with that of the ψ approach. Figure 3.13 compares
graphically the performance of each method with that of
the ψ approach. Results indicate that the pressure-squared
equation generated the IPR data with an absolute average
error of 5.4% as compared with 6% and 11% for the back-
pressure equation and the pressure approximation method,
respectively.

It should be noted that the pressure approximation
method is limited to applications for pressures greater than
3000 psi.

3.1.4 Future inflow performance relationships
Once a well has been tested and the appropriate deliverabil-
ity or inflow performance equation established it is essential
to predict the IPR data as a function of average reservoir
pressure. The gas viscosity µg and gas compressibility fac-
tor Z are considered the parameters that are subject to the
greatest change as reservoir pressure pr changes.

Assume that the current average reservoir pressure is pr1,
with gas viscosity of µg1 and compressibility factor of Z1. At
a selected future average reservoir pressure pr2, µg2 and
Z2 represent the corresponding gas properties. To approxi-
mate the effect of reservoir pressure changes, i.e., from pr1
to pr2, on the coefficients of the deliverability equation, the
following methodology is recommended.

Back-pressure equation
Recall the back-pressure equation:

Qg = C[p2
r − p2

wf ]n

where the coefficient C describes the gas and reservoir
properties by:

C = kh
1422T

(
µgZ

)
avg

[
ln
(
re/rw

)− 0. 75 + s
]

The performance coefficient C is considered a pressure-
dependent parameter and should be adjusted with each
change of the reservoir pressure. Assuming that the reser-
voir pressure has declined from pr1 to pr2, the performance
coefficient at p1 can be adjusted to reflect the pressure drop
by applying the following simple approximation:

C2 = C1

[
µg1Z1

µg2Z2

]
[3.1.40]

The value of n is considered essentially constant. Subscripts
1 and 2 refer to the properties at pr1 and pr2.

LIT methods
The laminar flow coefficients a and the inertial–turbulent
flow coefficient b of any of the previous LIT methods, i.e.,
Equations 3.1.24, 3.1.29, and 3.1.34, are modified according
to the following simple relationships:
Pressure-squared method The pressure-squared equation
is written as:

p
2
r − p2

wf = aQg + bQ2
g

The coefficients of the above expression are given by:

a =
(

1422TµgZ
kh

)[
ln
(

re

rw

)
− 0. 75 + s

]

b =
(

1422TµgZ
kh

)
D

Obviously the coefficients a and b are pressure depen-
dent and should be modified to account for the change
of the reservoir pressure from pr1 to pr2. The proposed
relationships for adjusting the coefficients are as follows:

a2 = a1

[
µg2Z2

µg1Z1

]
[3.1.41]

b2 = b1

[
µg2Z2

µg1Z1

]
[3.1.42]
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where the subscripts 1 and 2 represent conditions at reser-
voir pressures pr1 to pr2, respectively.

Pressure approximation method The pressure approxima-
tion equation for calculating the gas rate is given by:

pr − pwf = a1Qg + b1Q2
g

with:

a1 = 141. 2
(
10−3

) (
µgBg

)
kh

[
ln
(

re

rw

)
− 0. 75 + s

]

b1 =
[

141. 2
(
10−3

) (
µgBg

)
kh

]
D

The recommended methodology for adjusting the coeffi-
cients a and b is based on applying the following simple two
expressions:

a2 = a1

[
µg2Bg2

µg1Bg1

]
[3.1.43]

b2 = b1

[
µg2Bg2

µg1Bg1

]
[3.1.44]

where Bg is the gas formation volume factor in bbl/scf.

Pseudopressure approach Recall the pseudopressure
equation:

ψ r − ψwf = a2Qg + b2Q2
g

The coefficients are described by:

a2 =
(

1422
kh

)[
ln
(

re

rw

)
− 0. 75 + s

]

b2 =
(

1422
kh

)
D

Note that the coefficients a and b of the pseudopressure
approach are essentially independent of the reservoir pres-
sure and can be treated as constants.

Example 3.3 In addition to the data given in Example 3.2,
the following information is available.

● (µgZ ) = 0. 01206 at 1952 psi;
● (µgZ ) = 0. 01180 at 1700 psi.

Using the following methods:

(a) backpressure equation,
(b) pressure-squared equation, and
(c) pseudopressure equation

generate the IPR data for the well when the reservoir
pressure drops from 1952 to 1700 psi.

Solution

Step 1. Adjust the coefficients a and b of each equation.

● For the back-pressure equation: Adjust C by using
Equation 3.1.40:

C2 = C1

[
µg1Z1

µg2Z2

]

C = 0. 0169
(

0. 01206
0. 01180

)
= 0. 01727

and therefore the future gas flow rate is
expressed by:

Qg = 0. 01727
(
17002 − p2

wf

)0.87

● Pressure-squared method: Adjust a and b by
applying Equations 3.1.41 and 3.1.42:

a2 = a1

[
µg2Bg2

µg1Bg1

]

a = 318
(

0. 01180
0. 01206

)
= 311. 14

b2 = b1

[
µg2Bg2

µg1Bg1

]

b = 0. 01333
(

0. 01180
0. 01206

)
= 0. 01304

(
17002 − p2

wf

) = 311. 14Qg + 0. 01304Q2
g

● Pseudopressure method: No adjustments are
needed because the coefficients are independent
of the pressure:
(
245 × 106 − ψwf

) = 22. 28 × 103Qg + 1. 727Q2
g

Step 2. Generate the IPR data:

Gas flow rate Qg (Mscf/day)

pwf Back-pressure p2 method ψ method

pr = 1700 0 0 0
1600 1092 1017 1229
1000 4987 5019 4755
500 6669 6638 6211
0 7216 7147 7095

Figure 3.14 compares graphically the IPR data as
predicted by the above three methods.

It should be pointed out that all the various well tests and
inflow performance relationships previously discussed are
intended to evaluate the formation capacity to deliver gas to
the wellbore for a specified average reservoir pressure pr and
a bottom-hole flowing pressure pwf . The volume of gas which
can actually be delivered to the surface will also depend on
the surface tubing head pressure pt and the pressure drop
from the wellbore to the surface due to the weight of the gas
column and friction loss through the tubing. Cullender and
Smith (1956) described the pressure loss by the following
expression:

p2
wf = eSp2

t + L
H

(FrQgT Z )2(eS − 1)

with:

S = 0. 0375γgH

T Z

Fr = 0. 004362
d0.224 when d ≤ 4. 277 inches

Fr = 0. 004007
d0.164 when d > 4. 277 inches

where:

pwf = bottom-hole flowing pressure, psi
pt = tubing head (wellhead) pressure, psi

Qg = gas flow rate, Mscf/day
L = actual tubing flow length, ft
H = vertical depth of the well to midpoint of

perforation, ft
T = arithmetic average temperature, i.e., (Tt+Tb)/2, ◦R
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Figure 3.14 IPR comparison.

Tt = tubing head temperature, ◦R
Tb = wellbore temperature, ◦R
Z = gas deviation factor at arithmetic average pressure,

i.e., (pt + pwf )/2
Fr = friction factor for tubing ID
d = inside tubing diameter, inches

γg = specific gravity of the gas

The Cullender and Smith equation can be combined with the
back-pressure equation by the gas flow rate Qg to give:

p2
wf − eSp2

t
L
H (FrT Z )2(eS − 1)

= C(p2
r − p2

wf )
2n

This equation must be satisfied iteratively be solving for the
pwf which satisfy the equality. The correct value of pwf can
then be used to establish the gas deliverability of the well.

3.2 Horizontal Gas Well Performance

Many low-permeability gas reservoirs are historically con-
sidered to be non-commercial due to low production rates.
Most vertical wells drilled in tight gas reservoirs are stimu-
lated using hydraulic fracturing and/or acidizing treatments
to attain economical flow rates. In addition, to deplete a tight
gas reservoir, vertical wells must be drilled at close spac-
ing to efficiently drain the reservoir. This would require a
large number of vertical wells. In such reservoirs, horizontal
wells provide an attractive alternative to effectively deplete
tight gas reservoirs and attain high flow rates. Joshi (1991)
pointed out that horizontal wells are applicable in both low-
permeability reservoirs as well as in high-permeability reser-
voirs. The excellent reference textbook by Joshi (1991) gives
a comprehensive treatment of horizontal well performance
in oil and gas reservoirs.

In calculating the gas flow rate from a horizontal well,
Joshi (1991) introduced the concept of the effective wellbore
radius r\

w into the gas flow equation. The effective wellbore

radius is given by:

r\
w = reh

(
L/2

)

a
[

1 +
√

1 − (L/2a
)2] [h/(2rw)

]h/L
[3.2.1]

with:

a =
(

L
2

)[
0. 5 +

√
0. 25 + (2reh/L

)4]0.5

[3.2.2]

and:

reh =
√

43 560A
π

[3.2.3]

where:

L = length of the horizontal well, ft
h = thickness, ft

rw = wellbore radius, ft
reh = horizontal well drainage radius, ft

a = half the major axis of the drainage ellipse, ft
A = drainage area of the horizontal well, acres

For a pseudosteady-state flow, Joshi (1991) expressed
Darcy’s equation of a laminar flow in the following two
familiar forms:

(1) Pressure-squared form:

Qg =
kh
(

p
2
r − p2

wf

)

1422T
(
µgZ

)
avg

[
ln
(

reh/r\
w

)
− 0. 75 + s

] [3.2.4]

where:

Qg = gas flow rate, Mscf/day
s = skin factor
k = permeability, md

T = temperature, ◦R
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(2) Pseudo-pressure form:

Qg = kh
(
ψ r − ψwf

)
1422T

[
ln
(

reh/r\
w

)
− 0. 75 + s

] [3.2.5]

Example 3.4 A horizontal gas well 2000 foot long is drain-
ing an area of approximately 120 acres. The following data
is available.

pr = 2000 psi, ψ r = 340 × 106 psi2/cp

pwf = 1200 psi, ψwf = 128 × 106 psi2/cp

(µgZ )avg = 0. 011826, rw = 0. 3 ft, s = 0. 5

h = 20 ft, T = 180◦F, k = 1. 5 md
Assuming a pseudosteady-state flow, calculate the gas flow
rate by using the pressure-squared and pseudopressure
methods.

Solution

Step 1. Calculate the drainage radius of the horizontal well:

reh =
√(

43 560
) (

120
)

π
= 1290 ft

Step 2. Calculate half the major axis of the drainage ellipse
by using Equation 3.2.2:

a =
[

2000
2

]0. 5 +
√√√√0. 25 +

[(
2
) (

1290
)

2000

]4



0.5

= 1495. 8

Step 3. Calculate the effective wellbore radius r\
w from

Equation 3.2.1:

(
h/2rw

)h/L =
[

20(
2
)(

0.3
)
]20/2000

=1.0357

1+
√

1−
(

L
2a

)2

=1+
√

1−
(

2000
2(1495.8)

)2

=1.7437

Applying Equation 3.2.1 gives:

r\
w = 1290

(
2000/2

)
1495. 8

(
1. 7437

) (
1. 0357

) = 477. 54 ft

Step 4. Calculate the flow rate by using the pressure-
squared approximation approach by using
Equation 3.2.4:

Qg =
(
1. 5
) (

20
) (

20002 − 12002
)

(
1422

) (
640
) (

0. 011826
) [

ln
(

1290
477. 54

)
− 0. 75 + 0. 5

]

= 9594 Mscf/day

Step 5. Calculate the flow rate by using the ψ approach as
described by Equation 3.2.5:

Qg =
(
1. 5
) (

20
) (

340 − 128
) (

106
)

(
1422

) (
640
) [

ln
(

1290
477. 54

)
− 0. 75 + 0. 5

]

= 9396 Mscf/day

For turbulent flow, Darcy’s equation must be modified to
account for the additional pressure caused by the non-Darcy
flow by including the rate-dependent skin factor DQg. In prac-
tice, the back-pressure equation and the LIT approach are
used to calculate the flow rate and construct the IPR curve for

the horizontal well. Multirate tests, i.e., deliverability tests,
must be performed on the horizontal well to determine the
coefficients of the selected flow equation.

3.3 Material Balance Equation for Conventional and
Unconventional Gas Reservoirs

Reservoirs that initially contain free gas as the only hydro-
carbon system are termed gas reservoirs. Such a reservoir
contains a mixture of hydrocarbon components that exists
wholly in the gaseous state. The mixture may be a “dry,”
“wet,” or “condensate” gas, depending on the composition
of the gas and the pressure and temperature at which the
accumulation exists.

Gas reservoirs may have water influx from a contiguous
water-bearing portion of the formation or may be volumetric
(i.e., have no water influx).

Most gas engineering calculations involve the use of gas
formation volume factor Bg and gas expansion factor Eg. The
equations for both these factors are summarized below for
convenience.

● Gas formation volume factor Bg is defined as the volume
occupied by n moles of gas at certain pressure p and
temperature T to that occupied at standard conditions.
Applying the real-gas equation of state to both conditions
gives:

Bg = psc

Tsc

ZT
p

= 0. 02827
ZT
p

ft3/scf [3.3.1]

Expressing Bg in bb/scf gives:

Bg = psc

5. 616Tsc

ZT
p

= 0. 00504
ZT
p

bbl/scf

● The gas expansion factor is simply the reciprocal of Bg, or:

Eg = 1
Bg

= Tsc

psc

p
ZT

= 35. 37
p

ZT
scf/ft3 [3.3.2]

Expressing Eg in scf/bbl gives

Eg = 5. 615Tsc

psc

p
ZT

= 198. 6
p

ZT
scf/bbl

One of the primary concerns when conducting a reservoir
study on a gas field is the determination of the initial gas-
in-place G. There are commonly two approaches that are
extensively used in natural gas engineering:

(1) the volumetric method;
(2) the material balance approach.

3.3.1 The volumetric method
Data used to estimate the gas-bearing reservoir pore volume
(PV) include, but are not limited to, well logs, core analyses,
bottom-hole pressure (BHP) and fluid sample information,
and well tests. This data typically is used to develop vari-
ous subsurface maps. Of these, structural and stratigraphic
cross-sectional maps help to establish the reservoir’s areal
extent and to identify reservoir discontinuities such as pinch-
outs, faults, or gas–water contacts. Subsurface contour maps,
usually drawn relative to a known or marker formation, are
constructed with lines connecting points of equal elevation
and therefore portray the geologic structure. Subsurface
isopachous maps are constructed with lines of equal net
gas-bearing formation thickness. With these maps, the reser-
voir PV can then be estimated by planimetering the areas
between the isopachous lines and using an approximate vol-
ume calculation technique, such as pyramidal or trapezoidal
methods.

The volumetric equation is useful in reserve work for esti-
mating gas-in-place at any stage of depletion. During the
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development period before reservoir limits have been accu-
rately defined, it is convenient to calculate gas-in-place per
acre-foot of bulk reservoir rock. Multiplication of this unit
figure by the best available estimate of bulk reservoir vol-
ume then gives gas-in-place for the lease, tract, or reservoir
under consideration. Later in the life of the reservoir, when
the reservoir volume is defined and performance data is
available, volumetric calculations provide valuable checks
on gas-in-place estimates obtained from material balance
methods.

The equation for calculating gas-in-place is:

G = 43 560Ahφ
(
1 − Swi

)
Bgi

[3.3.3]

with:

Bgi = 0. 02827
ZiT
pi

ft3/scf

where:

G = gas-in-place, scf
A = area of reservoir, acres
h = average reservoir thickness, ft
φ = porosity

Swi = water saturation
Bgi = gas formation volume factor at initial pressure

pi , ft3/scf.

This equation can be applied at the initial pressure pi and at
a depletion pressure p in order to calculate the cumulative
gas production Gp:

Gas produced = initial gas in place − remaining gas

Gp = 43 560Ahφ
(
1 − Swi

)
Bgi

− 43 560Ahφ
(
1 − Swi

)
Bg

or

Gp = 43 560Ahφ
(
1 − Swi

) ( 1
Bgi

− 1
Bg

)

Rearranging gives:

1
Bg

= 1
Bgi

−
[

1
43 560Ahφ

(
1 − Swi

)
]

Gp

From the definition of the gas expansion factor Eg, i.e.,
Eg = 1/Bg, the above form of the material balance equation
can be expressed as:

Eg = Egi −
[

1
43 560Ahφ

(
1 − Swi

)
]

Gp

or:

Eg = Egi −
[

1
(pv)

(
1 − Swi

)
]

Gp

This relationship indicates that a plot of Eg vs. Gp will produce
a straight line with an intercept on the x axis with a value of Egi
and on the y axis with a value that represents the initial gas-
in-place. Note that when p = 0, the gas expansion factor is
also zero, Eg = 0, and that will reduce the above equation to:

Gp = (pore volume)
(
1 − Swi

)
Egi = G

The same approach can be applied at both initial and aban-
donment conditions in order to calculate the recoverable
gas.

Applying Equation 3.3.3 to the above expression gives:

Gp = 43 560Ahφ
(
1 − Swi

)
Bgi

− 43 560Ahφ
(
1 − Swi

)
Bga

or:

Gp = 43 560Ahφ
(
1 − Swi

) ( 1
Bgi

− 1
Bga

)
[3.3.4]

where Bga is evaluated at abandonment pressure. Applica-
tion of the volumetric method assumes that the pore volume
occupied by gas is constant. If water influx is occurring, A,
h, and Sw will change.

Example 3.5 A gas reservoir has the following character-
istics:

A = 3000 acres, h = 30 ft, φ = 0. 15, Swi = 20%

T = 150◦F, pi = 2600 psi, Zi = 0. 82

p Z

2600 0.82
1000 0.88

400 0.92

Calculate the cumulative gas production and recovery factor
at 1000 and 400 psi.

Solution

Step 1. Calculate the reservoir PV:

PV = 43 560Ahφ

= 43 560(3000)(30)(0. 15) = 588. 06 MMft3

Step 2. Calculate Bg at every given pressure by using
Equation 3.3.1:

Bg = 0. 02827
ZT
p

ft3/scf

p Z Bg (ft3/scf )

2600 0.82 0.0054
1000 0.88 0.0152

400 0.92 0.0397

Step 3. Calculate initial gas-in-place at 2600 psi:

G = 43 560Ahφ
(
1 − Swi

)
Bgi

= (PV)
(
1 − Swi

)
Bgi

= 588. 06(106)(1 − 0. 2)/0. 0054 = 87. 12 MMMscf

Step 4. Since the reservoir is assumed volumetric, calculate
the remaining gas at 1000 and 400 psi.
Remaining gas at 1000 psi:

G1000 psi = (PV)
(
1 − Swi

)
(Bg)1000 psi

= 588. 06(106)n(1 − 0. 2)/0. 0152

= 30. 95 MMMscf

Remaining gas at 400 psi:

G400 psi = (PV)
(
1 − Swi

)
(Bg)400 psi

= 588. 06(106)(1 − 0. 2)/0. 0397

= 11. 95 MMMscf

Step 5. Calculate cumulative gas production Gp and the
recovery factor RF at 1000 and 400 psi.
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At 1000 psi:
Gp = (G − G1000 psi) = (87. 12 − 30. 95) × 109

= 56. 17 MMMscf

RF = 56. 17 × 109

87. 12 × 109 = 64. 5%

At 400 psi:
Gp = (G − G400 psi) = (87. 12 − 11. 95) × 109

= 75. 17 MMMscf

RF = 75. 17 × 109

87. 12 × 109 = 86. 3%

The recovery factors for volumetric gas reservoirs will range
from 80% to 90%. If a strong water drive is present, trapping
of residual gas at higher pressures can reduce the recovery
factor substantially, to the range of 50% to 80%.

3.3.2 The material balance method
Material balance is one of the fundamental tools of reser-
voir engineering. Pletcher (2000) presented excellent doc-
umentation of the material balance equation in its vari-
ous forms and discussed some procedures of improving
their performances in predicting gas reserves. If enough
production–pressure history is available for a gas reservoir
in terms of:

● cumulative gas production Gp as a function of pressure,
● gas properties as a function of pressure at reservoir

temperature, and
● the initial reservoir pressure, pi ,

then the gas reserves can be calculated without knowing the
areal extend of the reservoir or the drainage area of the well
A, thickness h, porosity φ, or water saturation Sw. This can
be accomplished by forming a mass or mole balance on the
gas, as:
np = ni − nf [3.3.5]
where:

np = moles of gas produced
ni = moles of gas initially in the reservoir
nf = moles of gas remaining in the reservoir

Representing the gas reservoir by an idealized gas container,
as shown schematically in Figure 3.15, the gas moles in
Equation 3.3.5 can be replaced by their equivalents using
the real-gas law, to give:

np = pscGp

ZscRTsc

ni = piV
ZRT

nf = p
[
V − (We − BwWp

)]
ZRT

Substituting the above three relationships into Equation 3.3.5
and knowing Zsc = 1 gives:

pscGp

RTsc
= piV

ZRT
− p

[
V − (We − BwWp

)]
ZRT

[3.3.6]

where:
pi = initial reservoir pressure

Gp = cumulative gas production, scf
p = current reservoir pressure

V = original gas volume, ft3

Zi = gas deviation factor at pi

V V

pi

p
Gp, Wp

We – WpBw

Figure 3.15 Idealized water-drive gas reservoir.

Z = gas deviation factor at p
T = temperature, ◦R

We = cumulative water influx, ft3

Wp = cumulative water production, stock-tank ft3

Equation 3.3.6 is essentially the general material balance
equation (MBE). It can be expressed in numerous forms
depending on the type of the application and the driving
mechanism. In general, dry gas reservoirs can be classified
into two categories:

(1) volumetric gas reservoirs;
(2) water drive gas reservoirs.

These two types of gas reservoirs are presented next.

3.3.3 Volumetric gas reservoirs
For a volumetric reservoir and assuming no water produc-
tion, Equation 3.3.6 is reduced to:
pscGp

Tsc
=
(

pi

ZiT

)
V −

(
p

ZT

)
V [3.3.7]

Equation 3.3.7 is commonly expressed in the following two
forms:

(1) in terms of p/Z ;
(2) in terms of Bg.

The above two forms of the MBE for volumetric gas reser-
voirs are discussed below.

Form 1: MBE as expressed in terms of p/Z
Rearranging Equation 3.1.7 and solving for p/Z gives:
p
Z

= pi

Zi
−
(

pscT
TscV

)
Gp [3.3.8]

or equivalently:
p
Z

= pi

Zi
− (m) Gp

Equation 3.3.8 is the equation of a straight line with a nega-
tive slope m, when p/Z is plotted versus the cumulative gas
production Gp as shown in Figure 3.16. This straight-line
relationship is perhaps one of the most widely used relation-
ships in gas-reserve determination. Equation 3.3.8 reveals
the straight-line relationship provides the engineer with the
following four characteristics of plot:

(1) Slope of the straight line is equal to:

−m = − pscT
TscV

or:

V = pscT
Tscm

[3.3.9]
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G
Gp

Figure 3.16 Gas material balance equation.

The calculated reservoir gas volume V can be used to
determine the areal extend of the reservoir from:

V = 43560Ahφ(1 − Swi)

That is:

A = V /[43560hφ(1 − Swi)]
If reserve calculations are performed on a well-by-well
basis, the drainage radius of the well can then estimated
from:

re =
√

43560A
π

where A is the area of the reservoir in acres.
(2) Intercept at Gp = 0 gives pi/Zi .
(3) Intercept at p/Z = 0 gives the gas initially in place G

in scf. Notice that when p/Z = 0, Equation 3.3.8 is
reduced to:

0 = pi

Zi
−
(

pscT
TscV

)
Gp

Rearranging:

Tsc

psc

pi

TZi
V = Gp

This equation is essentially EgiV and therefore:

EgiV = G

(4) Cumulative gas production or gas recovery at any
pressure.

Example 3.6a A volumetric gas reservoir has the follow-
ing production history.

aAfter Ikoku, C. Natural Gas Reservoir Engineering, John Wiley &
Sons (1984).

Time, t Reservoir Z Cumulative
(years) pressure, p production, Gp

(psia) (MMMscf)

0.0 1798 0.869 0.00
0.5 1680 0.870 0.96
1.0 1540 0.880 2.12
1.5 1428 0.890 3.21
2.0 1335 0.900 3.92

The following data is also available:

φ = 13%, Swi = 0. 52, A = 1060 acres, h = 54 ft,

T = 164◦F

Calculate the gas initially in place volumetrically and from
the MBE.

Solution

Step 1. Calculate Bgi from Equation 3.3.1:

Bgi = 0. 02827
(
0. 869

) (
164 + 460

)
1798

= 0. 00853 ft3/scf

Step 2. Calculate the gas initially in place volumetrically by
applying Equation 3.3.3:

G = 43560Ahφ
(
1 − Swi

)
Bgi

= 43560(1060)(54)(0. 13)(1 − 0. 52)/0. 00853

= 18. 2 MMMscf

Step 3. Plot p/Z versus Gp as shown in Figure 3.17 and
determine G as:

G = 14. 2 MMMscf

The value of the gas initially in place as calcu-
lated form the MBE compares reasonably with the
volumetric value.

G = 14.2 MMMscf

2200
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p
/z

Figure 3.17 Relationship of p/z vs. Gp for Example 3.6.
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The reservoir gas volume V can be expressed in terms of
the volume of gas at standard conditions by:

V = BgiG =
(

psc

Tsc

ZiT
pi

)
G

Combining the above relationship with that of Equation 3.3.8:
p
Z

= pi

Zi
−
(

pscT
TscV

)
Gp

gives:
p
Z

= pi

Zi
−
[(

pi

Zi

)
1
G

]
Gp [3.3.10]

or:
p
Z

= pi

Zi
− [m]Gp

The above equation indicates that a plot of p/Z vs. Gp would
produce a straight line with a slope of m and intercept of
pi/Zi , with the slope m defined by:

m =
(

pi

Zi

)
1
G

Equation 3.3.10 can be rearranged to give:
p
Z

= pi

Zi

[
1 − Gp

G

]
[3.3.11]

Again, Equation 3.3.10 shows that for a volumetric reservoir,
the relationship between p/Z and Gp is essentially linear.
This popular equation indicates that extrapolation of the
straight line to the abscissa, i.e., at p/Z = 0, will give the
value of the gas initially in place as G = Gp. Note that when
p/Z = 0, Equations 3.3.10 and 3.3.11 give:

G = Gp

The graphical representation of Equation 3.3.10 can be
used to detect the presence of water influx, as shown in
Figure 3.18. When the plot of p/Z vs. Gp deviates from
the linear relationship, it indicates the presence of water
encroachment.
Field average p/Z From the individual well performance in
terms of p/Z vs. Gp, the recovery performance of the entire
field can be estimated form the following relationship:(

p
Z

)
Field

= pi

Zi
−

∑n
j=1 (Gp)j

∑n
j=1

[
Gp/ pi

Zi
− p

Z

]

j

Active Water Drive

Partial Water Drive

Weak Water Drive

Gp

p
/z

Figure 3.18 Effect of water drive on p/z vs. Gp
relationship.

The summation
∑

is taken over the total number of the
field gas wells n, i.e. j = 1, 2, …, n. The total field per-
formance in terms of (p/Z )Field vs. (Gp)Field can then be
constructed from the estimated values of the field p/Z and
actual total field production, i.e., (p/Z )Field vs.

∑
Gp. The

above equation is applicable as long as all wells are producing
with defined static boundaries, i.e. under pseudosteady-state
conditions.

When using the MBE for reserve analysis for the entire
reservoir that is characterized by a distinct lack of pressure
equilibrium throughout the reservoir, the following average
pressure decline (p/Z )Field can be used:

(
p
Z

)
Field

=
∑n

j=1

(
p�Gp

�p

)
j

∑n
j=1

(
�Gp

�p/Z

)
j

where �p and �Gp are the incremental pressure difference
and cumulative production, respectively.

Form 2: MBE as expressed in terms of Bg
From the definition of the initial gas formation volume factor,
it can be expressed as:

Bgi = V
G

Replacing Bgi in the relation with Equation 3.3.1 gives:

psc

Tsc

ZiT
pi

= V
G

[3.3.12]

where:

V = volume of gas originally in place, ft3

G = volume of gas originally in place, scf
pi = original reservoir pressure
Zi = gas compressibility factor at pi

Recalling Equation 3.3.8:

p
Z

= pi

Zi
−
(

pscT
TscV

)
Gp

Equation 3.3.12 can be combined with Equation 3.3.8 to
give:

G = GpBg

Bg − Bgi
[3.3.13]

Equation 3.3.13 suggests that to calculate the initial gas vol-
ume, the information required is production data, pressure
data, gas specific gravity for obtaining Z factors, and reser-
voir temperature. However, early in the producing life of a
reservoir, the denominator of the right-hand side of the MBE
is very small, while the numerator is relatively large. A small
change in the denominator will result in a large discrepancy
in the calculated value of initial gas-in-place. Therefore, the
MBE should not be relied on early in the producing life of
the reservoir.

Material balances on volumetric gas reservoirs are simple.
Initial gas-in-place may be computed from Equation 3.3.13
by substituting cumulative gas produced and appropriate
gas formation volume factors at corresponding reservoir
pressures during the history period. If successive calcula-
tions at various times during the history give consistent
and constant values for initial gas-in-place, the reservoir is
operating under volumetric control and the computed G is
reliable, as shown in Figure 3.19). Once G has been deter-
mined and the absence of water influx established in this
fashion, the same equation can be used to make future
predictions of cumulative gas production as a function of
reservoir pressure.
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Figure 3.19 Gas-in-place in a depletion driver reservoir.

It should be pointed out that the successive application of
Equation 3.3.13 can yield increasing or decreasing values of
the gas initially in place G. Two different situations therefore
exist:

(1) When the calculated value of the gas initially in place
G appears to increase with time, the reservoir might
be under drive. The invasion of water reduces the pres-
sure drop for a given amount of production, making the
reservoir appear larger as time progresses. The reser-
voir should in this case be classified as a water drive
gas reservoir. Another possibility, if no known aquifer
exists in the region, is that gas from a different reser-
voir or zone might migrate through fractures or leaky
faults.

(2) If the calculated value of G decreases with time, the pres-
sure drops more rapidly than would be the case in a
volumetric reservoir. This implies loss of gas to other
zones, leaky cementing job or casing leaks, among other
possibilities.

Example 3.7 After producing 360 MMscf of gas from a
volumetric gas reservoir, the pressure has declined from
3200 psi to 3000 psi. Calculate.

(a) The gas initially in place, given:

Bgi = 0. 005278 ft3/scf, at pi = 3200 psi

Bg = 0. 005390 ft3/scf, at p = 3000 psi

(b) Recalculate the gas initially in place assuming that
the pressure measurements were incorrect and the
true average pressure is 2900 psi, instead of 2900 psi.
The gas formation volume factor at this pressure is
0.00558 ft3/scf.

Solution

(a) Using Equation 3.1.14, calculate G:

G = GpBg

Bg − Bgi

= 360 × 106(0. 00539)
0. 00539 − 0. 005278

= 17. 325 MMMscf

(b) Recalculate G by using the correct value of Bg:

G = 360 × 106
(
0. 00558

)
0. 00558 − 0. 005278

= 6. 652 MMMscf

Thus, an error of 100 psia, which is only 3.5% of the total
reservoir pressure, resulted in an increase in calculated
gas-in-place of approximately 160%. Note that a similar
error in reservoir pressure later in the producing life of
the reservoir will not result in an error as large as that
calculated early in the producing life of the reservoir.

Gas recovery factor
The gas recovery factor (RF) at any depletion pressure is
defined as the cumulative gas produced Gp at this pressure
divided by the gas initially in place G:

RF = Gp

G
Introducing the gas RF into Equation 3.3.11 gives:

p
Z

= pi

Zi

[
1 − Gp

G

]

or:
p
Z

= pi

Zi
[1 − RF]

Solving for the RF at any depletion pressure gives:

RF = 1 −
[

p
Z

Zi

pi

]
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Figure 3.20 Effect of water influx on calculating the gas initially in place.

3.3.4 Water drive gas reservoirs
The plot of p/Z versus cumulative gas production Gp is a
widely accepted method for solving gas material balance
under depletion drive conditions. The extrapolation of the
plot to atmospheric pressure provides a reliable estimate of
the original gas-in-place. If a water drive is present the plot
often appears to be linear, but the extrapolation will give an
erroneously high value for gas-in-place. If the gas reservoir
has a water drive, then there will be two unknowns in the
MBE, even though production data, pressure, temperature,
and gas gravity are known. These two unknowns are ini-
tial gas-in-place and cumulative water influx. In order to use
the MBE to calculate initial gas-in-place, some independent
method of estimating We, the cumulative water influx, must
be developed.

Equation 3.1.13 can be modified to include the cumulative
water influx and water production, to give:

G = GpBg − (We − WpBw
)

Bg − Bgi
[3.3.14]

The above equation can be arranged and expressed as:

G + We

Bg − Bgi
= GpBg + WpBw

Bg − Bgi
[3.3.15]

where:

Bg = gas formation volume factor, bbl/scf
We = cumulative water influx, bbl

Equation 3.3.15 reveals that for a volumetric reservoir, i.e.,
We = 0, the right-hand side of the equation will be constant
and equal to the initial gas-in-place “G” regardless of the
amount of gas Gp which has been produced. That is:

G + 0 = GpBg + WpBw

Bg − Bgi

For a water drive reservoir, the values of the right-hand
side of Equation 3.3.15 will continue to increase because
of the We/(Bg − Bgi) term. A plot of several of these val-
ues at successive time intervals is illustrated in Figure
3.20. Extrapolation of the line formed by these points back
to the point where Gp = 0 shows the true value of
G, because when Gp = 0, then We/(Bg − Bgi) is also
zero.

This graphical technique can be used to estimate the
value of We, because at any time the difference between

the horizontal line (i.e., true value of G) and the straight
line G + [We/(Bg − Bgi)] will give the value of We/(Bg −
Bgi).

Because gas often is bypassed and trapped by the
encroaching water, recovery factors for gas reservoirs
with water drive can be significantly lower than for vol-
umetric reservoirs produced by simple gas expansion. In
addition, the presence of reservoir heterogeneities, such
as low-permeability stringers or layering, may reduce gas
recovery further. As noted previously, ultimate recoveries
of 80% to 90% are common in volumetric gas reservoirs,
while typical recovery factors in water drive gas reser-
voirs can range from 50% to 70%. The amount of gas that
is trapped in the region that has been flooded by water
encroachment can be estimated by defining the following
characteristic reservoir parameters and the steps as outlined
below:

(PV) = reservoir pore volume, ft3

(PV)water = pore volume of the water-invaded zone, ft3

Sgrw = residual gas saturation to water displacement
Swi = initial water saturation

G = gas initially in place, scf
Gp = cumulative gas production at depletion

pressure “p”, scf
Bgi = initial gas formation volume factor, ft3/scf
Bg = gas formation volume factor at depletion

pressure “p”, ft3/scf
Z = gas deviation factor at depletion pressure “p”

Step 1. Express the reservoir pore volume (PV) in terms of
the initial gas-in-place G as follows:

GBgi = (PV)(1 − Swi)

Solving for the reservoir pore volume gives:

(
PV
) = GBgi

1 − Swi

Step 2. Calculate the pore volume in the water-invaded
zone, as:

We − WpBw = (PV)water(1 − Swi − Sgrw)
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Solving for the pore volume of the water-invaded
zone, (PV)water , gives:

(
PV
)

water = We − WpBw

1 − Swi − Sgrw

Step 3. Calculate trapped gas volume in the water-invaded
zone, or:

Trapped gas volume = (PV)waterSgrw

Trapped gas volume =
(

We − WpBw

1 − Swi − Sgrw

)
Sgrw

Step 4. Calculate the number of moles of gas n trapped
in the water-invaded zone by using the equation of
state, or:

p(trapped gas volume) = ZnRT
Solving for n, gives:

n =
p
(

We − WpBw

1 − Swi − Sgrw

)
Sgrw

ZRT
This indicates that the higher the pressure, the
greater the quantity of tapped gas. Dake (1994)
pointed out that if the pressure is reduced by rapid
gas withdrawal the volume of gas trapped in each
individual pore space, i.e., Sgrw, will remain unaltered
but its quantity n is reduced

Step 5. The gas saturation at any pressure can be adjusted
to account for the trapped gas as follows:

Sg

= remaining gas volume − trapped gas volume
reservoir pore volume − pore volume of water invaded zone

Sg =
(
G − Gp

)
Bg −

(
We − WpBw

1 − Swi − Sgrw

)
Sgrw

(
GBgi

1 − Swi

)
−
(

We − WpBw

1 − Swi − Sgrw

)

There are several methods of expressing the MBE in a
convenient graphical form that can be used to describe the
recovery performance of a volumetric or water drive gas
reservoir including:

● Energy plot;

● MBE as a straight line;
● Cole plot;
● modified Cole plot;
● Roach plot;
● modified Roach plot;
● Fetkovich et al. plot;
● Paston et al. plot;
● Hammerlindl method.

These methods are presented below.

The energy plot
Many graphical methods have been proposed for solving the
gas MBE that are useful in detecting the presence of water
influx. One such graphical technique is called the energy
plot, which is based on arranging Equation 3.3.11:

p
Z

= pi

Zi

[
1 − Gp

G

]

to give:

1 −
[

p
Z

Zi

pi

]
= Gp

G

Taking the logarithm of both sides of this equation:

log
[

1 − Zip
piZ

]
= log Gp − log G [3.3.16]

Figure 3.21 shows a schematic illustration of the plot.
From Equation 3.3.16, it is obvious that a plot of

[1 − (Zip)/(piZ )] vs. Gp on log–log coordinates will yield
a straight line with a slope of 1 (45◦ angle). An extrapolation
to 1 on the vertical axis ( p = 0) yields a value for initial
gas-in-place, G. The graphs obtained from this type of anal-
ysis have been referred to as energy plots. They have been
found to be useful in detecting water influx early in the life
of a reservoir. If We is not zero, the slope of the plot will
be less than one, and will also decrease with time, since We
increases with time. An increasing slope can only occur as a
result of either gas leaking from the reservoir or bad data, since
the increasing slope would imply that the gas occupied PV
was increasing with time.

Generalized MBE as a straight line
Havlena and Odeh (1963, 1964) expressed the material bal-
ance in terms of gas production, fluid expansion, and water
influx as:[

underground
withdrawal

]
=
[

gas
expansion

]
+
[

water expansion and
pore compaction

]

+
[

water
influx

]
+
[

fluid
injection

]

and mathematically as:

GpBg + WpBw = G
(
Bg − Bgi

)+ GBgi

(
cwSwi + cf

)
1 − Swi

�p

+ We + (WinjBw + GinjBginj)

Assuming no water or gas injection, i.e., Winj and Ginj = 0,
the above generalized MBE reduces to:

GpBg + WpBw = G
(
Bg − Bgi

) + GBgi

(
cwSwi + cf

)
1−Swi

�p + We

[3.3.17]

where:

�p = pi − p
Bg = gas formation volume factor, bbl/scf
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Using the nomenclature of Havlena and Odeh, Equation
3.3.17 can be written in the following form:
F = G(EG + Ef ,w) + We [3.3.18]
with the terms F , EG, and Ef ,w as defined by:

Underground fluid withdrawal F :
F = GpBg + WpBw [3.3.19]
Gas expansion term EG:
EG = Bg − Bgi [3.3.20]
Water and rock expansion Ef ,w :

Ef ,w = Bgi

(
cwSwi + cf

)
1 − Swi

�p [3.3.21]

Equation 3.3.18 can be further simplified by introducing
the total system expansion term Et that combined both
compressibilities EG and Ef ,w as defined by:

Et = EG + Ef ,w

to give:
F = GEt + We

Note that for a volumetric gas reservoir with no water influx
or production, Equation 3.3.17 is expressed in an expanded
form as:

GpBg = G
(
Bg − Bgi

)+ GBgi

(
cwSwi + cf

)
1 − Swi

�p

Dividing both sides of the above equation by G and rearrang-
ing gives:

Gp

G
= 1 −

[
1 −

(
cwSwi + cf

)
�p

1 − Swi

]
Bgi

Bg

Inserting the typical values of cw = 3 × 10−6 psi−1, cf =
10 × 10−6 psi−1, and Swi = 0. 25 in the above relationship
and considering a large pressure drop of �p = 1000 psi, the
term in the square brackets becomes:[

1 −
(
cwSwi + cf

)
�p

1 − Swi

]
= 1 − [3 × 0. 25 + 10]10−6(1000)

1 − 0. 25

= 1 − 0. 014
The above value of 0.014 suggests that the inclusion of the
term accounting for the reduction in the hydrocarbon PV
due to connate water expansion and shrinkage of the PV
only alters the material balance by 1.4%, and therefore the
term is frequently neglected. The main reason for the omis-
sion is because the water and formation compressibilities
are usually, although not always, insignificant in comparison
with the gas compressibility.

Assuming that the rock and water expansion term Ef ,w is
negligible in comparison with the gas expansion term EG,
Equation 3.3.8 is reduced to:
F = GEG + We [3.3.22]
Finding the proper model that can be used to determine
the cumulative water influx We is perhaps the biggest
unknown when applying the MBE. The water influx is usu-
ally replaced with the analytical aquifer model that must
be known or determined from the MBE. The MBE can
be expressed as the equation of a straight line by dividing
both sides of the above equation by the gas expansion EG to
give:
F
EG

= G + We

EG
[3.3.23]

The graphical presentation of Equation 3.3.23 is given
in Figure 3.22). Assuming that the water influx can be
adequately described by the van Everdingen and Hurst

G

Gp

Partial or Moderate
          Aquifer

Volumetric
Reservoir

Active Aquifer

F/Eg

Figure 3.22 Defining the reservoir driving mechanism.

(1949) unsteady-state model, the selected water influx model
can be integrated into Equation 3.3.23; to give:

F
EG

= G + B
∑ [�pWeD]

EG

This expression suggests that a graph of F/EG vs.∑
�pWeD/EG will yield a straight line, provided the

unsteady-state influx summation,
∑

�pWeD, is accurately
assumed. The resulting straight line intersects the y axis
at the initial gas-in-place G and has a slope equal to the water
influx constant B; as illustrated in Figure 3.23.

Non-linear plots will result if the aquifer is improperly
characterized. A systematic upward or downward curva-
ture suggests that the summation term is too small or too
large, respectively, while an S-shaped curve indicates that
a linear (instead of a radial) aquifer should be assumed.
The points should plot sequentially from left to right. A
reversal of this plotting sequence indicates that an unac-
counted aquifer boundary has been reached and that a
smaller aquifer should be assumed in computing the water
influx term.

A linear infinite system rather than a radial system might
better represent some reservoirs, such as reservoirs formed
as fault blocks in salt domes. The van Everdingen and Hurst
dimensionless water influx WeD is replaced by the square
root of time, as:

We = C
∑

�pn

√
t − tn [3.3.24]

where:

C = water influx constant, ft3/psi
t = time (any convenient units, i.e., days, years, etc.)

The water influx constant C must be determined by using
the past production and pressure of the field in conjunc-
tion with the Havlena and Odeh methodology. For the
linear system, the underground withdrawal F is plotted ver-
sus

[∑
�pn

√
t − tn/

(
Bg − Bgi

)]
on a Cartesian coordinate

graph. The plot should result in a straight line with G being
the intercept and the water influx constant C being the slope
of the straight line.

To illustrate the use of the linear aquifer model in the
gas MBE as expressed as the equation of a straight line,
i.e., Equation Havlena and Odeh proposed the following
problem.

Example 3.8 The volumetric estimate of the gas ini-
tially in place for a dry gas reservoir ranges from 1.3 to
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Figure 3.23 Havlena–Odeh MBE plot for a gas reservoir.

Table 3.1 Havlena–Odeh Dry-Gas Reservoir Data for Example 8-8

Time Average Eg = Eg = ∑
�pnZ t − tn
Bg − Bgi

F/Eg =
(months) reservoir

(
Bg − Bgi

)× 10−6
(
Gg − Bg

)× 106 GpBg

Bg − Bgipressure (ft3/scf) (ft3) (106)
(psi) (1012)

0 2883 0.0 – – –
2 2881 4.0 5.5340 0.3536 1.3835
4 2874 18.0 24.5967 0.4647 1.3665
6 2866 34.0 51.1776 0.6487 1.5052
8 2857 52.0 76.9246 0.7860 1.4793

10 2849 68.0 103.3184 0.9306 1.5194
12 2841 85.0 131.5371 1.0358 1.5475
14 2826 116.5 180.0178 1.0315 1.5452
16 2808 154.5 240.7764 1.0594 1.5584
18 2794 185.5 291.3014 1.1485 1.5703
20 2782 212.0 336.6281 1.2426 1.5879
22 2767 246.0 392.8592 1.2905 1.5970
24 2755 273.5 441.3134 1.3702 1.6136
26 2741 305.5 497.2907 1.4219 1.6278
28 2726 340.0 556.1110 1.4672 1.6356
30 2712 373.5 613.6513 1.5714 1.6430
32 2699 405.0 672.5969 1.5714 1.6607
34 2688 432.5 723.0868 1.6332 1.6719
36 2667 455.5 771.4902 1.7016 1.6937

1. 65 × 1012 scf. Production, pressures, and the pertinent
gas expansion term, i.e., Eg = Bg − Bgi, are presented in
Table 3.1. Calculate the original gas-in-place G.

Solution

Step 1. Assume a volumetric gas reservoir.

Step 2. Plot p/Z vs. Gp or GpBg/(Bg − Bgi) vs. Gp.
Step 3. A plot of GpBg/(Bg − Bgi) vs. GpBg shows upward

curvature, as shown in Figure 3.24 indicating water
influx.

Step 4. Assuming a linear water influx, plot GpBg/(Bg −
Bgi) vs. (

∑
�pn

√
t − tn )/(Bg − Bgi) as shown in

Figure 3.25.
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Figure 3.24 Indication of the water influx.

1.8

1.7

1.6

1.5

1.4

1.3

1.2
0.0 0.5 1.0 1.5 2.0

Figure 3.25 Havlena–Odeh MBE plot for Example 3.8.

Step 5. As evident from Figure 3.25, the necessary straight-
line relationship is regarded as satisfactory evidence
for the presence of the linear aquifer.

Step 6. From Figure 3.25, determine the original gas-in-
place G and the linear water influx constant C, to
give:

G = 1. 325 × 1012 scf

C = 212. 7 × 103 ft3/psi

Drive indices for gas reservoirs Drive indices have been
defined for oil reservoirs (see Chapter 4) to indicate the
relative magnitude of the various energy forces contribut-
ing to the driving mechanism of the reservoir. Similarly,
drive indices can be defined for gas reservoirs by dividing
Equation 3.3.17 by GpBg + WpBw, to give:

G
Gp

(
1 − Bgi

Bg

)
+ G

Gp

Ef ,w

Bg
+ We − WpBw

GpBg
= 1

Define the following three drive indices:

(1) Gas drive index (GDI) as:

GDI = G
Gp

(
1 − Bgi

Bg

)

(2) Compressibility drive index (CDI) as:

CDI = G
Gp

Ef ,w

Bg

(3) Water drive index (WDI) as:

WDI = We − WpBw

GpBg

Substituting the above three indices into the MBE gives:

GDI + CDI + WDI = 1

Pletcher (2000) pointed out that if the drive indices do not
sum to 1.0, this indicates that the solution to the MBE has not
been obtained or is simply incorrect. In practice, however,
drive indices calculated from actual field data rarely sum
exactly to 1.0 unless accurate recording of production data
is achieved. The summed drive indices typically fluctuate
above or below one depending on the quality of the collected
production data with time.

The Cole plot
The Cole plot is a useful tool for distinguishing between
water drive and depletion drive reservoirs. The plot is
derived from the generalized MBE as given in an expanded
form by Equation 3.3.15 as:

GpBg + WpBw

Bg − Bgi
= G + We

Bg − Bgi

or in a compact form by Equation 3.3.23 as:
F
EG

= G + We

EG

Cole (1969) proposed ignoring the water influx term We/EG
and simply plotting the left-hand side of the above expression
as a function of the cumulative gas production, Gp. This is
simply for display purposes to inspect its variation during
depletion. Plotting F/EG versus production time or pressure
decline, �p, can be equally illustrative.

Dake (1994) presented an excellent discussion of the
strengths and weaknesses of the MBE as a straight line.
He pointed out that the plot will have one of the three shapes
depicted previously in Figure 3.19. If the reservoir is of the
volumetric depletion type, We = 0, then the values of F/EG
evaluated, say, at six monthly intervals, should plot as a
straight line parallel to the abscissa, whose ordinate value
is the gas initially in place. Alternatively, if the reservoir is
affected by natural water influx then the plot of F/EG will usu-
ally produce a concave-downward-shaped arc whose exact
form is dependent upon the aquifer size and strength and the
gas off-take rate. Backward extrapolation of the F/EG trend
to the ordinate should nevertheless provide an estimate of
the gas initially in place (We ∼ 0); however, the plot can be
highly non-linear in this region yielding a rather uncertain
result. The main advantage in the F/EG vs. Gp plot, however,
is that it is much more sensitive than other methods in estab-
lishing whether the reservoir is being influenced by natural
water influx or not.

However, in the presence of a weak water drive, the far
right-hand term in the above expression, i.e., [We/(Bg−Bgi),
would decrease with time because the denominator would
increase faster than the numerator. Therefore, the plotted
points will exhibit a negative slope as shown in Figure 3.19.
As reservoir depletion progresses in a weak water drive
reservoir, the points migrate vertically down and to the
right toward the time value of G. Therefore, under a weak
water drive, the apparent initial gas-in-place decreases with
time, contrary to that for a strong or moderate water drive.
Pletcher (2000) pointed out that the weak water drive curve
begins with a positive slope in the very early stages of reser-
voir depletion (as shown in Figure 3.19) prior to developing
the signature negative slope. The very early points are diffi-
cult to use for determining G because they frequently exhibit
a wide scatter behavior that is introduced by even small
errors in pressure measurements early in the reservoir life.
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Therefore, the curve is a “hump-shaped” curve similar to the
moderate water drive with the exception that the positive-
slope portion of the hump is very short and in practice will
not appear if early data is not obtained.

Modified Cole plot
Pore compressibility can be very large in shallow unconsol-
idated reservoirs with values in excess of 100 × 10−6 psi−1.
Such large values have been measured, for instance, in the
Bolivar Coast Fields in Venezuela and therefore it would be
inadmissible to omit cf from the gas MBE. In such cases, the
term Ef ,w should be included when constructing the Cole
plot and the equation should be written as:

F
Et

= G + We

Et

As pointed out by Pletcher, the left-hand term F/Et now
incorporates energy contributions from the formation (and
water) compressibility as well as the gas expansion. The
modified Cole plot consists of plotting F/Et on the y axis
versus Gp on the x axis. Vertically; the points will lie closer
to the true value of G than the original Cole plot. In reservoirs
where formation compressibility is a significant contributor
to reservoir energy, such as abnormally pressured reser-
voirs, the original Cole plot will exhibit a negative slope even
if no water drive is present. The modified plot, however, will
be a horizontal line assuming the correct value of cf is used
in calculating the term F/Et . Thus, constructing both the
original and modified Cole plots will distinguish between
the following two possibilities:

(1) Reservoirs that are subject to weak aquifer and signif-
icant cf . In this case, both plots, i.e., the original and
modified Cole plots, will have a negative slope.

(2) Reservoirs where cf is significant but there is no aquifer
attached. In this particular case, the original Cole plot
will have a negative slope while the modified plot will be
horizontal.

It should be pointed out that negative slopes in the original
and modified Cole plots could result from any unaccounted-
for source of energy that is decreasing with time relative to
gas expansion. This could include, for example, communica-
tion with other depleting reservoirs.

An “abnormally pressured” gas reservoir (sometimes
called an “overpressured” or “geo-pressured” gas reservoir)
is defined as a reservoir with pressures greater than a normal
pressure gradient, i.e., over 0.5 psi/ft. A typical p/Z vs. Gp
plot for an abnormally pressured gas reservoir will exhibit
two straight lines as shown in Figure 3.26.

(1) The first straight line corresponds to the “apparent” gas
reservoir behavior with an extrapolation that gives the
“apparent gas-in-place Gapp.”

(2) The second straight line corresponds to the “normal
pressure behavior” with an extrapolation that gives the
“actual initial gas-in-place G.”

Hammerlindl (1971) pointed out that in abnormally high-
pressure volumetric gas reservoirs, two distinct slopes are
evident when the plot of p/Z vs. Gp is used to predict
reserves because of the formation and fluid compressibil-
ity effects as shown in Figure 3.26. The final slope of the
p/Z plot is steeper than the initial slope; consequently,
reserve estimates based on the early life portion of the
curve are erroneously high. The initial slop is due to gas
expansion and significant pressure maintenance brought
about by formation compaction, crystal expansion, and water
expansion. At approximately normal pressure gradient, the
formation compaction is essentially complete and the reser-
voir assumes the characteristics of a normal gas expansion
reservoir. This accounts for the second slope. Most early
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Figure 3.26 p/Z versus cumulative production—North
Ossum Field, Lafayette Parish, Louisiana NS2B reservoir
(After Hammerlindl, 1971).

decisions are made based on the early life extrapolation of the
p/Z plot; therefore, the effects of hydrocarbon PV change on
reserve estimates, productivity, and abandonment pressure
must be understood.

All gas reservoir performance is related to effective com-
pressibility, not gas compressibility. When the pressure is
abnormal and high, the effective compressibility may equal
two or more times the gas compressibility. If the effective
compressibility is equal to twice the gas compressibility, then
the first cubic foot of gas produced is due to 50% gas expan-
sion and 50% formation compressibility and water expansion.
As the pressure is lowered in the reservoir, the contribu-
tion due to gas expansion becomes greater because the gas
compressibility is approaching the effective compressibility.
Using formation compressibility, gas production, and shut-
in bottom-hole pressures, two methods are presented for
correcting the reserve estimates from the early life data
(assuming no water influx).

Gunawan Gan and Blasingame (2001) provided a com-
prehensive literature review of the methods and theories
that have been proposed to explain the non-linear behavior
of p/Z vs. Gp. There are essentially two theories for such
behavior:

(1) rock collapse theory;
(2) shale water influx theory.

These theories are briefly addressed below.

Rock collapse theory Harville and Hawkins (1969) sug-
gested that the non-linear behavior that is characterized with
two straight-line plots can be attributed to “pore collapse”
and formation compaction. They concluded from a study on
the North Ossum Field (Louisiana) that the initial slope is a
result of the continuous increase in the net overburden pres-
sure as the pore pressure declines with production. This
increase in the net overburden pressure causes rock failure,
i.e., rock collapse, which subsequently causes a continuous
decrease in the rock compressibility cf . This process contin-
ues until cf eventually reaches a “normal value” which marks
the beginning of the second slope. At this point, the reservoir
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performance becomes similar to that for a constant-volume,
normally pressured, gas reservoir system.
Shale water influx theory Several investigators have
attributed the non-linear behavior of p/Z vs. Gp to shale water
influx or peripheral water influx from a limited aquifer and
the treatment of PV compressibility as a constant. Bourgoyne
(1990) demonstrated that reasonable values of shale perme-
ability and compressibility, treated as a function of pressure,
can be used to match abnormal gas reservoir performance
behavior to yield the first straight line. The second straight
line is a result of a decrease in pressure support from the
surrounding shales as the gas reservoir is depleted.

Fetkovich et al. (1998) differentiated between two differ-
ent PV compressibilities, the “total” and the “instantaneous.”
The total PV compressibility is defined mathematically by
the following expression:

cf = 1
(PV)i

[
(PV)i − (PV)p

pi − p

]

The term in the square brackets is the slope of the
chord from initial condition (Pi , (PV)i) to any lower pressure
(P , (PV)p), where:

cf = cumulative pore volume (formation or rock) com-
pressibility, psi−1

pi = initial pressure, psi
p = pressure, psi

(PV)i = pore volume at initial reservoir pressure
(PV)p = pore volume at pressure p

The instantaneous pore volume (rock or formation) com-
pressibility is defined as:

cf = 1
(PV)P

∂(PV)
∂p

The instantaneous compressibility cf should be used in
reservoir simulation, while the cumulative compressibility
cf must be used with forms of the material balance that apply
cumulative pressure drop ( pi − p).

Both types of compressibilities are pressure dependent
and best determined by special core analysis. An example of
this analysis is shown below for a Gulf Coast sandstone as
given by Fetkovich et al.:

p pi − p (PV)i − (PV)p cf (10−6 cf (10−6

(psia) (psi) (cm3) psi−1) psi−1)

pi = 9800 0 0.000 16.50 16.50
9000 800 0.041 14.99 13.70
8000 1800 0.083 13.48 11.40
7000 2800 0.117 12.22 9.10
6000 3800 0.144 11.08 6.90
5000 4800 0.163 9.93 5.00
4000 5800 0.177 8.92 3.80
3000 6800 0.190 8.17 4.10
2000 7800 0.207 7.76 7.30
1000 8800 0.243 8.07 16.80
500 9300 0.276 8.68 25.80

Figure 3.27 shows how cf and cf vary as a function of
pressure for this overpressured Gulf Coast sandstone reser-
voir. Figure 3.27 gives the proper definition of the “pore
collapse” which is the condition when the instantaneous PV
compressibility begins to increase at decreasing reservoir
pressure.

Roach plot for abnormally pressured gas reservoirs
Roach (1981) proposed a graphical technique for analyz-
ing abnormally pressured gas reservoirs. The MBE as

expressed by Equation 3.3.17 may be written in the following
form for a volumetric gas reservoir:(

p
Z

)
ct =

(
pi

Zi

)[
1 − Gp

G

]
[3.3.25]

where:

ct = 1 −
(
cf + cwSwi

)
(pi − p)

1 − Swi
[3.3.26]

Defining the rock expansion term ER as:

ER = cf + cwSwi

1 − Swi
[3.3.27]

Equation 3.3.26 can be expressed as:
ct = 1 − ER (pi − p) [3.3.28]
Equation 3.3.25 indicates that plotting the term (p/Z )ct ver-
sus cumulative gas production Gp on Cartesian coordinates
results in a straight line with an x intercept at the original gas-
in-place and a y intercept at the original (p/Z )i. Since ct is
unknown and must be found by choosing the compressibil-
ity values resulting in the best straight-line fit, this method
is a trial-and-error procedure.

Roach used the data published by Duggan (1972) for the
Mobil–David Anderson Gas Field to illustrate the applica-
tion of Equations 3.3.25 and 3.3.28 to determine graphically
the gas initially in place. Duggan reported that the reservoir
had an initial pressure of 9507 psig at 11300 ft. Volumetric
estimates of original gas-in-place indicated that the reser-
voir contains 69.5 MMMscf. The historical p/Z vs. Gp plot
produced an initial gas-in-place of 87 MMMscf, as shown in
Figure 3.28.

Using the trial-and-error approach, Roach showed that
a value of the rock expansion term Er of 1805 × 10−6

would result in a straight line with an initial gas-in-place of
75 MMMscf, as shown in Figure 3.28.

To avoid the trial-and-error procedure, Roach proposed
that Equations 3.3.25 and 3.3.28 can be combined and
expressed in a linear form by:
(p/Z )i/(p/Z ) − 1

pi − p
= 1

G

[
(p/Z )i/(p/Z )

pi − p

]
Gp − Swicw + cf

1 − Swi

[3.3.29]
or equivalently as:

α =
(

1
G

)
β − ER [3.3.30]

with:

α =
[(

pi/Zi
)
/
(
p/Z

)]− 1
(pi − p)

[3.3.31]

β =
[(

pi/Zi
)

/
(
p/Z

)
(pi − p)

]
Gp [3.3.32]

ER = Swicw + cf

1 − Swi

where:
G = initial gas-in-place, scf

ER = rock and waterexpansion term, psi−1

Swi = initial water saturation
Equation 3.3.30 shows that a plot of α vs. β will yield a straight
line with:

slope = 1/G

y intercept = −ER

To illustrate the proposed methodology, Roach applied Equa-
tion 3.3.30 to the Mobil–David Gas Field with the results as
shown graphically in Figure 3.29. The slope of the straight
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Figure 3.27 Cumulative and instantaneous cf.

line gives G = 75. 2 MMMscf and the intercept gives ER =
1805 × 10−6.

Begland and Whitehead (1989) proposed a method to pre-
dict the percentage recovery of volumetric, high-pressured
gas reservoirs from the initial pressure to the abandonment
pressure when only initial reservoir data is available. The
proposed technique allows the PV and water compressibil-
ities to be pressure dependent. The authors derived the
following form of the MBE for a volumetric gas reservoir:

r = Gp

G
= Bg − Bgi

Bg
+

BgiSwi
1−Swi

[
Btw
Btwi

− 1 + cf (pi−p)
Swi

]

Bg
[3.3.33]

where:

r = recovery factor
Bg = gas formation volume factor, bbl/scf
cf = formation compressibility, psi−1

Btw = two-phase water formation volume factor, bbl/STB
Btwi = initial two-phase water formation volume factor,

bbl/STB

The water two-phase formation volume factor (FVF) is
determined from:

Btw = Bw + Bg(Rswi − Rsw)
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where:

Rsw = gas solubility in the water phase, scf/STB
Bw = water FVF, bbl/STB
Bg = gas FVF, bbl/scf

The following three assumptions are inherent in Equation
3.3.33:

(1) a volumetric, single-phase gas reservoir;
(2) no water production;
(3) the formation compressibility cf remains constant over

the pressure drop (pi − p).

The authors point out that the change in water compress-
ibility cw is implicit in the change of Btw with pressure as
determined above.

Begland and Whitehead suggested that because cf is pres-
sure dependent, Equation 3.3.33 is not correct as reservoir
pressure declines from the initial pressure to some value
several hundred psi lower. The pressure dependence of cf
can be accounted for in Equation 3.3.33 and is solved in an
incremental manner.

Modified Roach plot for pot aquifer gas reservoirs
Assuming that the aquifer can be described adequately by a
pot aquifer model with a total water volume of Waq, the MBE
can be arranged to give:

(p/Z )i/(p/Z ) − 1
pi − p

= 1
G




(p/Z )i/(p/Z )Gp + WpBw

Bgi

pi − p




−
[

Swicw + cf

1 − Swi
+ (cw + cf )Waq

GBgi

]

or equivalently as the equation of a straight line:

α =
(

1
G

)
β − ER

with:

α =
[(

pi/Zi
)
/
(
p/Z

)]− 1
(pi − p)

β =


(
pi/Zi

)
/
(
p/Z

)
Gp + WpBw

Bgi

(pi − p)




ER = Swicw + cf

1 − Swi
+ (cw + cf )Waq

GBgi

Plotting α vs. β will produce a straight line with a correct
slope of 1/G and constant intercept of ER .

Fetkovich et al. plot for abnormal pressure gas reservoirs
Fetkovich et al. (1998) adopted the shale water influx theory
and developed a general gas MBE that accounts for the total
cumulative effects of the various reservoir compressibilities
as well as the total water associated with the reservoir. The
“associated” water includes:

● connate water;
● water within interbedded shales and non-pay reservoir

rock;
● volume of water in the attached aquifer.

The authors expressed the associated water as a ratio
of the total volume of the associated water to that of the
reservoir pore volume, or:

M = total associated water volume
reservoir pore volume

where M is a dimensionless volume ratio.
In the development of the general MBE, the authors also

introduced the cumulative effective compressibility term ce
as defined by:

ce = Swicw + M(cf + cw) + cf

1 − Swi
[3.3.34]
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where:

ce = cumulative effective compressibility, psi−1

cf = total PV (formation) compressibility, psi−1

cw = cumulative total water compressibility, psi−1

Swi = initial water saturation

The gas MBE can then be expressed as:
p
Z
[
1 − ce(pi − p)

] = pi

Zi
−
[

(pi/Zi)
G

]
Gp [3.3.35]

The ce function represents the cumulative change in hydro-
carbon PV caused by compressibility effects and water influx
from interbedded shales and non-pay reservoir rock, and
water influx from a small limited aquifer. The effect of the
compressibility function ce on the MBE depends strongly
on the magnitude of cw, cf , and the dimensionless parameter
M . The non-linear behavior of the p/Z vs. Gp plot is basically
attributed to changes in the magnitude of ce with declining
reservoir pressure, as follows:

● The first straight line in the “early-time” trend is devel-
oped in the abnormal pressure period where the effect of
cw and cf (as described by the ce function) is significant.

● The second straight line in the “late-time” trend is a
result of increasing the magnitude of the gas compress-
ibility significantly to dominate the reservoir driving
mechanism.

The procedure for estimating the initial gas-in-place G
from Equation 3.3.35 is summarized in the following steps:

Step 1. Using the available rock and water compressibili-
ties (cf and cw as a function of pressure) in Equa-
tion 3.3.34, generate a family of ce curves for sev-
eral assumed values of the dimensionless volume
rates M :

ce = Swicw + M(cf + cw) + cf

1 − Swi

Step 2. Assume a range of values for G with the largest value
based on extrapolation of the early depletion data,
and the lowest value being somewhat larger than
the current Gp. For an assumed value of G, calculate
ce from Equation 3.3.35 for each measured p/Z and
Gp data point, or:

ce =
[

1 − (p/Z )i

(p/Z )

(
1 − Gp

G

)]
1

pi − p

Step 3. For a given assumed value of G, plot the calculated
values of ce from step 2 as a function of pressure
and repeat for all other values of G. This family of ce
curves is essentially generated independently from
the MBE to match the ce values as calculated in
step 1.

Step 4. The match gives G, the M value, and the ce function
that can be used to predict the p/Z vs. Gp plot by
rearranging Equation 3.3.35 and assuming several
values of p/Z and calculating the corresponding Gp,
to give:

Gp = G
{

1 −
(

Zi

pi

p
Z

) [
1 − ce(pi − p)

]}

Paston et al. plot for abnormal pressure gas reservoirs
Harville and Hawkins (1969) attributed the concave-
downward shape of the p/Z vs. Gp curve for overpressured
gas reservoirs to pore collapse and formation compaction.
Hammerlindl (1971) calculated the changes in the PV
and indicated that the system isothermal compressibility
changed from 28×10−6 psi−1 at initial conditions to 6×10−6

psi−1 at final condition. Poston and Berg (1997) suggested

that the gas MBE can be arranged to solve for the origi-
nal gas-in-place, formation compressibility, and water influx
values simultaneously. The MBE as presented by Equation
3.3.17 can be rearranged to give:

1
�p

[(
piZ
pZi

)
− 1
]

=
(

1
G

)[(
Zpi

Zip

)(
Gp

�p

)]
− (ce + Wen)

where the energy term for the net water influx Wen and
effective compressibility ce are given by:

Wen = (We − Wp)Bw

�pGBgi

ce = cwSwi + cf

1 − Swi

where:

G = gas initially in place, scf
Bgi = initial gas FVF, bbl/scf
cw = water compressibility coefficient, psi−1

�p = pi − p

The above form of the MBE indicates that for a volumetric
gas reservoir (i.e., We = 0) with a constant effective com-
pressibility, a plot of the left-hand side of the equation versus
(Zpi/Zip)(Gp/�p) would produce a straight line with a slope
of 1/G and a negative intercept of −ce that can be used to
solve the above equation for the formation compressibility
cf , to give:

cf = −ce(1 − Swi) − cwSwi

Experience has shown that cf values should range over
6 × 10−6 < cf < 25 × 10−6 psi−1, a value over 25 × 10−6

as calculated from the above expression; that is, ce, might
indicate water influx.

Hammerlindl method for abnormal pressure
gas reservoirs
Hammerlindl (1971) proposed two methods to correct appar-
ent gas-in-place Gapp obtained by extrapolation of the early
straight-line of the p/Z vs. Gp graph. Both methods use
the initial reservoir pressure pi and another average reser-
voir pressure p1 at some time while the reservoir is still
behaving as an abnormally pressured reservoir. The pro-
posedmathematical expressions for both methods are given
below.

Method I Hammerlindl suggested that the actual gas-in-
place G can be estimated by correcting the apparent gas-
in-place Gapp by incorporating the ratio R of the effective
total system compressibility to the gas compressibility, to
give:

G = Gapp

R

with:

R = 1
2

(
ceff, i

cgi
+ ceff,1

cg1

)

where the effective total system compressibility ceff,i at the
initial reservoir pressure and the effective system compress-
ibility ceff,1 at reservoir pressure p1 are given by:

ceff, i = Sgicgi + Swicwi + cf

Sgi

ceff,1 = Sgicg1 + Swicw1 + cf

Sgi
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where:

pi = initial reservoir pressure, psi
p1 = average reservoir pressure during the abnormally

pressured behavior, psi
cgi = gas compressibility at pi , psi−1

cg1 = gas compressibility at p1, psi−1

cwi = water compressibility at pi , psi−1

cw1 = water compressibility at p1, psi−1

Swi = initial water saturation

Method II Hammerlindl’s second method also uses two
pressures pi and p1 to compute actual gas-in-place from the
following relationship:

G = Corr Gapp

where the correction factor “Corr” is given by:

Corr = (Bg1 − Bgi)Sgi

(Bg1 − Bgi)Sgi + Bgi(pi − p1)(cf + cwSwi)
and Bg is the gas formation volume factor at pi and p1 as
expressed in ft3/scf by:

Bg = 0. 02827
ZT
p

Effect of gas production rate on ultimate recovery
Volumetric gas reservoirs are essentially depleted by expan-
sion and, therefore, the ultimate gas recovery is indepen-
dent of the field production rate. The gas saturation in this
type of reservoirs is never reduced, only the number of
pounds of gas occupying the pore spaces is reduced. There-
fore, it is important to reduce the abandonment pressure
to the lowest possible level. In closed gas reservoirs, it is
not uncommon to recover as much as 90% of the initial
gas-in-place.

Cole (1969) pointed out that for water drive gas reservoirs,
recovery may be rate dependent. There are two possi-
ble influences which producing rate may have on ultimate
recovery. First, in an active water drive reservoir, the aban-
donment pressure may be quite high, sometimes only a few
psi below initial pressure. In such a case, the gas remain-
ing in the pore spaces at abandonment will be relatively
great. However, the encroaching water reduces the initial
gas saturation. Therefore, the high abandonment pressure
is somewhat offset by the reduction in initial gas saturation.
If the reservoir can be produced at a rate greater than the
rate of water influx rate, without water coning, then a high
producing rate could result in maximum recovery by tak-
ing advantage of a combination of reduced abandonment
pressure and reduction in initial gas saturation. Second, the
water-coning problems may be very severe in gas reservoirs,
in which case it will be necessary to restrict withdrawal rates
to reduce the magnitude of this problem.

Cole suggested that recovery from water drive gas reser-
voirs is substantially less than recovery from closed gas
reservoirs. As a rule of thumb, recovery from a water drive
reservoir will be approximately 50% to 0% of the initial gas-
in-place. The structural location of producing wells and
the degree of water coning are important considerations
in determining ultimate recovery. A set of circumstances
could exist—such as the location of wells very high on the
structure with very little coning tendencies—where water
drive recovery would be greater than depletion drive recov-
ery. Abandonment pressure is a major factor in determining
recovery efficiency, and permeability is usually the most
important factor in determining the magnitude of the aban-
donment pressure. Reservoirs with low permeability will
have higher abandonment pressures than reservoirs with
high permeability. A certain minimum flow rate must be sus-
tained, and a higher permeability will permit this minimum
flow rate at a lower pressure.

3.4 Coalbed Methane (CBM)

The term “coal” refers to sedimentary rocks that contain
more than 50% by weight and more than 70% by volume
of organic materials consisting mainly of carbon, hydrogen,
and oxygen in addition to inherent moisture. Coals gener-
ate an extensive suite of hydrocarbons and non-hydrocarbon
components. Although the term “methane” is used fre-
quently in the industry, in reality the produced gas is typically
a mixture of C1, C2, traces of C3, and heavier N2 and CO2.
Methane, as one such hydrocarbon constituent of coal, is of
special interest for two reasons:

(1) Methane is usually present in high concentration, in
coal, depending on composition, temperature, pressure,
and other factors.

(2) Of the many molecular species trapped within coal,
methane can be easily liberated by simply reducing the
pressure in the bed. Other hydrocarbon components are
tightly held and generally can be liberated only through
different extraction methods.

Levine (1991) suggested that the materials comprising a
coalbed fall broadly into the following two categories:

(1) “Volatile” low-molecular-weight materials (components)
that can be liberated from the coal by pressure reduction,
mild heating, or solvent extraction.

(2) Materials that will remain in the solid state after the
separation of volatile components.

Most of the key data needed for estimating gas-in-place
and performing other performance calculations is obtained
mainly from the following core tests:

● Canister desorption tests: These tests are conducted on
coal samples to determine:
– the total adsorbed gas content Gc of the coal sample as

measured in scf/ton of coal;
– desorption time t that is defined by the time required

to disrobe 63% of the total adsorbed gas.
● Proximate tests: These tests are designed to determine

coal composition in terms of:
– percentage of ash;
– fixed carbon;
– moisture content;
– volatile matter.

Remner et al. (1986) presented a comprehensive study
on the effects of coal seam properties on the coalbed
methane drainage process. The authors pointed out that
reservoir characteristics of coalbeds are complex because
they are naturally fractured reservoirs that are characterized
by two distinct porosity systems, i.e. dual-porosity systems.
These are:

(1) Primary porosity system: The matrix primary porosity
system in these reservoirs is composed of very fine
pores, “micropores,” with extremely low permeability.
These micropores contain a large internal surface area
on which substantial quantities of gas may be adsorbed.
With such low permeability, the primary porosity is both
impermeable to gas and inaccessible to water. How-
ever, the desorbed gas can flow (transport) through
the primary porosity system by the diffusion process,
as discussed later in this section. The micropores
are essentially responsible for most of the porosity in
coal.

(2) Secondary porosity system: The secondary porosity sys-
tem (macropores) of coal seams consists of the natural
fracture network of cracks and fissures inherent in all
coals. The macropores, known as cleats, act as a sink to
the primary porosity system and provide the permeabil-
ity for fluid flow. They act as conduits to the production
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Figure 3.30 Schematic of methane flow dynamics in a coal seam system (After King et al., 1986).

wells as shown in Figure 3.30. The cleats are mainly
composed of the following two major components:

(a) The face cleat: The face cleat, as shown conceptu-
ally in Figure 3.30 by Remner et al., is continuous
throughout the reservoir and is capable of draining
large areas.

(b) The butt cleat: Butt cleats contact a much smaller
area of the reservoir and thus are limited in their
drainage capacities.

In addition to the cleat system, a fracture system caused by
tectonic activity may also be present in coals. Water and gas
flow to coalbed methane wells occurs in the cleat and fracture
systems. These cleats and fractures combine to make up the
bulk permeability measured from well tests conducted on
coalbed methane wells.

The bulk of the methane, i.e., gas-in-place, is stored in an
adsorbed state on internal coal surfaces and is considered
a near liquid-like state as opposed to a free gas phase. The
coal cleats are considered initially saturated with water and
must be removed (produced) from the natural fractures, i.e.,
cleats, to lower the reservoir pressure. When the pressure is
reduced, the gas is released (desorbed) from the coal matrix
into the fractures. The gas production is then controlled by
a four-step process that includes:

Step 1. Removal of water from the coal cleats and lowering
the reservoir pressure to that of the gas desorp-
tion pressure. This process is called dewatering the
reservoir.

Step 2. Desorption of gas from the coal internal surface
area.

Step 3. Diffusion of the desorbed gas to the coal cleat
system.

Step 4. Flow of the gas through fractures to the wellbore.

The economical development of coalbed methane (CBM)
reservoirs depends on the following four coal seam charac-
teristics:

(1) gas content Gc;
(2) density of the coal ρB
(3) deliverability and drainage efficiency;
(4) permeability and porosity.

Hughes and Logan (1990) pointed out that an economic
reservoir must first contain a sufficient amount of adsorbed
gas (gas content), must have adequate permeability to pro-
duce that gas, have enough pressure for adequate gas
storage capacity, and, finally, the desorption time must be
such that it is economical to produce that gas. These four
characteristic coal seam parameters that are required to
economically develop the reservoir are discussed below.

3.4.1 Gas content
The gas present in the coal is molecularly adsorbed on the
coal’s extensive surface area. Gas content estimation meth-
ods involve placing freshly cut reservoir coal samples in
airtight gas desorption canisters and measuring the volume
of gas that desorbs as a function of time at ambient tempera-
ture and pressure conditions. A disadvantage of this analysis
procedure is that the measured desorbed gas volume is not
equal to the total gas content since a large amount of gas
is commonly lost by desorption during sample recovery.
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Figure 3.31 Plot of test data used to determine lost gas volume.

The volume of gas lost during this core recovery time is
referred to as “lost gas.” The volume of the lost gas can
be estimated by using the USBM direct method, as illus-
trated in Figure 3.31. The method simply involves plotting
the desorbed gas volume versus the square root of time,

√
t,

on a Cartesian scale and extrapolating the early-time des-
orption data back to time zero. Experience has shown that
this technique works adequately in shallow, low-pressure,
low-temperature coals with a lost gas volume in the range
of 5–10% of the total adsorbed gas content of the coal. How-
ever, in higher-pressure coal seams, the lost gas volume may
exceed 50% of the total adsorbed gas content.

It should be pointed out that some of the gas may not des-
orb from coal by the end of desorption measurements and
remains absorbed in the core sample. The term “residual
gas” is commonly referred to the gas that remains at the end
of the desorption test. McLennan and Schafer (1995) and
Nelson (1999) pointed out that the rate of gas desorption
from coals is so very slow that impracticably long time inter-
vals would be required for complete gas desorption to occur.
This residual gas content remaining at the end of desorption
measurements is determined by crushing the sample and
measuring the released gas volume. The chief limitation of
this direct method analysis procedure is that it yields dif-
ferent gas content values depending upon the coal sample
type, gas desorption testing conditions, and lost gas estima-
tion method. Nelson (1999) pointed out that the failure to
quantify and account for any residual gas volume that may
remain in the coal sample at the end of gas desorption mea-
surements would result in significant underestimation error
in coalbed gas-in-place evaluations. This residual gas volume
can be a significant fraction, ranging between 5% and 50%, of
the total adsorbed gas content.

Another important laboratory measurement is known as
the “sorption isotherm” and is required to relate the gas
storage capacity of a coal sample to pressure. This infor-
mation is required to predict the volume of gas that will be
released from the coal as the reservoir pressure declines.
Note that the gas content Gc is a measurement of the actual
(total) gas contained in a given coal reservoir, while the
sorption isotherm defines the relationship of pressure to the
capacity of a given coal to hold gas at a constant temperature.

Accurate determinations of both gas content and the sorp-
tion isotherm are required to estimate recoverable reserve
and production profiles. An example of a typical sorption
isotherm relationship is shown in Figure 3.32 as given by
Mavor et al. (1990). This sorption isotherm was measured
on a sample collected from a well in the Fruitland Forma-
tion Coal Seam of the San Juan Basin, New Mexico. The
authors pointed out that the total gas content Gc of the coal
was determined to be 355 scf/ton by desorption canister tests
performed on whole core samples at the well location. The
gas content is less than the sorption isotherm gas storage
capacity of 440 scf/ton at the initial reservoir pressure of
1620 psia. This implies that the pressure must be reduced to
648 psia which corresponds to 355 scf/ton on the sorption
isotherm curve. This pressure is known as the critical or des-
orption pressure pd. This value will determine whether a coal
seam is saturated or undersaturated. A saturated coal seam
holds as much adsorbed gas as it possibly can for the given
reservoir pressure and temperature. An analogy would be an
oil reservoir having a bubble point equal to the initial reser-
voir pressure. If the initial reservoir pressure is greater than
the critical desorption pressure, the coalbed is considered
an undersaturated one as in the case of Fruitland Forma-
tion Coal. An undersaturated coal seam is undesirable since
more water will have to be produced (dewatering process)
before gas begins to flow.

For an undersaturated reservoir, i.e., pi > pd, the total
volume of water that must be removed to drop from the
initial reservoir pressure pi to the desorption pressure pd
can be estimated from the total isothermal compressibility
coefficient:

ct = 1
Wi

Wp

pi − pd
[3.4.1]

where:

Wp = total volume of water removed, bbl
Wi = total volume of water in the reservoir (area), bbl
pi = initial reservoir pressure, psi
pd = desorption pressure, psi
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Figure 3.32 Sorption isotherm curve (After Mavor et al. 1990).

ct = total system compressibility coefficient in psi−1 as
given by:

ct = cw + cf

with:

cw = water compressibility
cf = formation compressibility

Solving Equation 3.4.1 for water removed gives:
Wp = ctWi(pi − pd) [3.4.2]

Example 3.9 An undersaturated coal system has the
following reservoir parameters:

Drainage area = 160 acres, thickness = 15 ft, porosity = 3%

Initial pressure = 650 psia, desorption pressure = 450 psia,

total compressibility = 16 × 10−5 psi−1

Estimate the total volume of water that must be produced
for the reservoir pressure to decline from initial pressure to
desorption pressure.

Solution
Step 1. Calculate the total volume of water initially in the

drainage area:
Wi = 7758AhφSwi

Wi = 7758(160)(15)(0. 03)(1. 0) = 558 576 bbl
Step 2. Estimate the total water volume to be produced to

reach the desorption pressure from Equation 3.4.2:
Wp = 16(10−5)(558 576)(650 − 450) = 17 874 bbl

Step 3. Assuming the area is being drained with only one
well that is discharging at 300 bbl/day, the total time
to reach the desorption pressure is:

t = 17 874/300 = 60 days

For most coal seams, the quantity of gas held in the coal
is primarily a function of coal rank, ash content, and the ini-
tial reservoir pressure. The adsorbed capacity of the coal
seam varies non-linearly with pressure. A common method
of utilizing sorption isotherm data is to assume that the
relationship between gas storage capacity and pressure can
be described by a relationship that was originally proposed

by Langmuir (1918). The sorption isotherm data that fits
this relationship is known as a “Langmuir isotherm” and is
given by:

V = VL
p

p + pL
[3.4.3]

where:

V = volume of gas currently adsorbed at p, scf/ft3

of coal
VL = Langmuir’s volume, scf/ft3

pL = Langmuir’s pressure, psi
p = reservoir pressure, psi

Because the amount of gas adsorbed depends on mass
of coal, not volume, a more useful form of the Langmuir
equation which expresses the adsorbed volume in scf/ton is:

V = Vm
bp

1 + bp
[3.4.4]

where:

V = volume of gas currently adsorbed at p, scf/ton
Vm = Langmuir’s isotherm constant, scf/ton

b = Langmuir’s pressure constant, psi−1

p = pressure, psi

The two sets of Langmuir’s constants are related by:

VL = 0. 031214VmρB

and:

pL = 1
b

where ρB is the bulk density of the coal deposit in gm/cm3.
The Langmuir pressure b and volume Vm can be estimated

by fitting the sorption isotherm data to Equation 3.4.4. The
equation can be linearized as follows:

V = Vm −
(

1
b

)
V
p

[3.4.5]

The above relationship suggests that a plot of the desorbed
gas volume V versus the ratio V /p on a Cartesian scale would
produce a straight line with a slope of −1/b and intercept
of Vm.

Similarly, when expressing the adsorbed gas volume in
scf/ft3, Equation 3.4.3 can be expressed as the equation of a
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Figure 3.33 Volume V versus the ratio V/p of Example 3.10.

straight line to give:

V = VL − pL

(
V
p

)

A plot of V in scf/ft3 as a function V /P would produce a
straight line with an intercept of VL and a negative slope of
−pL .

Example 3.10 The following sorption isotherm data is
given by Mavor et al. (1990) for a coal sample from the San
Juan Basin:

p (psi) 76.0 122.0 205.0 221.0 305.0 504.0 507.0 756.0 1001.0 1008.0

V (scf/ton) 77.0 113.2 159.8 175.0 206.4 265.3 267.2 311.9 339.5 340.5

Calculate the Langmuir isotherm constant Vm and the
Langmuir pressure constant b for the San Juan Basin coal
sample.

Solution

Step 1. Calculate V /p for each of the measured data points
and construct the following table:

p V V /p

76.0 77.0 1.013158
122.0 113.2 0.927869
205.0 159.8 0.779512
221.0 175.0 0.791855
305.0 206.4 0.676721
504.0 265.3 0.526389
507.0 267.2 0.527022
756.0 311.9 0.412566

1001.0 339.5 0.339161
1108.0 340.5 0.307310

Step 2. Plot V vs. V /p on a Cartesian scale, as shown in
Figure 3.33, and draw the best straight line through
the points.

Step 3. Determine the coefficient of the straight line, i.e.,
slope and intercept, to give:

Intercept = Vm = 465. 2 scf/ton

Slope = −1/b = −380. 26, or b = 0. 00263 psi−1

Step 4. The Langmuir equation, i.e., Equation 3.4.4, can be
written as:

V = 465. 2
0. 00263p

1 + 0. 00263p

Seidle and Arrl (1990) proposed that the desorbed gas
will begin to flow through the cleats at the time that is
required for a well to reach the semisteady-state. For a
gas well centered in a circular or square drainage area, the

semisteady-state flow begins when the dimension time tDA
is 0.1, or:

tDA = 0. 1 = 2. 637(10−4)kgt
φ(µgct )iA

Solving for the time t gives:

t = 379. 2φ(µgct )iA
Kg

where:

t = time, hours
A = drainage area, ft2

kg = gas effective compressibility, md
φ = cleat porosity, fraction

µg = gas viscosity, cp
ct = total system compressibility, psi−1

Both gas viscosity and system compressibility are calcu-
lated at the desorption pressure. The total system compress-
ibility is given by:

ct = cp + Swcw + Sgcg + cs

where:

cp = cleat volume compressibility, psi−1

Sw = water saturation

TLFeBOOK



3/222 UNCONVENTIONAL GAS RESERVOIRS

Sg = gas saturation
cw = water compressibility, psi−1

cg = gas compressibility, psi−1

cs = apparent sorption compressibility, psi−1

The authors pointed out that the adsorption of the gas on
the coal surface increases the total system compressibility
by cs, i.e., apparent sorption compressibility, that is given by:

cs = 0. 17525BgVmρBb
φ(1 + bp)2 [3.4.6]

where:

Bg = gas formation volume factor, bbl/scf
ρB = bulk density of the coal deposit, gm/cm3

Vm, b = Langmuir’s constants

Example 3.11 In addition to the data given in Example
3.10 for the San Juan coal, the following properties are also
available:

ρB = 1. 3 g/cm3, φ = 2%, T = 575◦R

pd = 600 psi, Sw = 0. 9, Sg = 0. 1

cf = 15 × 10−6 psi−1, cw = 10 × 10−6 psi−1,

cg = 2. 3 × 10−3 psi−1

A = 40 acres, kg = 5 md, µg = 0. 012 cp

Z = factor at 600 psi = 0. 86

Calculate the time required to achieve the semisteady state.

Solution

Step 1. From Example 3.10:

Vm = 465. 2 scf/ton

b = 0. 00263 psi−1

Step 2. Calculate Bg in bbl/scf from Equation 3.2.6 or:

Bg = 0. 00504
ZT
P

= 0. 00504
(0. 86)(575)

600
= 0. 00415 bbl/scf

Step 3. Apply Equation 3.4.6 to calculate cs to give:

cs = 0. 17525(0. 00415)(465. 2)(1. 3)(0. 00263)
0. 02[1 + (0. 00263)(600)]2

= 8. 71 × 10−3 psi−1

Step 4. Calculate ct :

ct = 15(10−6) + 0. 9(10)(10−6) + 0. 1(2. 3)(10−3)

+ 8. 71(10−3) = 0. 011 psi−1

Step 5. Calculate the time to reach semisteady state:

t = (379. 2)(0. 03)(0. 012)(0. 011)(40)(43560)
5

= 523 hours

Seidle and Arrl (1990) proposed the use of conventional
black-oil simulators to model the production behavior of
coalbed methane. The authors pointed out that the amount
of gas held by coal at a given pressure is analogous to the
amount of gas dissolved in a crude oil system at a given pres-
sure. The Langmuir isotherm of coalbeds is comparable to
the solution gas–oil ratio Rs of conventional oil reservoirs.
A conventional reservoir simulator can be used to describe

coalbed methane by treating the gas adsorbed to the surface
of the coal as a dissolved gas in immobile oil.

Seidle and Arrl suggested that the introduction of the oil
phase requires increasing the porosity and altering the ini-
tial saturations. The gas–water relative permeability curves
must be modified and fluid properties of the immobile oil
must be also adjusted. The required adjustments for use in
a conventional black-oil simulator are summarized below:

Step 1. Select any arbitrary initial oil saturation Som for the
model, with the subscript m denoting a model value.
The initial value may be set as the residual oil sat-
uration and must remain constant throughout the
simulation.

Step 2. Adjust the actual coalbed cleat porosity φm by the
following expression:

φm = φ

1 − Som
[3.4.7]

Step 3. Adjust the actual water and gas saturations, i.e., Sw
and Sg, to equivalent model saturations Swm and Sgm
from:

Swm = (1 − Som)Sw [3.4.8]

Sgm = (1 − Som)Sg [3.4.9]

These two equations are used to adjust gas–water
relative permeability data for input into the simula-
tor. The relative permeability corresponding to the
actual Sg or Sw is assigned to the equivalent model
saturation Sgm or Swm.

Step 4. To ensure that the oil phase will remain immobile,
assign a zero oil relative permeability Kro = 0 for
all saturations and/or specifying a very large oil
viscosity, i.e., µo = 106 cp.

Step 5. To link the gas dissolved in the immobile oil, i.e., Rs
in immobile oil, convert the sorption isotherm data
to gas solubility data using the following expression:

Rs =
(

0. 17525ρB

φmSom

)
V [3.4.10]

where:

Rs = equivalent gas solubility, scf/STB
V = gas content, scf/STB
ρB = bulk coal seam density, g/cm3

Equation 3.4.10 can be expressed equally in terms of
Langmuir’s constants by replacing the gas content V
with Equation 3.4.4 to give:

Rs =
(

0. 17525ρB

φmSom

)
(Vm)

(
bp

1 + bp

)
[3.4.11]

Step 6. To conserve mass over the course of simulation, the
oil formation volume factor must be constant with a
value of 1.0 bbl/STB.

Using the relative permeability and coal seam proper-
ties as given by Ancell et al. (1980) and Seidle and Arrl
(1990), the following example illustrates the use of the above
methodology.

Example 3.12 The following coal seam properties and
relative permeability are available:

Sgi = 0. 0, Vm = 660 scf/ton, b = 0. 00200 psi−1

ρB = 1. 3 g/cm3, φ = 3%
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Sg Sw = 1 − Sg Krg Krw

0.000 1.000 0.000 1.000
0.100 0.900 0.000 0.570
0.200 0.800 0.000 0.300
0.225 0.775 0.024 0.256
0.250 0.750 0.080 0.210
0.300 0.700 0.230 0.140
0.350 0.650 0.470 0.090
0.400 0.600 0.750 0.050
0.450 0.550 0.940 0.020
0.475 0.525 0.980 0.014
0.500 0.500 1.000 0.010
0.600 0.400 1.000 0.000
1.000 0.000 1.000 0.000

Adjust the above relative permeability data and convert
the sorption isotherm data into gas solubility for use in a
black-oil model.

Solution
Step 1. Select any arbitrary initial oil saturation, to get:

Som = 0. 1

Step 2. Adjust the actual cleat porosity by using Equation
3.4.7:

φm = 0. 03
1 − 0. 1

= 0. 0333

Step 3. Retabulate the relative permeability data by only
readjusting the saturation values using Equations
3.4.8 and 3.4.9, to give:

Sg Sw Sgm = 0. 9Sg Swm = 0. 9Sw krg krw

0.0000 1.0000 0.0000 0.9000 0.0000 1.0000
0.1000 0.9000 0.9000 0.8100 0.0000 0.5700
0.2000 0.8000 0.1800 0.7200 0.0000 0.3000
0.2250 0.7750 0.2025 0.6975 0.0240 0.2560
0.2500 0.7500 0.2250 0.6750 0.0800 0.2100
0.3000 0.7000 0.2700 0.6300 0.2300 0.1400
0.3500 0.6500 0.3150 0.5850 0.4700 0.0900
0.4000 0.6000 0.3600 0.5400 0.7500 0.0500
0.4500 0.5500 0.4045 0.4950 0.9400 0.0200
0.4750 0.5250 0.4275 0.4275 0.9800 0.0140
0.5000 0.5000 0.4500 0.4500 1.0000 0.0100
0.6000 0.4000 0.5400 0.3600 1.0000 0.0000
1.0000 0.0000 0.9000 0.0000 1.0000 0.0000

Step 4. Calculate Rs from either Equation 3.4.8 or 3.4.9 at
different assumed pressures:

Rs =
[

(0. 17525)(1. 30)
(0. 0333)(0. 1)

]
V = 68354V

with:

V = (660)
0. 0002p

1 + 0. 002p
to give:

p (psia) V (scf/ton) Rs (scf/STB)

0.0 0.0 0.0
50.0 60.0 4101.0

100.0 110.0 7518.0
150.0 152.3 10520.0
200.0 188.6 12890.0
250.0 220.0 15040.0
300.0 247.5 16920.0

p (psia) V (scf/ton) Rs (scf/STB)

350.0 271.8 18570.0
400.0 293.3 20050.0
450.0 312.6 21370.0
500.0 330.0 22550.0

For pressures below the critical desorption pressure, the
fractional gas recovery could be roughly estimated from the
following relationship:

RF = 1 −
[(

Vm

Gc

)(
bp

1 + bp

)]a

[3.4.12]

where:

RF = gas recovery factor
Vm, b = Langmuir’s constants

V = gas content at pressure p, scf/ton
Gc = gas content at critical desorption pressure,

scf/ton
p = reservoir pressure, psi
a = recovery exponent

The recovery exponent a is included to account for the
deliverability, heterogeneity, and well spacing, among other
factors that affect the gas recovery. The recovery exponent
usually ranges between 0.5 and 0.85 and can be estimated
from the recorded field recovery factor at pressure p.
A detailed discussion of the MBE calculations and predicting
the recovery performance of coal seems are presented later
in this chapter.

Example 3.13 In addition to the data given in Example
3.10, the following information is also available:

Gc = 330 scf/ton at 500 psia, a = 0. 82
Estimate the gas recovery factor as a function of pressure

to an abandonment pressure of 100 psia.

Solution
Step 1. Substitute Langmuir’s constants, i.e., Vm and b, and

the recovery exponent into Equation 3.4.12, to give:

RF = 1 −
[(

660
330

)(
0. 002p

1 + 0. 002p

)]0.82

= 1 −
[

0. 0004p
1 + 0. 002p

]0.82

Step 2. Assume several reservoir pressures and calculate
the recovery factor in the following tabulated form:

p (psi) RF (%)

450 4.3
400 9.2
350 14.7
300 21.0
250 28.3
200 36.8
150 47.0
100 59.4

Many factors influence the measured gas content Gc
and sorption isotherm and, consequently, affect the deter-
mination of the initial gas-in-place. Among these factors
are:

● moisture content of the coal;
● temperature;
● rank of the coal.
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Figure 3.34 Effect of moisture content on gas storage
capacity.

These parameters are briefly discussed below.

● Moisture content: One of the major difficulties in mea-
suring the gas content and sorption isotherm is the
reproduction of the coal content at reservoir conditions.
The moisture content of coal is the weight of the water
in the coal matrix, not the water contained as free water
in the fracture system. The gas storage capacity of coal
is significantly affected by moisture content as shown in
Figures 3.34 and 3.35. Figure 3.34 illustrates Langmuir
isotherms as the moisture increases from 0.37% to 7.41%
with apparent reduction of the methane storage capacity.
Figure 3.35 shows that the quantity of methane adsorbed
in coal is inversely proportional to the inherent moisture
content. As evidenced by these two figures, an increase
in the moisture content decreases the ability of coal to
store gas.

● Temperature: This affects both the volume of gas retained
by the coal and the rate at which it is desorbed. Numer-
ous laboratory studies confirmed the following two
observations:
(a) the rate of gas desorption from the coal is exponen-

tially dependent upon temperature (i.e., the higher
the temperature, the faster the desorption);

T =   70°F,  Moisture = 7.41%

T = 125°F,  Moisture = 7.41%

T = 125°F,  Moisture = 0.37%
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Figure 3.35 Sorption isotherm temperature and moisture content sensitivity.
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Figure 3.36 Relationship between rank and sorptive
capacity.

(b) the gas sorption capacity of the coal is inversely pro-
portional to temperature (i.e., the storage capacity
of the coal decreases with increasing temperature
as shown in Figure 3.34).

● Rank of the coal: According to the American Society for
Testing and Materials (ASTM), coal rank is the assign-
ment of a distinct maturation level to a coal derived
through the measurement of chemical and physical prop-
erties of the coal. The properties most commonly used
for rank classification include the fixed carbon content,
volatile matter content, and calorific value, among older
properties. Coal rank determination is important as the
capability of the coal to have generated gas is related to
the rank of the coal. Figure 3.36 shows that the gas content
and the storage capacity of the coal increase with higher
coal ranks. Coals with higher ranks have more capacities
to both store and generate gas.

3.4.2 Density of the coal
Gas-in-place volume G is the total amount of gas stored within
a specific reservoir rock volume. The basic equation used to
calculate G is:
G = 1359. 7AhρBGc [3.4.13]
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where:

G = initial gas-in-place, scf
A = drainage area, acres
h = thickness, ft

ρB = average coal bulk density, g/cm3

Gc = average gas content, scf/ton

Mavor and Nelson (1997) pointed out that the use of
Equation 3.4.13 requires accurate determination of the four
parameters in the equation, i.e., A, h, Gc, and ρB. The accu-
racy of G estimates is limited by uncertainties or errors
in the parameters. Nelson (1999) pointed out the density
of the coal is a strong function of its composition. Since
the mineral matter component of coal has a significantly
higher density than the bulk organic matter, coal density
will be directly correlated to the mineral matter content.
Coal density and compositional properties are not uniform
throughout the coal seam but vary vertically and laterally
as a function of coal rank, moisture content, and mineral
matter content, among other depositional environment geo-
logical variables. To illustrate the significant vertical and
lateral changes in coal density, Mavor and Nelson (1997)
used the basal Fruitland Formation coalbed reservoirs at
three well locations in the San Juan Basin as examples
for this density variation. As shown below, these examples
list the variations in ash content, gas content, and average
density.

Well Interval Avg. ash Avg. density Avg. gas
content (g/cm3) content
(%) (scf/ton)

1 Intermediate 27.2 1.49 370
Basal 20.4 1.44 402

2 Intermediate 36.4 1.56 425
Basal 31.7 1.52 460

3 Intermediate 61.3 1.83 343
Basal 43.3 1.63 512

It is commonly assumed that interbedded rocks, hav-
ing densities greater than 1.75 g/cm3 have negligible gas
storage capacity.

Due to its organic richness, coal has a much lower bulk
density than, for example, shale or sandstone, and, as a
result, the gross thickness of coal-bearing intervals can be
readily quantified using geophysical log data. Nelson (1999)
pointed out that the commonly used analysis practice for
coalbed reservoir thickness is to use 1.75 g/cm3 as the maxi-
mum log density value for the gas-bearing seams. The author
stated that the density of ash in San Juan Basin coal is typi-
cally 2.4 to 2.5 g/cm3. The amount of gas stored in coalbed
reservoir rocks between the density values of 1.75 and
2.5 g/cm3 can be significant. This suggests that if the reser-
voir thickness analysis is based upon a maximum log density
value of 1.75 g/cm3, the calculated gas-in-place volume as
expressed by Equation 3.4.13 can greatly underestimate
the gas-in-place. It should be pointed out that the moisture
content, which varies inversely as a function of coal rank,
substantially affects the coal density. As shown by Equation
3.4.13, the gas initially in place G is a function of coal density
ρc. Neavel et al. (1999), Unsworth et al. (1989), Pratt et al.
(1999), and Nelson (1989) observed that high-rank coals
(bituminous coals) have a low moisture content of less than
10%, whereas low-rank coals (sub-bituminous coals) have a
very high moisture content (>25%). The authors pointed out
that at 5% ash content, Powder River Basin sub-bituminous
coal has a dry-basis density of 1.4 g/cm3; however, with a
moisture content of 27% and ash content of 5%, the density
is only 1.33 g/cm3. This density value difference indicates

how crucial the accurate moisture content is for a reliable
estimate of gas-in-place.

3.4.3 Deliverability and drainage efficiency
Interest has grown recently in utilizing the vast resources of
coalbed methane reservoirs. As indicated earlier, methane is
held in an adsorbed state on the surface of the coal pores by
reservoir pressure; this pressure must be reduced to allow
desorption of methane from coal surfaces and subsequent
methane production. The reservoir pressure is caused by an
existing static pressure due to groundwater. Hence, unlike a
conventional gas reservoir, gas production is obtained from
coal seams by first dewatering and depressurizing the coal
seam. Typically, coal seams are naturally fractured and con-
tain laterally extensive, closed, spaced vertical fractures (i.e.,
cleats). Because the intrinsic permeability of the coal matrix
is usually very small, these cleats must be well developed
with the minimum required permeability (usually > 1 md)
to economically develop the reservoir. Holditch et al. (1988)
proposed that to produce gas at economic rates from a coal
seam, the following three criteria must be met:

(1) an extensive cleat system must exist to provide the
needed permeability;

(2) the gas content must be large enough to provide a source
that is worth developing;

(3) the cleat system must be connected to the wellbore.

Therefore, large-scale coalbed methane field develop-
ment requires significant initial investment before any gas
production can occur. Most coalbed methane reservoirs
require:

● hydraulic fracture stimulation to supplement the coal
cleats and to interconnect the cleat system to the wellbore;

● artificial lift of the reservoir water;
● water disposal facilities;
● complete well pattern development.

In general, proper well spacing and stimulation govern
the economic attractiveness of the gas production from
coalbeds.

Construction of a complete theory of coal well deliverabil-
ity is difficult as it is necessary to consider the two-phase flow
of gas and water in the coalbed. However, coal wells produce
substantial amounts of water before the reservoir pressure
declines to the desorption pressure. Once the drainage area
of a coal well has been dewatered and the gas rate peaks,
water production often declines to negligible rates. This peak
in gas rate is essentially a function of:

● the ability of the primary porosity, i.e., porosity of the coal
matrix, to supply gas to the secondary porosity system
(cleat system);

● the conductivity of the cleat system to water.

Unlike conventional gas and oil reservoirs where minimal
well interference is desired, the design of efficient dewa-
tering and depressurizing systems requires maximum well
interference for maximum drawdown. Well performance in
coalbed reservoirs is strongly dependent on this amount of
pressure interference between wells which allows the reser-
voir pressure to be lowered rapidly and consequently allows
gas to be released from the coal matrix. This objective can
be accomplished by optimizing the following two decision
variables:

(1) optimal well spacing;
(2) optimal drilling pattern shape.

Wick et al. (1986) used a numerical simulator to exam-
ine the effect of well spacing on single-well production. The
investigation examined the recovery factors from a 160 acre
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coalbed that contains 1676 MMscf of gas as a function of well
spacing for a total of simulation time of 15 years. Results of
the study for 20, 40, 80, and 160 acre well spacing are given
below:

Well Wells Gas-in-place Cum. gas Recovery Total gas
spacing on 160 per well prod. per well factor prod. from
(acres) acres (MMscf) (MMscf) (%) 160 acres

5 years 15 years (MMscf)

160 1 1676 190 417 25 417
80 2 838 208 388 46 776
40 4 419 197 292 70 1170
20 8 209.5 150 178 85 1429

These results suggest that gas recovery over 15 years from
an individual well increases with larger well spacing, while
gas recoveries from the first five years are very similar for
the 40, 80, and 160 acre cases. This is largely a result of the
need to dewater the drainage area for a particular well before
gas production becomes efficient. Percentage gas recovery
ranges from 25% on 160 acre spacing to 85% on 20 acre spac-
ing. Drilling on 20 acre spacing produces the most gas from
a 160 acre area in 15 years. At this time, 85% of the gas-in-
place has been produced but only 25% gas recovery with
one well on the 160 acre spacing. In determining optimal
well spacing, an economic evaluation that includes current
and predicted future gas price must be made by the operator
to maximize both gas recovery and profit.

Selecting the optimum pattern depends heavily on the
following variables:

● the coal characteristics, i.e., isotropic or anisotropic per-
meability behavior;

● reservoir configuration;
● locations of existing wells and total number of wells;
● initial water pressure and desorption pressure;
● volume of water to be removed and the required draw-

down.

3.4.4 Permeability and porosity
Permeability in coals is essentially controlled by the mag-
nitude of the net stress in the reservoir. The variations in
the net stress throughout the coal seam can cause local
variations in permeability. It has been also shown by sev-
eral investigators that the coal permeability can increase as
gas is desorbed from the coal matrix. Numerous laboratory
measurements have shown the dependence of permeabil-
ity and porosity on the stress conditions in coal seams with
relationships that are unique for each coal seam. With the
production, cleat properties experience changes due to the
following two distinct and opposing mechanisms:

(1) cleat porosity and permeability decline due to com-
paction and the reduction of net stress �σ ;

(2) cleat porosity and permeability increase due to coal
matrix shrinkage as a result of gas desorption.

Walsh (1981) suggested that the change in the net stress
�σ can be expressed in terms of reservoir pressure by:

σ = σ − σo = s(po − p) = s�p [3.4.14]

where:

�p = pressure drop from po to p, psi
po = original pressure, psia
p = current pressure, psia

σo = original effective stress, psia
σ = effective stress, psia
s = constant relating change in psia pressure to

change in effective stress

The effective stress is defined as the total stress minus the
seam fluid pressure. The effective stress tends to close the
cleats and to reduce permeability within the coal. If the effec-
tive stress σ is not known, it can be approximated at any given
depth D by:

σ = 0. 572D
Equation 3.4.14 can be simplified by setting the constant s
equal to 0.572, to give:

�σ = 0. 572�p
Defining the average pore compressibility by the following
expression:

c̄p = 1
po − p

∫ po

p
cpdp

where:

cp = average pore compressibility, psi−1

cp = pore volume compressibility, psi−1

the desired relationships for expressing the changes in
porosity and permeability as a function of the reservoir
pressure are given by:

φ = A
1 + A

[3.4.15]

with:

A = φo

1 + φo
exp−sc̄p(�p) [3.4.16]

and:

k = ko

(
φ

φo

)3

where φ is the porosity and the subscript o represents the
value at initial conditions.

Somerton et al. (1975) proposed a correlation that allows
the formation permeability to vary with the changes in the
net stress �σ as follows:

k = ko

[
exp

(−0. 003�σ

(ko)0.1

)
+ 0. 0002 (�σ)1/3 (ko

)1/3
]

where:

ko = original permeability at zero net stress, md
k = permeability at net stress �σ , md

�σ = net stress, psia

3.4.5 Material balance equation for coalbed methane
The MBE is a fundamental tool for estimating the origi-
nal gas-in-place G and predicting the recovery performance
of conventional gas reservoirs. The MBE as expressed by
Equation 3.3.8 is:

p
Z

= pi

Zi
−
(

pscT
TscV

)
Gp

The great utility of the p/Z plots and the ease of their
constructions for conventional gas reservoirs have led to
many efforts, in particular the work of King (1993) and Sei-
dle (1999), to extend this approach to unconventional gas
resources such as coalbed methane (CBM).

The MBE for CBM can be expressed in the following
generalized form:
Gas produced GP = gas originally adsorbed G + original

free gas GF − gas currently adsorbed

at this pressure GA − remaining free GR

or:
Gp = G + GF − GA − GR [3.4.17]
For a saturated reservoir (i.e., initial reservoir pressure pi =
desorption pressure pd) with no water influx, the four main
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components of the right-hand-side of the above equality can
be determined individually as follows.

Gas originally adsorbed G As defined previously by Equa-
tion 3.4.13, the gas-in-place G is given by:

G = 1359. 7AhρBGc

where:

G = gas initially in place, scf
ρB = bulk density of coal, g/cm3

Gc = gas content, scf/ton
A = drainage area, acres
h = Average thickness, ft

Original free gas GF For this:
GF = 7758Ahφ(1 − Swi)Egi [3.4.18]
where:

GF = original free gas-in-place, scf
Swi = initial water saturation

φ = porosity
Egi = gas expansion factor at pi in scf/bbl and given by:

Egi = 5. 615ZscTsc

psci

pi

TZi
= 198. 6

pi

TZi

Gas currently adsorbed at p, GA The gas stored by adsorp-
tion at any pressure p is typically expressed with the adsorp-
tion isotherm or mathematically by Langmuir’s equation, i.e.,
Equation 3.4.4, as:

V = V m
bp

1 + bp
where:

V = volume of gas currently adsorbed at p, scf/ton
Vm = Langmuir’s isotherm constant, scf/ton

b = Langmuir’s pressure constant, psi−1

The volume of the adsorbed gas V as expressed in scf/ton
at reservoir pressure p can be converted into scf by the
following relationship:
GA = 1359. 7AhρBV [3.4.19]
where:

GA = adsorbed gas at p, scf
ρB = average bulk density of the coal, g/cm3

V = adsorbed gas at p, scf/ton

Remaining free gas GR During the dewatering phase of
the reservoir, formation compaction (matrix shrinkage) and
water expansion will significantly effect water production.
Some of the desorbed gas remains in the coal–cleat system
and occupies a PV that will be available with water pro-
duction. King (1993) derived the following expression for
calculating the average water saturation remaining in the
coal cleats during the dewatering phase:

Sw =
Swi[1 + cw( pi − p)] − BwWp

7758Ahφ

1 − ( pi − p)cf
[3.4.20]

where:

pi = initial pressure, psi
p = current reservoir pressure, psi

Wp = cumulative water produced, bbl
Bw = water formation volume factor, bbl/STB

A = drainage area, acres
cw = isothermal compressibility of the water, psi−1

cf = isothermal compressibility of the formation, psi−1

Swi = initial water saturation

Using the above estimated average water saturation, the
following relationship for the remaining gas in cleats is
developed:
GR = 7758Ahφ

×




BwWp

7758Ahφ
+ (1 − Swi) − (pi − p)(cf + cwSwi)

1 − (pi − p)cf


Eg

[3.4.21]
where:

GR = remaining gas at pressure p, scf
Wp = cumulative water produced, bbl

A = drainage area, acres

and with the gas expansion factor given by:

Eg = 198. 6
p

TZ
scf/bbl

Substituting the above derived four terms into Equation
3.4.17 and rearranging gives:

Gp = G + GF − GA − GR

or:

Gp + BwWpEg

1 − (cf�P)
= Ah

[
1359. 7ρB

(
Gc − Vmbp

1 + bp

)

+ 7758φ[�P(cf + Swicwi) − (1 − Swi)]Eg

1 − (cf�P)

]

+ 7758Ahφ(1 − Swi)Egi [3.4.22]
In terms of the volume of gas adsorbed V , this equation can
be expressed as:

Gp + BwWpEg

1 − (cf�P)
= Ah

[
1359. 7ρB(Gc − V )

+ 7758φ[�P(cf + Swicwi) − (1 − Swi)]Eg

1 − (cf�P)

]

+ 7758Ahφ((1 − Swi)Egi [3.4.23]
Each of the above two forms of the generalized MBE is the
equation of a straight line and can be written as:

y = mx + a
with:

y = Gp + BwWpEg

1 − (cf�P)

x = 1359. 7ρB

(
Gc − Vmbp

1 + bp

)

+ 7758φ[�P(cf + Swicwi) − (1 − Swi)]Eg

1 − (cf�P)

or equivalently:
x = 1359. 7ρB(Gc − V )

+ 7758φ[�P(cf + Swicwi) − (1 − Swi)]Eg

1 − (cf�P)
with a slope of :

m = Ah
and intercept as:

a = 7758Ahφ(1 − Swi)Egi

A plot of y as defined above and using the production
and pressure drop data versus the term x would produce
a straight line with a slope m of Ah and intercept of a.
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The drainage area A as calculated from the slope m and the
intercept a must be the same. That is:

A = m
h

= a
7758hφ(1 − Swi)Egi

For scattered points, the correct straight line must satisfy
the above equality.

Neglecting the rock and fluid compressibility, Equation
3.4.23 is reduced to:
Gp + BwWpEg

= Ah
[

1359. 7ρB

(
Gc − Vm

bp
1 + bp

)
− 7758φ(1 − Swi)Eg

]

+ 7758Ahφ(1 − Swi)Egi [3.4.24]
This expression is again the equation of a straight line, i.e.,
y = mx + a, where:

y = Gp + BwWpEg

x = 1359. 7ρB(Gc − Vm
bp

1 + bp
) − 7758φ(1 − Swi)Eg

slope: m = Ah
intercept: a = 7758Ahφ(1 − Swi)Egi

In terms of the adsorbed gas volume V , Equation 3.4.24 is
expressed as:
Gp +BwWpEg =Ah

[
1359.7ρB(Gc −V )−7758φ(1−Swi)Eg

]

+7758Ahφ(1−Swi)Egi [3.4.25]
With the calculation of the bulk volume Ah, the original gas-
in-place G can then be calculated from:

G = 1359. 7(Ah)ρBGc

Example 3.14 A coal well is draining a homogeneous
320 acre coal deposit.

The actual well production and pertinent coal data is given
below:

Time Gp Wp p p/Z
(days) (MMscf) (METB) (psia) (psia)

0 0 0 1500 1704.5
730 265.086 157 490 1315 1498.7
1460 968.41 290 238 1021 1135.1
2190 1704.033 368 292 814.4 887.8
2920 2423.4 425 473 664.9 714.1
3650 2992.901 464 361 571.1 607.5

Langmuir’s pressure constant b = 0.00276 psi−1

Langmuir’s volume constant Vm = 428.5 scf/ton
Average bulk density ρB = 1.70 g/cm3

Average thickness h = 50 ft
Initial water saturation Swi = 0.95
Drainage area A = 320 acres
Initial pressure pi = 1500 psia
Critical (desorption) pressure pd = 1500 psia
Temperature T = 105oF
Initial gas content Gc = 345.1 scf/ton
Formation volume factor Bw = 1.00 bbl/STB
Porosity φ = 0.01
Water compressibility cw = 3 × 10−6 psi−1

Formation compressibility cf = 6 × 10−6 psi−1

(a) Neglecting formation and water compressibility coef-
ficients, calculate the well drainage area and original
gas-in-place.

(b) Repeat the above calculations by including water and
formation compressibilities.

Solution

Step 1. Calculate Eg and V as a function of pressure by
applying the following expressions:

Eg = 198. 6
p

Tz
= 0. 3515

p
z

scf/bbl

V = Vm
bp

1 + bp
= 1. 18266

p
1 + 0. 00276p

scf/ton

p p/Z Eg V
(psi) (psi) (scf/bbl) (scf/ton)

1500 1704.5 599.21728 345.0968
1315 1498.7 526.86825 335.903
1021 1135.1 399.04461 316.233
814.4 887.8 312.10625 296.5301
664.9 714.1 251.04198 277.3301
571.1 607.5 213.56673 262.1436

Step 2. Neglecting cw and cf , the MBE is given by Equation
3.4.25 or:

Gp + BwWpEg = Ah[1359. 7ρB(Gc − V )

− 7758φ(1 − Swi)Eg] + 7758Ahφ(1 − Swi)Egi

or:

Gp + BwWpEg = Ah[2322. 66(345. 1 − V )

− 3. 879Eg] + 2324. 64(Ah)

Use the given data in the MBE to construct the
following table:

p V Gp Wp Eg y = Gp+ x = 2322. 66
(psi) (scf/ton) (MMscf) (MMETB) (scf/bbl) WpEg (345. 1 − V )

(MMscf) −3. 879Eg
(scf/acre-ft)

1500 345.097 0 0 599.21 0 0
1315 335.90 265.086 0.15749 526.87 348.06 19310
1021 316.23 968.41 0.290238 399.04 1084.23 65494
814.4 296.53 1704.033 0.368292 312.11 1818.98 111593
664.9 277.33 2423.4 0.425473 251.04 2530.21 156425
571.1 262.14 2992.901 0.464361 213.57 3092.07 191844

Step 3. Plot Gp +BwWpEg vs. 2322. 66(345. 1−V )−3. 879Eg
on a Cartesian scale, as shown in Figure 3.37.

Step 4. Draw the best straight line through the points and
determine the slope, to give:

Slope = Ah = 15 900 acre ft

or:

Area A = 15 900
50

= 318 acres

Step 5. Calculate the initial gas-in-place:

G = 1359. 7AhρBGc

= 1359. 7(318)(50)(1. 7)(345. 1)

= 12. 68 Bscf

GF = 77. 58Ahφ(1 − Swi)Egi

= 7758(318)(50)(0. 01)(0. 05)(599. 2)

= 0. 0369 Bscf

Total gas-in-place = G + GF = 12. 68 + 0. 0369
= 12. 72 Bscf
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or:

Figure 3.37 Graphical determination of drainage area.

Step 1. Using the given values of cw and cf in Equation 3.4.23,
calculate the Y and X terms and tabulate the results
as a function of pressure as follows:

y =Gp + WpEg

1−[6(10−6)(1500−p)]
x =1359.7(1.7)(345.1−V )

+ 7758(0.01)[(1500−p)(6(10−6)+0.95cwi)−(1−0.95)]Eg

1−[6.(10−6)(1500−p)]

p V X Y
(psi) (scf/ton)

1315 335.903 1.90E+04 3.48E+08
1021 316.233 6.48E+04 1.08E+09
814.4 296.5301 1.11E+05 1.82E+09
664.9 277.3301 1.50E+05 2.53E+09
571.1 262.1436 1.91E+05 3.09E+09

Step 2. Plot the x and y values on a Cartesian scale, as
shown in Figure 3.38, and draw the best straight line
through the points.

Step 3. Calculate the slope and intercept of the line, to give:

Slope = Ah = 15 957 acre ft

or:

A = 15 957
50

= 319 acres

To confirm the above calculated drainage area of the
well, it can be also determined from the intercept of
the straight line; to give:

Intercept = 3. 77(107) = 7758Ahφ(1 − Swi)Egi

or:

A = 3. 708(107)
7758(50)(0. 01)(0. 05)(599. 2)

= 324 acres

Step 4. Calculate the initial gas-in-place to give:
Total = G + GF

= 12. 72 + 0. 037 = 12. 76 Bscf

Under the conditions imposed on Equation 3.4.24 and assum-
ing 100% initial water saturation, the usefulness of the
equation can be extended to estimate the average reservoir
pressure p from the historical production data, i.e., Gp and
Wp. Equation 3.4.24 is given as:

Gp + WpEg = (1359. 7ρBAh)
[(

Gc − Vm
bp

1 + bp

)]

Or in terms of G:

Gp + WpEg = G − (1359. 7ρBAh)Vm
bp

1 + bp
[3.4.26]

At the initial reservoir pressure pi , initial gas-in-place G is
given by:
G = [1359. 7ρBAh]Gc

= [1359. 7ρBAh]
(

Vm
bpi

1 + bpi

)
[3.4.27]

Combining Equation 3.4.27 with 3.4.26 and rearranging
gives:[(

p
pi

)(
1 + bpi

1 + bp

)]
= 1 −

[
1
G

(Gp + BwWpEg)
]

or:[(
p
pi

)(
1 + bpi

1 + bp

)]
= 1 − 1

G

(
Gp + 198. 6

p
ZT

BwWp

)

[3.4.28]
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Figure 3.38 Straight-line relationship of y as a function of x.

where:

G = initial gas-in-place; scf
Gp = cumulative gas produced, scf
Wp = cumulative water produced, STB
Eg = gas formation volume factor, scf/bbl
pi = initial pressure
T = temperature, ◦R
Z = z-factor at pressure p

Equation 3.4.28 is the equation of a straight line with a slope
of −1/G and intercept of 1.0. In a more convenient form,
Equation 3.4.28 is written as:

y = 1 + mx

where:

y =
[(

p
pi

)(
1 + bpi

1 + bp

)]
[3.4.29]

x = Gp + 198. 6
p

ZT
BwWp [3.4.30]

m = 1
G

Figure 3.39 shows the graphical linear relationship of Equa-
tion 3.4.28. Solving this linear relationship for the average
reservoir pressure p requires an iterative procedure as
summarized in the following steps:

Step 1. On a Cartesian scale, draw a straight line that origi-
nates from 1 on the y axis and with a negative slope
of 1/G, as shown in Figure 3.39.

Step 2. At a given Gp and Wp, guess the reservoir pressure p
and calculate the y and x terms as given by Equations
3.4.29 and 3.4.30 respectively.

Step 3. Plot the coordinate of the calculated point, i.e., (x, y),
on Figure 3.39. If the coordinate of the point falls

0.00

1

Ycorr

Xcorr

Figure 3.39 Graphical determination of reservoir
pressure.

on the straight line, it indicates that the assumed
reservoir pressure is correct, otherwise the pro-
cess is repeated at a different pressure. The process
can be rapidly converged by assuming three differ-
ent pressure values and connecting the coordinate
plotted points with a smooth curve that intersects
with the straight line at (xcorr , ycorr). The reser-
voir pressure at the given Wp and Gp is calculated
from:

p = piycorr

1 + bPi(1 − ycorr)
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3.4.6 Prediction of CBM reservoir performance
The MBE as given by its various mathematical forms, i.e.,
Equations 3.4.22 through 3.4.25 can be used to predict future
performance of CBM reservoirs as a function of reservoir
pressure. Assuming, for simplicity, that the water and for-
mation compressibility coefficients are negligible, Equation
3.4.22 can be expressed as:

Gp + BwWpEg = G − (1359. 7AhρBVmb)
p

1 + bp

− 7758φAh(1 − Swi)Eg + 7758Ahφ((1 − Swi)Egi

where:

G = initial gas-in-place, scf
A = drainage area, acres
h = average thickness, ft

Swi = initial water saturation
Eg = gas formation volume factor, scf/bbl

b = Langmuir’s pressure constant, psi−1

Vm = Langmuir’s volume constant, scf/ton

In a more convenient form, the above expression is writ-
ten as:

Gp + BwWpEg = G − a1P
1 + bp

+ a2(Egi − Eg) [3.4.31]

where the coefficients a1 and a2 are given by:

a1 = 1359. 7AhbVm

a2 = 7758Ahφ(1 − Swi)

Differentiating with respect to pressure gives:
∂(Gp + BwWpEg)

∂p
= − a1

(1 + bp)2 − a2
∂Eg

∂p
Expressing the above derivative in finite difference form
gives:

Gn+1
p + Bn+1

w W n+1
p En+1

g = Gn
p + Bn

wW n
p En

g + a1(pn − pn+1)
(1 + bpn+1)

+ a2(En
g − En+1

g ) [3.4.32]

where the superscripts n and n + 1 indicate the current and
future time levels respectively, and:

pn, pn+1 = current and future reservoir pressures, psia
Gn

p, Gn+1
p = current and future cumulative gas

production, scf
W n

p , W n+1
p = current and future cumulative water

production, STB
En

g , En+1
g = current and future gas expansion factor,

scf/bbl

Equation 3.4.32 contains two unknowns, Gn+1
p and W n+1

p , and
requires two additional relations:

(1) the producing gas–water ratio (GWR) equation;
(2) the gas saturation equation.

The gas–water ratio relationship is given by:
Qg

Qw
= GWR = krg

krw

µwBw

µgBg
[3.4.33]

where:

GWR = gas–water ratio, scf/STB
krg = relative permeability to gas
krw = relative permeability to water
µw = water viscosity, cp
µg = gas viscosity, cp
Bw = water formation volume factor, bbl/STB
Bg = gas formation volume factor, bbl/STB

Wp

W n
p W n+1

    p

Qw

Qw

Figure 3.40 Relationships between GWR, Qw, and Wp.

The cumulative gas produced Gp is related to the EWR by
the following expression:

Gp =
∫ Wp

0
(GWR)dWp [3.4.34]

This expression suggests that the cumulative gas production
at any time is essentially the area under the curve of the GWR
versus the Wp relationship, as shown in Figure 3.40.

Also, the incremental cumulative gas produced �Gp

between W n
p and W n+1

p is given by:

Gn+1
p − Gn

p = �Gp =
∫ W n+1

p

W n
p

(GWR)dWp [3.4.35]

This expression can be approximated by using the trape-
zoidal rule, to give:

Gn+1
p − Gn

p = �Gp =
[

(GWR)n+1 + (GWR)n

2

]
(W n+1

p − W n
p )

[3.4.36]
or:

Gn+1
p = Gn

p +
∑

[(GWR)avg�Wp] [3.4.37]

The other auxiliary mathematical expression needed to pre-
dict the recovery performance of a coalbed gas reservoir
is the gas saturation equation. Neglecting the water and
formation compressibilities, the gas saturation is given by:

Sn+1
g =

(1 − Swi) − (pi − pn+1)(cf + cwSwi) + Bn+1
w W n+1

p

7758Ahφ

1 − [(pi − pn+1)cf ]
[3.4.38]

The required computations are performed in a series of
pressure drops that proceed from a known reservoir con-
dition at pressure pn to the new lower pressure pn+1. It is
accordingly assumed that the cumulative gas and water pro-
duction has increased from Gn

p and W n
p to Gn+1

p and W n+1
p ,

while flow rates have changed from Qn
g and Qn

w to Qn+1
g

and Qn+1
w . The proposed methodology for predicting the

reservoir performance consists of the following steps:

Step 1. Using the gas–water relative permeability data, pre-
pare a plot of the relative permeability ratio krg/krw
versus gas saturation Sg on a semilog scale.

Step 2. Knowing the reservoir temperature T and specific
gravity of the gas γg, calculate and prepare a plot
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of Eg, Bg, and gas viscosity µg as a function of
pressure, where:

Eg = 198. 6
p

ZT
, scf/bbl

Bg = 1
Eg

= 0. 00504
ZT
p

, bbl/scf

Step 3. Select a future reservoir pressure pn+1 below the
current reservoir pressure pn. If the current reser-
voir pressure pn is the initial reservoir pressure, set
W n

p and Gn
p equal to zero.

Step 4. Calculate Bn+1
w , En+1

g , and Bn+1
g at the selected

pressure pn+1.
Step 5. Estimate or guess the cumulative water production

W n+1
p and solve Equation 3.4.32 for Gn+1

p , to give:

Gn+1
p = Gn

p + (Bn
wW n

p En
g − Bn+1

w W n+1
p En+1

g )

+ a1(pn − pn+1)
(1 + bpn+1)

+ a2(En
g − En+1

g )

Step 6. Calculate the gas saturation at pn+1 and W n+1
p by

applying Equation 3.4.38:

Sn+1
g =

(1 − Swi) − (pi − pn+1)(cf + cwSwi) + Bn+1
w W n+1

p

7758Ahφ

1 − [(pi − pn+1)cf ]
Step 7. Determine the relative permeability ratio krg/krw

at Sn+1
g and estimate the GWR from Equation

3.4.33, or:

(GWR)n+1 = krg

krw

(
µwBw

µgBg

)n+1

Step 8. Recalculate the cumulative gas production Gn+1
p by

applying Equation 3.4.36:

Gn+1
p = Gn

p + (GWR)n+1 + (GWR)n

2
(W n+1

p − W n
p )

Step 9. The total gas produced Gn+1
p as calculated from the

MBE in step 5 and that of the GWR in step 8 pro-
vide two independent methods for determining the
cumulative gas production. If the two values agree,
the assumed value of W n+1

p and the calculated Gn+1
p

are correct. Otherwise, assume a new value for
W n+1

p and repeat Steps 5 through 9. In order to
simplify this iterative process, three values of W n+1

p
can be assumed which yield three different solu-
tions of Gn+1

p for each of the equations (i.e., MBE
and GWR equations). When the computed values
of Gn+1

p are plotted versus the assumed values of
W n+1

p , the resulting two curves (one representing
results of step 5 and the one from step 8), will inter-
sect. The coordinates of the intersection give the
correct Gn+1

p and W n+1
p .

Step 10. Calculate the incremental cumulative gas produc-
tion �Gp from:

�Gp = Gn+1
p − Gn

p

Step 11. Calculate the gas and water flow rates from Equa-
tions 3.1.11 and 3.4.33, to give:

Qn+1
g = 0. 703hk(krg)n+1(pn+1 − pwf )

T (µgZ )avg[ln(re/rw) − 0. 75 + s]

Qn+1
w =

(
krw

krg

)n+1 ( µgBg

µwBw

)n+1

Qn+1
g

where:

Qg = gas flow rate, scf/day
Qw = water flow rate, STB/day

k = absolute permeability, md
T = temperature, ◦R
re = drainage radius, ft
rw = wellbore radius, ft

s = skin factor

Step 12. Calculate the average gas flow rate as the reservoir
pressure declines from pn to pn+1, as:

(Qg)avg = Qn
g + Qn+1

g

2
Step 13. Calculate the incremental time �t required for

the incremental gas production �Gp during the
pressure drop from pn to pn+1, as:

�t = �GP

(Qg)avg
= Gn+1

p − Gn
p

(Qg)avg

where:

�t = incremental time, days

Step 14. Calculate the total time t:

t =
∑

�t

Step 15. Get:

W n
p = W n+1

p

Gn
p = Gn+1

p

Qn
g = Qn+1

g

Qn
w = Qn+1

w

and repeat steps 3 through 15.

3.4.7 Flow of desorbed gas in cleats and fractures
Flow in conventional gas reservoirs obeys, depending on the
flow regime, Darcy’s equation in response to a pressure gra-
dient. In coal seams, the gas is physically adsorbed on the
internal surfaces of the coal matrix. As discussed in previ-
ous sections, coal seam reservoirs are characterized by a
dual-porosity system: primary (matrix) porosity and secon-
dary (cleats) porosity. The secondary porosity system φ2 of
coal seams consists of the natural-fracture (cleats) system
inherent in these reservoirs. These cleats act as a sink to
the primary porosity (porosity of the coal matrix) and as a
conduit to production wells. The porosity φ2 in this system
ranges between 2% and 4%. Therefore, methane production
from coal seams occurs by a three-stage process in which
the methane:

(1) diffuses through the coal matrix to the cleat and obeys
Fick’s law;

(2) desorbs at the matrix-cleat interface; then
(3) flows through the cleat system to the wellbore as

described by Darcy’s equation.

The primary porosity system in these seams is composed of
very fine pores that contain a large internal surface area on
which large quantities of gas are stored. The permeability of
the coal matrix system is extremely low, and, in effect, the
primary porosity system (coal matrix) is both impermeable
to gas and inaccessible to water. In the absence of gas flow in
the matrix, the gas is transported according to gradients in
concentration, i.e., diffusion process. Diffusion is a process
where flow occurs via random motion of molecules from a
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high concentration area to an area with lower concentration,
in which the flow obeys Fick’s law as given by:

Qg = −379. 4DA
dCm

ds
[3.4.39]

where:

Qg = matrix-fracture gas flow rate, scf/day
s = fracture spacing, ft

D = diffusion coefficient, ft2/day
Cm = molar concentration, lbm-mole/ft3

A = surface area of the coal matrix, ft2

The volume of the adsorbed gas can be converted into molar
concentration Cm from the following expression:
Cm = 0. 5547(10−6)γgρBV [3.4.40]
where:

Cm = molar concentration lbm-mole/ft3

ρB = coal bulk density, g/cm3

V = adsorbed gas volume, scf/ton
γg = specific gravity of the gas

Zuber et al. (1987) pointed out that the diffusion coefficient
D can be determined indirectly from the canister desorption
test. The authors correlated the diffusion coefficient with
the coal cleat spacing s and desorption time t. The average
cleat spacing can be determined by visual observation of coal
cores. The proposed expression is given by:

D = s2

8π t
[3.4.41]

where:

D = diffusion coefficient, ft2/day
t = desorption time from the canister test, days
s = coal cleat spacing, ft

The desorption time t is determined from canister tests on a
core sample as defined by the time required to disrobe 63%
of the total adsorbed gas.

3.5 Tight Gas Reservoirs

Gas reservoirs with permeability less than 0.1 md are consid-
ered “tight gas” reservoirs. They present unique problems
to reservoir engineers when applying the MBE to predict
the gas-in-place and recovery performance.

The use of the conventional material balance in terms of
p/Z plot is commonly utilized as a powerful tool for evaluat-
ing the performance of gas reservoirs. For a volumetric gas
reservoir, the MBE is expressed in different forms that will
produce a linear relationship between p/Z and the cumu-
lative gas production Gp. Two such forms are given by
Equations 3.3.10 and 3.3.11 as:

p
Z

= pi

Zi
−
[(

pi

Zi

)
1
G

]
Gp

p
Z

= pi

Zi

[
1 − Gp

G

]

The MBE as expressed by any of the above equations
is very simple to apply because it is not dependent on
flow rates, reservoir configuration, rock properties, or well
details. However, there are fundamental assumptions that
must be satisfied when applying the equation, including:

● uniform saturation throughout the reservoir at any time;
● there is small or no pressure variation within the

reservoir;
● the reservoir can be represented by a single weighted

average pressure at any time;

● the reservoir is represented by a tank, i.e., constant
drainage area, of homogeneous properties.

Payne (1996) pointed out that the assumption of uniform
pressure distributions is required to ensure that pressure
measurements taken at different well locations represent
true average reservoir pressures. This assumption implies
that the average reservoir pressure to be used in the
MBE can be described with one pressure value. In high-
permeability reservoirs, small pressure gradients exist away
from the wellbore and the average reservoir pressure esti-
mates can be readily made with short-term shut-in buildups
or static pressure surveys.

Unfortunately, the concept of the straight-line p/Z plot as
described by the conventional MBE fails to produce this lin-
ear behavior when applied to tight gas reservoirs that had
not established a constant drainage area. Payne (1996) sug-
gested that the essence of the errors associated with the
use of p/Z plots in tight gas reservoirs is that substantial
pressure gradients exist within the formation, resulting in
a violation of the basic tank assumption. These gradients
manifest themselves in terms of scattered, generally curved,
and rate-dependent p/Z plot behavior. This non-linear behav-
ior of p/Z plots, as shown in Figure 3.41, may significantly
underestimate gas initially in place (GIIP) when interpret-
ing by the conventional straight-line method. Figure 3.41(a)
reveals that the reservoir pressure declines very rapidly as
the area surrounding the well cannot be recharged as fast as
it is depleted by the well. This early, rapid pressure decline
is seen often in tight gas reservoirs and is an indication
that the use of p/Z plot analysis may be inappropriate. It
is clearly apparent that the use of early points would dramat-
ically underestimate GIIP, as shown in Figure 3.41(a) for the
Waterton Gas Field with an apparent GIIP of 7.5 Bm3. How-
ever, late-time production and pressure data shows a nearly
double GIIP of 16.5 Bm3, as shown in Figure 3.41(b).

The main problem with tight gas reservoirs is the diffi-
culty of accurately estimating the average reservoir pressure
required for p/Z plots as a function of Gp or time. If the
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Figure 3.41(a) Real-life example of p/Z plot from Sheet
IVc in the Waterton Gas Field.
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Figure 3.41(b) Real-life example of p/Z plot from Sheet
IV in the Waterton Gas Field.
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pressures obtained during shut-in do not reflect the average
reservoir pressure, the resulting analysis will be inaccurate.
In tight gas reservoirs, excessive shut-in times of months or
years may be required to obtain accurate estimates of aver-
age reservoir pressure. The minimum shut-in time that is
required to obtain a reservoir pressure that represents the
average reservoir pressure must be at least equal to time
to reach the pseudosteady state tpss. This time is given by
Equation 3.1.39 for a well in the centre of a circular or square
drainage area, as:

tpss = 15. 8φµgictiA
k

with:
cti = Swicwi + Sgcgi + cf

where:

tpss = stabilization (pseudosteady-state) time, days
cti = total compressibility coefficient at initial pressure,

psi−1

cwi = water compressibility coefficient at initial pres-
sure, psi−1

cf = formation compressibility coefficient, psi−1

cgi = gas compressibility coefficient at initial pressure,
psi−1

φ = porosity, fraction

With most tight gas reservoirs being hydraulically frac-
tured, Earlougher (1977) proposed the following expres-
sion for estimating the minimum shut-in time to reach the
semisteady state:

tpss = 474φµgctx2
f

k
[3.5.1]

where:

xf = fracture half-length, ft
k = permeability, md

Example 3.15 Estimate the time required for a shut-in
gas well reach its 40 acre drainage area. The well is located in
the centre of a square-drainage boundary with the following
properties:

φ = 14%, µgi = 0. 016 cp, cti = 0. 0008 psi

A = 40 acres, k = 0. 1 md

Solution Calculate the stabilization time by applying Equa-
tion 3.1.39 to give:

tpss = 15. 8(0. 14)(0. 016)(0. 0008)(40)(43560)
0. 1

= 493 days

The above example indicates that an excessive shut-in
time of approximately 16 months is required to obtain a
reliable average reservoir pressure.

Unlike curvature in the p/Z plot which can be caused by:

● an aquifer,
● an oil leg,
● formation compressibility, or
● liquid condensation,

scatter in the p/Z plot is diagnostic of substantial reservoir
pressure gradients. Hence, if substantial scatter is seen in a
p/Z plot, the tank assumption is being violated and the plot
should not be used to determine GIIP. One obvious solution
to the material balance problem in tight gas reservoirs is
the use of a numerical simulator. Two other relatively new
approaches for solving the material balance problem that can
be used if reservoir simulation software is not available are:

(1) the compartmental reservoir approach;
(2) the combined decline curve and type curve approach.

These two methodologies are discussed below.

3.5.1 Compartmental reservoir approach
A compartmental reservoir is defined as a reservoir that
consists of two or more distinct regions that are allowed
to communicate. Each compartment or “tank” is described
by its own material balance, which is coupled to the mate-
rial balance of the neighboring compartments through influx
or efflux gas across the common boundaries. Payne (1996)
and Hagoort and Hoogstra (1999) proposed two different
robust and rigorous schemes for the numerical solution of
the MBEs, of compartmented gas reservoirs. The main dif-
ference between the two approaches is that Payne solves for
the pressure in each compartment explicitly and Hagoort
and Hoogstra implicitly. However, both schemes employ the
following basic approach:

● Divide the reservoir into a number of compartments with
each compartment containing one or more production
wells that are proximate and that measure consistent
reservoir pressures. The initial division should be made
with as few tanks as possible with each compartment hav-
ing different dimensions in terms of length L, width W ,
and height h.

● Each compartment must be characterized by a historical
production and pressure decline data as a function of time.

● If the initial division is not capable of matching the
observed pressure decline, additional compartments can
be added either by subdividing the previously defined
tanks or by adding tanks that do not contain drainage
points, i.e., production wells.

The practical application of the compartmental reservoir
approach is illustrated by the following two methods:

(1) the Payne method
(2) the Hagoort and Hoogstra method

Payne method
Rather than using the conventional single-tank MBE in
describing the performance of tight gas reservoirs, Payne
(1996) suggested a different approach that is based on
subdividing the reservoir into a number of tanks, i.e.,
compartments, which are allowed to communicate. Such
compartments can be depleted either directly by wells or
indirectly through other tanks. The flow rate between tanks
is set proportionally to either the difference in the square
of tank pressure or the difference in pseudopressures, i.e.,
m(p). To illustrate the concept, consider a reservoir that con-
sists of two compartments, 1 and 2, as shown schematically
in Figure 3.42.

Initially, i.e., before the start of production, both com-
partments are in equilibrium with the same initial reservoir
pressure. Gas production can be produced from either one
or both compartments. With gas production, the pressures
in the reservoir compartments will decline at a different
rate depending on the production rate from each compart-
ment and the crossflow rate between the two compartments.
Adopting the convention that influx is positive if gas flows
from compartment 1 into compartment 2, the linear gas
flow rate between the two compartments in terms of gas
pseudopressure is given by Equation 1.2.11 of Chapter 1 as:

Q12 =
(

0. 111924kA
TL

)
[m( p1) − m( p2)]
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G2 G1

INFLUX

PRODUCTION
production

Compartment 2 Compartment 1

Figure 3.42 Schematic representation of
compartmented reservoir consisting of two reservoir
compartments separated by a permeable boundary.

where:

Q12 = flow rate between the two compartments, scf/day
m(p1) = gas pseudopressure in compartment (tank) 1,

psi2/cp
m(p2) = gas pseudopressure in compartment (tank) 2,

psi2/cp
k = permeability, md
L = distance between the center of the two compart-

ments, ft
A = cross-sectional area, i.e., width height, ft2

T = temperature, ◦R

The above equation can be expressed in a more compact
form by including a “communication factor” C12 between the
two compartments, as:

Q12 = C12[m( p1) − m( p2)] [3.5.2]

The communication factor C12 between the two compart-
ments is computed by calculating the individual communica-
tion factor for each compartment and employing an average
technique. The communication factor for each of the two
compartments is given by:

For compartment 1 C1 = 0. 111924k1A1

TL1

For compartment 2 C2 = 0. 111924k2A2

TL2

And the communication factor between two compart-
ments, C12, is given by the following average technique:

C12 = 2C1C2

(C1 + C2)

where:

C12 = communication factor between two compart-
ments, scf/day/psi2/cp

C1 = communication factor for compartment 1,
scf/day/psi2/cp

C2 = communication factor for compartment 2,
scf/day/psi2/cp

L1 = length of compartment 1, ft
L2 = length of compartment 2, ft
A1 = cross-sectional area of compartment 1, ft2

A2 = cross-sectional area of compartment 2, ft2

The cumulative gas in flux Gp12 from compartment 1 to
compartment 2 is given by the integration of flow rate over

time t as:

Gp12 =
∫ t

0
Q12dt =

t∑
0

(�Q12)�t [3.5.3]

Payne proposed that individual compartment pressures
are determined by assuming a straight-line relationship of
p/Z vs. Gpt with the total gas production Gpt from an individ-
ual compartment as defined by the following expression:

Gpt = Gp + Gp12

where Gp is the cumulative gas produced from wells in the
compartment and Gp12 is the cumulative gas efflux/influx
between the connected compartments. Solving Equation
3.3.10 for the pressure in each compartment and assuming
a positive flow from compartment 1 to 2 gives:

p1 =
(

pi

Zi

)
Z1

(
1 − Gp1 + Gp12

G1

)
[3.5.4]

p2 =
(

pi

Zi

)
Z2

(
1 − Gp2 − Gp12

G2

)
[3.5.5]

with:
G1 = 43560A1h1φ1(1Swi)/Bgi [3.5.6]

G2 = 43560A2h2φ2(1Swi)/Bgi [3.5.7]
where:

G1 = initial gas-in-place in compartment 1, scf
G2 = initial gas-in-place in compartment 2, scf

Gp1 = actual cumulative gas production from compart-
ment 1, scf.

Gp2 = actual cumulative gas production from compart-
ment 2, scf.

A1 = areal extent of compartment 1, acres
A2 = areal extent of compartment 2, acres
h1 = average thickness of compartment 1, ft
h2 = average thickness of compartment 2, ft

Bgi = initial gas formation volume factor, ft3/scf
φ1 = average porosity in compartment 1
φ2 = average porosity in compartment 2

The subscripts 1 and 2 denote the two compartments 1 and 2,
while the subscript i refers to initial condition. The required
input data for the Payne method consists of:

● amount of gas contained in each tank, i.e., tank dimen-
sions, porosity, and saturation;

● intercompartment communication factors C12;
● initial pressure in each compartment;
● production data profiles from the individual tanks.

Payne’s technique is performed fully explicit in time. At
each time step, the pressures in various tanks are calculated,
yielding a pressure profile that can be matched to the actual
pressure decline. The specific steps of this iterative method
are summarized below:

Step 1. Prepare the available gas properties data in tabu-
lated and graphical forms that include:

Z vs. p
µg vs. p
2p/(µgZ ) vs. p
m( p) vs. p

Step 2. Divide the reservoir into compartments and deter-
mine the dimensions of each compartments in
terms of:

length L
height h
width W
cross-sectional area A
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Step 3. For each compartment, determine the initial gas-in-
place G. Assuming two compartments for example,
then calculate G1 and G2 from Equations 3.5.6 and
3.5.7:

G1 = 43560A1h1φ1(1Swi)/Bgi

G2 = 43560A2h2φ2(1Swi)/Bgi

Step 4. For each compartment, make a plot of p/Z vs.
GP that can be constructed by simply drawing a
drawing a straight line between pi/Zi with initial
gas-in-place in both compartments, i.e., G1 and G2.

Step 5. Calculate the communication factors for each com-
partment and between compartments. For two
compartments:

C1 = 0. 111924k1A1

TL1

C2 = 0. 111924k2A2

TL2

C12 = 2C1C2

(C1 + C2)
Step 6. Select a small time step �t and determine the cor-

responding actual cumulative gas production Gp
from each compartment. Assign Gp = 0 if the
compartment does not include a well.

Step 7. Assume (guess) the pressure distributions through-
out the selected compartmental system and deter-
mine the gas deviation factor Z at each pressure.
For a two-compartment system, let the initial values
be denoted by pk

1 and pk
2.

Step 8. Using the assumed values of the pressure pk
1 and

pk
2, determine the corresponding m( p1) and m( p2)

from the data of step 1.
Step 9. Calculate the gas influx rate Q12 and cumulative gas

influx Gp12 by applying Equations 3.5.2 and 3.5.3,
respectively.

Q12 = C12[m( p1) − m( p2)]

Gp12 =
∫ t

0
Q12dt =

t∑
0

(�Q12)�t

Step 10. Substitute the values of Gp12, the Z factor, and actual
values of Gp1 and Gp2 in Equations 3.5.4 and 3.5.5
to calculate the pressure in each compartment as
denoted by pk+1

1 and pk+1
2 :

pk+1
1 =

(
pi

Zi

)
Z1

(
1 − Gp1 + Gp12

G1

)

pk+1
2 =

(
pi

Zi

)
Z2

(
1 − Gp2 − Gp12

G2

)

Step 11. Compare the assumed and calculated values, i.e.,∣∣∣pk
1 − pk+1

1

∣∣∣ and
∣∣∣pk

2 − pk+1
2

∣∣∣. If a satisfactory match
is achieved within a tolerance of 5–10 psi for all
the pressure values, then steps 3 through 7 are
repeated at the new time level with the correspond-
ing historical gas production data. If the match is
not satisfactory, repeat the iterative cycle of steps 4
through 7 and set pk

1 = pk+1
1 and pk

2 = pk+1
2 .

Step 12. Repeat steps 6 through 11 to produce a pressure
decline profile for each compartment that can be
compared with the actual pressure profile for each
compartment or that from step 4.

Performing a material balance history match consists of
varying the number of compartments required, the dimen-
sion of the compartments, and the communication factors

until an acceptable match of the pressure decline is obtained.
The improved accuracy in estimating the original gas-in-
place, resulting from determining the optimum number and
size of compartments, stems from the ability of the proposed
method to incorporate reservoir pressure gradients, which
are completely neglected in the single-tank conventional p/Z
plot method.

Hagoort and Hoogstra method
Based on the Payne method, Hagoort and Hoogstra (1999)
developed a numerical method to solve the MBE of com-
partmental gas reservoirs that employs an implicit, iterative
procedure, and that recognizes the pressure dependency of
the gas properties. The iterative technique relies on adjust-
ing the size of compartments and the transmissibility values
to match the historical pressure data for each compartment
as a function of time. Referring to Figure 3.42, the authors
assume a thin permeable layer with a transmissibility of �12
separating the two compartments. Hagoort and Hoogstra
expressed the instantaneous gas influx through the thin per-
meable layer by Darcy’s equation as given by (in Darcy’s
units):

Q12 = �12(p2
1 − p2

2)
2p1(µgBg)avg

where:

�12 = the transmissibility between compartments

Here, we suggest a slightly different approach for esti-
mating the gas influx between compartments by modifying
Equation 1.2.11 in Chapter 1 to give:

Q12 = 0. 111924�12( p2
1 − p2

2)
TL

[3.5.8]

with:

�12 = �1�2(L1 + L2)
L1�2 + L2�1

[3.5.9]

�1 =
[

kA
Zµg

]
1

[3.5.10]

�2 =
[

kA
Zµg

]
2

[3.5.11]

where:

Q12 = influx gas rate, scf/day
L = distance between the centers of compartments 1

and 2, ft
A = cross-sectional area, ft2

µg = gas viscosity, cp
Z = gas deviation factor
k = permeability, md
p = pressure, psia
T = temperature, ◦R
L1 = length of compartment 1, ft
L2 = length of compartment 2, ft

The subscripts 1 and 2 refer to compartments 1 and 2,
respectively.

Using Equation 3.3.10, the material balance for the two
reservoir compartments can be modified to include the gas
influx from compartment 1 to compartment 2 as:

p1

Z1
= p1

Z1

(
1 − Gp1 + Gp12

G1

)
[3.5.12]

p2

Z2
= p1

Z1

(
1 − Gp2 − Gp12

G2

)
[3.5.13]
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where:

p1 = initial reservoir pressure, psi
Z1 = initial gas deviation factor
Gp = actual (historical) cumulative gas production, scf

G1, G2 = initial gas-in-place in compartment 1 and 2, scf
Gp12 = cumulative gas influx from compartment 1 to 2 in

scf, as given in Equation 3.5.13

Again, subscripts 1 and 2 represent compartments 1 and
2, respectively.

To solve the MBEs as represented by the relationships
3.5.7 and 3.5.10 for the two unknowns p1 and p2, the two
expressions can be arranged and equated to zero, to give:

F1( p1, p2) = p1 −
(

pi

Zi

)
Z1

(
1 − Gp1 + Gp12

G1

)
= 0 [3.5.14]

F2( p1, p2) = p2 −
(

pi

Zi

)
Z2

(
1 − Gp2 − Gp12

G2

)
= 0 [3.5.15]

The general methodology of applying the method is very
similar to that of Payne’s and involves the following specific
steps:

Step 1. Prepare the available gas properties data in tabu-
lated and graphical forms that include, Z vs. p and
µg vs. p.

Step 2. Divide the reservoir into compartments and deter-
mine the dimensions of each compartments in
terms of:

length L
height h
width W
cross-sectional area A

Step 3. For each compartment, determine the initial gas-in-
place G. For reasons of clarity, assume two gas com-
partments and calculate G1 and G2 from Equations
3.5.6 and 3.5.7:

G1 = 43560A1h1φ1(1Swi)/Bgi

G2 = 43560A2h2φ2(1Swi)/Bgi

Step 4. For each compartment, make a plot of p/Z vs.
Gp that can be constructed by simply drawing a
drawing a straight line between pi/Zi with initial
gas-in-place in both compartments, i.e., G1 and G2.

Step 5. Calculate the transmissibility by applying Equation
3.5.9:

Step 6. Select a time step �t and determine the corre-
sponding actual cumulative gas production Gp1 and
Gp2.

Step 7. Calculate the gas influx rate Q12 and cumulative gas
influx Gp12 by applying Equations 3.5.8 and 3.5.3,
respectively:

Q12 = 0. 111924�12( p2
1 − p2

2)
TL

Gp12 =
∫ t

0
Q12dt =

t∑
0

(�Q12)�t

Step 8. Start the iterative solution by assuming initial esti-
mates of the pressure for compartments 1 and 2
(i.e., pk

1 and pk
2). Using the Newton–Raphson iter-

ative scheme, calculate new improved values of
the pressure pk+1

1 andpk+1
2 by solving the following

linear equations as expressed in a matrix form:

[
pk+1

1

pk+1
2

]
=
[

pk
1

pk
2

]
−




∂F1( pk
1, pk

2)
∂p1

∂F1( pk
1, pk

2)
∂p2

∂F2( pk
1, pk

2)
∂p1

∂F2( pk
1, pk

2)
∂p2




−1

×
[
−F1( pk

1, pk
2)

−F2( pk
1, pk

2)

]

where the superscript 1 denotes the inverse of the
matrix. The partial derivatives in the above system
of equations can be expressed in analytical form
by differentiating Equations 3.5.14 and 3.5.15 with
respect to p1 and p2. During an iterative cycle, the
derivatives are evaluated at the updated new pres-
sures, i.e., pk+1

1 and pk+1
2 . The iteration is stopped

when
∣∣∣pk+1

1 − pk
1

∣∣∣ and
∣∣∣pk+1

2 − pk
2

∣∣∣ are less than a
certain pressure tolerance, i.e., 5–10 psi.

Step 9. Generate the pressure profile as a function of time
for each compartment by repeating steps 2 and 3.

Step 10. Repeat steps 6 through 11 to produce a pressure
decline profile for each compartment that can be
compared with the actual pressure profile for each
compartment or that from step 4.

Compare the calculated pressure profiles with those of
the observed pressures. If a match has not been achieved,
adjust the size and number of compartments (i.e., initial gas-
in-place) and repeat steps 2 through 10.

3.5.2 Combined decline curve and type curve
analysis approach

Production decline analysis is the analysis of past trends
of declining production performance, i.e., rate versus time
and rate versus cumulative production plots, for wells and
reservoirs. During the past 30 years, various methods have
been developed for estimating reserves in tight gas reser-
voirs. These methods range from the basic MBE to decline
and type curve analysis techniques. There are two kinds of
decline curve analysis techniques, namely:

(1) the classical curve fit of historical production data;
(2) the type curve matching technique.

Some graphical solutions use a combination of decline
curves and type curves with varying limitations. General
principles of both types and methods of combining both
approaches to determine gas reserves are briefly presented
below.

Decline curve analysis
Decline curves are one of the most extensively used forms
of data analysis employed in evaluating gas reserves and
predicting future production. The decline curve analysis
technique is based on the assumption that the past produc-
tion trend with its controlling factors will continue in the
future and, therefore, can be extrapolated and described by
a mathematical expression.

The method of extrapolating a “trend” for the purpose of
estimating future performance must satisfy the condition
that the factors which caused changes in the past perfor-
mance, i.e., decline in the flow rate, will operate in the same
way in the future. These decline curves are characterized by
three factors:

(1) initial production rate, or the rate at some particular time;
(2) curvature of the decline;
(3) rate of decline.
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Figure 3.43 Classification of production decline curves. (After Arps, J.J. “Estimation of Primary Oil Reserves,”
Courtesy of Trans. AIME, vol. 207, 1956).

These factors are a complex function of numerous param-
eters within the reservoir, wellbore, and surface-handling
facilities.

Ikoku (1984) presented a comprehensive and rigorous
treatment of production decline curve analysis. He pointed
out that the following three conditions must be considered
when performing production decline curve analysis:

(1) Certain conditions must prevail before we can analyze a
production decline curve with any degree of reliability.
The production must have been stable over the period
being analyzed; that is, a flowing well must have been
produced with constant choke size or constant wellhead
pressure and a pumping well must have been pumped off
or produced with constant fluid level. These indicate that
the well must have been produced at capacity under a
given set of conditions. The production decline observed
should truly reflect reservoir productivity and not be the
result of external causes, such as a change in produc-
tion conditions, well damage, production controls, and
equipment failure.

(2) Stable reservoir conditions must also prevail in order
to extrapolate decline curves with any degree of reli-
ability. This condition will normally be met as long as
the producing mechanism is not altered. However, when
action is taken to improve the recovery of gas, such as
infill drilling, fluid injection, fracturing, and acidizing,
decline curve analysis can be used to estimate the per-
formance of the well or reservoir in the absence of the
change and compare it to the actual performance with
the change. This comparison will enable us to determine
the technical and economic success of our efforts.

(3) Production decline curve analysis is used in the eval-
uation of new investments and the audit of previous
expenditures. Associated with this is the sizing of equip-
ment and facilities such as pipelines, plants, and treating
facilities. Also associated with the economic analysis is

the determination of reserves for a well, lease, or field.
This is an independent method of reserve estimation,
the result of which can be compared with volumetric or
material balance estimates.

Arps (1945) proposed that the “curvature” in the produc-
tion rate versus time curve can be expressed mathematically
by one of the hyperbolic family of equations. Arps recognized
the following three types of rate decline behavior:

(1) exponential decline;
(2) harmonic decline;
(3) hyperbolic decline.

Each type of decline curve has a different curvature as
shown in Figure 3.43. This figure depicts the characteristic
shape of each type of decline when the flow rate is plotted
versus time or versus cumulative production on Cartesian,
semilog, and log–log scales. The main characteristics of
these decline curves are discussed below and can be used
to select the flow rate decline model that is appropriate for
describing the rate–time relationship of the hydrocarbon
system:

● For exponential decline: A straight-line relationship will
result when flow rate is plotted versus time on a semilog
scale and also when the flow rate versus cumulative
production is plotted on a Cartesian scale.

● For harmonic decline: Rate versus cumulative production
is a straight line on a semilog scale with all other types of
decline curves having some curvature. There are several
shifting techniques that are designed to straighten out
the resulting curve of plotting flow rate versus time when
plotted on a log–log scale.

● For hyperbolic decline: None of the above plotting scales,
i.e., Cartesian, semilog, or log–log, will produce a straight-
line relationship for a hyperbolic decline. However, if the
flow rate is plotted versus time on log–log paper, the
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Figure 3.44 Decline curve—rate/time (exponential, harmonic, hyperbolic).

resulting curve can be straightened out by using shifting
techniques.

Nearly all conventional decline curve analysis is based on
empirical relationships of production rate versus time given
by Arps (1945) as:

qt = qi

(1 + bDit)1/b
[3.5.16]

where:

qt = gas flow rate at time t, MMscf/day
qi = initial gas flow rate, MMscf/day
t = time, days

Di = initial decline rate, day1

b = Arps’s decline curve exponent

The mathematical description of these production decline
curves is greatly simplified with the use of the instantaneous
(nominal) decline rate D. This decline rate is defined as the
rate of change of the natural logarithm of the production rate,
i.e., ln(q), with respect to time t, or:

D = − d(ln q)
dt

= − 1
q

dq
dt

[3.5.17]

The minus sign has been added since dq and dt have oppo-
site signs and it is convenient to have D always positive. Not
that the decline rate equation, i.e., Equation 3.5.17, describes
the instantaneous changes in the slope of the curvature
dq/dt with changing of the flow rate q with time.

The parameters determined from the classical fit of the
historical data, namely the decline rate D and the exponent b,
can be used to predict future production. This type of decline
curve analysis can be applied to individual wells or the entire
reservoir. The accuracy of the entire reservoir application is
sometimes better than for individual wells due to smoothing
of the rate data. Based on the type of rate decline behavior
of the hydrocarbon system, the value of b ranges from 0

to 1 and, accordingly, Arps’s equation can be conveniently
expressed in the following three forms:

Case b Rate–time relationship

Exponential b = 0 qt = qi exp(−Dit) [3.5.18]

Hyperbolic 0 < b < 1 qt = qi

(1 + bDit)1/b
[3.5.19]

Harmonic b = 1 qt = qi

(1 + Dit)
[3.5.20]

Figure 3.44 illustrates the general shape of the three
curves at different possible values of b.

It should be pointed out that the above forms of decline
curve equations are strictly applicable only when the
well/reservoir is under pseudosteady (semisteady)-state
flow conditions, i.e., boundary-dominated flow conditions.
Arps’s equation has been often misused and applied to model
the performance of oil and gas wells whose flow regimes are
in a transient flow. As presented in Chapter 1, when a well is
first open to flow, it is under a transient (unsteady-state) con-
dition. It remains under this condition until the production
from the well affects the total reservoir system by reaching
its drainage boundary, then the well is said to be flowing
under pseudosteady-state or boundary-dominated flow con-
ditions. The following is a list of inherent assumptions that
must be satisfied before performing rate–time decline curve
analysis:

● The well is draining a constant drainage area, i.e., the well
is under boundary-dominated flow conditions.

● The well is produced at or near capacity.
● The well is produced at a constant bottom-hole pressure.

Again, the above conditions must be satisfied before apply-
ing any of the decline curve analysis methods to describe the
production performance of a reservoir. In most cases, tight
gas wells are producing at capacity and approach a constant

TLFeBOOK



3/240 UNCONVENTIONAL GAS RESERVOIRS

bottom-hole pressure, if produced at a constant line pres-
sure. However, it can be extremely difficult to determine
when a tight gas well has defined its drainage area and the
start of the pseudosteady-state flowing condition.

The area under the decline curve of q versus time between
times t1 and t2 is a measure of the cumulative gas production
Gp during this period as expressed mathematically by:

Gp =
∫ t2

t1

qtdt [3.5.21]

Replacing the flow rate qt in the above equation with the
three individual expressions that describe types of decline
curves, i.e., Equations 3.5.18 through 3.5.20, and integrating
gives:

Exponential b = 0 Gp(t) = 1
Di

(qi − qt ) [3.5.22]

Hyperbolic 0 < b < 1 Gp(t) =
[

(qi)
Di(1 − b)

][
1 −

(
qt
qi

)1−b
]

[3.5.23]

Harmonic b = 1 Gp(t) =
(

qi
Di

)
ln
( qi

qt

)
[3.5.24]

where:

Gp(t) = cumulative gas production at time t, MMscf
qi = initial gas flow rate at time t = 0, MMscf/unit time
t = time, unit time

qt = gas flow rate at time t, MMscf/unit time
Di = nominal (initial) decline rate, 1/unit time

All the above expressions as given by Equations 3.5.18
through 3.5.24 require consistent units. Any convenient unit
time can be used but, again, care should be taken to make
certain that the time base of rates, i.e., qi and qt , matches
the time unit of the decline rate Di , e.g., for flow rate q in
scf/month with Di in month−1.

Note that the traditional Arps decline curve analysis, as
given by Equations 3.5.22 through 3.5.24, gives a reasonable
estimation of reserves but it has its failings, the most impor-
tant one being that it completely ignores the flowing pressure
data. As a result, it can underestimate or over estimate the
reserves. The practical applications of these three commonly
used decline curves are documented below.
Exponential decline, b=0 The graphical presentation of
this type of decline curve indicates that a plot of qt vs. t
on a semilog scale or a plot of qt vs. Gp(t) on a Cartesian
scale will produce linear relationships that can be described
mathematically by:

qt = qi exp(−Dit)
or linearly as:

ln(qt) = ln(qi) − Dit
And similarly:

Gp(t) = qi − qt

Di

or linearly as:
qt = qi − DiGp(t)

This type of decline curve is perhaps the simplest to use
and perhaps the most conservative. It is widely used in the
industry for the following reasons:

● Many wells follow a constant decline rate over a great
portion of their productive life and will deviate signifi-
cantly from this trend toward the end of this period.

● The mathematics involved, as described by the above line
expressions, is easier to apply than the other line types.

Assuming that the historical production from a well or field
is recognized by its exponential production decline behavior,
the following steps summarize the procedure to predict the
behavior of the well or the field as a function of time.

Step 1. Plot qt vs. Gp on a Cartesian scale and qt vs. t on
semilog paper.

Step 2. For both plots, draw the best straight line through
the points.

Step 3. Extrapolate the straight line on qt vs. Gp to Gp = 0
which intercepts the y axis with a flow rate value that
is identified as qi .

Step 4. Calculate the initial decline rate Di by selecting a
point on the Cartesian straight line with coordinates
of (qt , Gpt) or on a semilog line with coordinates of
(qt , t) and solve for Di by applying Equation 3.5.20
or 3.5.22:

Di = ln(qi/qt)
t

[3.5.25]

or equivalently as:

Di = qi − qt

Gp(t)
[3.5.26]

If the method of least squares is used to determine
the decline rate by analyzing the entire production
data, then

Di =
∑

t

[
t ln(qi/qt)

]
∑

t t2 [3.5.27]

or equivalently as:

Di = qi
∑

t Gp(t) −∑t qtGp(t)∑
t [Gp(t)]2 [3.5.28]

Step 5. Calculate the time to reach the economic flow rate
qa (or any rate) and the corresponding cumulative
gas production from Equations 3.5.18 and 3.5.22:

ta = ln(qi/qa)
Di

Gpa = qi − qa

ta

where:

Gpa = cumulative gas production when reaching the
economic flow rate or at abandonment, mmscf

qi = initial gas flow rate at time t = 0, MMscf/unit time
t = abandonment time, unit time

qa = economic (abandonment) gas flow rate,
MMscf/unit time

Di = nominal (initial) decline rate, 1/time unit
Example 3.16 The following production data is available
from a dry gas field:

qt Gp qt Gp
(MMscf/day) (MMscf) (MMscf/day) (MMscf)

320 16000 208 304000
336 32000 197 352000
304 48000 184 368000
309 96000 176 384000
272 160000 184 400000
248 240000

Estimate:

(a) the future cumulative gas production when gas flow rate
reaches 80 MMscf/day;

(b) the extra time to reach 80 MMscf/day.

Solution

(a) Use the following steps:

Step 1. A plot of Gp vs. qt on a Cartesian scale as
shown in Figure 3.45 produces a straight line
indicating an exponential decline.
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Figure 3.45 Decline curve data for Example 3.16.

Step 2. From the graph, cumulative gas production is
633 600 MMscf at qt = 80 MMscf/day indi-
cating an extra production of 633. 6 − 400. 0 =
233. 6 MMMscf.

Step 3. The intercept of the straight line with the y axis
gives a value of qi = 344 MMscf/day.

Step 4. Calculate the initial (nominal) decline rate Di
by selecting a point on the straight line and
solving for Di by applying Equation 3.5.25. At
Gp(t) of 352 MMscf, qt is 197 MMscf/day or:

Di = qi − qt

Gp(t)
= 344 − 197

352000
= 0. 000418 day−1

It should be pointed out that the monthly and
yearly nominal decline can be determined as:

Dim = (0. 000418)(30. 4) = 0. 0126 month−1

Diy = (0. 0126)(12) = 0. 152 year−1

Using the least-squares approach, i.e., Equa-
tion 3.5.28, gives:

Di = 0. 3255(109) − 0. 19709(109)
0. 295(1012)

= 0. 000425 day−1

(b) To calculate the extra time to reach 80 MMscf/day, use
the following steps:

Step 1. Calculate the time to reach the last recorded
flow rate of 184 MMscf from Equation 3.5.25.

t = ln(344/184)
0. 000425

= 1472 days = 4. 03 years

Step 2. Calculate total time to reach a gas flow rate of
80 MMscf/day:

t = ln(344/80)
0. 000425

= 3432 days = 9. 4 years

Step 3. Extra time = 9. 4 − 4. 03 = 5. 37 years.

Example 3.17 A gas well has the following production
history:

Date Time (months) qt (MMscf/month)

1-1-02 0 1240
2-1-02 1 1193
3-1-02 2 1148
4-1-02 3 1104
5-1-02 4 1066
6-1-02 5 1023
7-1-02 6 986
8-1-02 7 949
9-1-02 8 911
10-1-02 9 880
11-1-02 10 843
12-1-02 11 813
1-1-03 12 782

(a) Use the first six months of the production history data to
determine the coefficient of the decline curve equation.

(b) Predict flow rates and cumulative gas production from
August 1, 2002 through January 1, 2003.

(c) Assuming that the economic limit is 30 MMscf/month,
estimate the time to reach the economic limit and the
corresponding cumulative gas production.

Solution

(a) Use the following steps:

Step 1. A plot of qt vs. t on a semilog scale as shown in
Figure 3.46 indicates an exponential decline.

Step 2. Determine the initial decline rate Di by select-
ing a point on the straight line and substituting
the coordinates of the point in Equation 3.5.25
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Figure 3.46 Decline curve data for Example 3.17.

or using the least-squares method, to give, from
Equation 3.5.25:

Di = ln(qi/qt)
t

= ln(1240/986)
6

= 0. 0382 month−1

Similarly; from Equation 3.5.27:

Di =
∑

t

[
t ln(qi/qt)

]
∑

t t2

= 3. 48325
91

= 0. 0383 month−1

(b) Use Equations 3.5.18 and 3.5.22 to calculate qt
and Gp(t) in the following tabulated form:

qt = 1240 exp(−0. 0383t)
Gpt = (qi − qt)/0. 0383

Date Time Actual qt Calculated qt Gp(t)
(months) (MMscf/ (MMscf/ (MMscf/

month) month) month)

2-1-02 1 1193 1193 1217
3-1-02 2 1148 1149 2387
4-1-02 3 1104 1105 3514
5-1-02 4 1066 1064 4599
6-1-02 5 1023 1026 4643
7-1-02 6 986 986 6647
8-1-02 7 949 949 7614
9-1-02 8 911 913 8545

Date Time Actual qt Calculated qt Gp(t)
(months) (MMscf/ (MMscf/ (MMscf/

month) month) month)

10-1-02 9 880 879 9441
11-1-02 10 843 846 10303
12-1-02 11 813 814 11132
1-1-03 12 782 783 11931

(c) Use Equations 3.5.25 and 3.5.26 to calculate
the time to reach an economic flow rate
of 30 MMscf/month and the corresponding
reserves:

t = ln(1240/30)
0. 0383

= 97 months = 8 years

Gpt = (1240 − 30)106

0. 0383
= 31. 6 MMMscf

Harmonic decline, b=1 The production recovery perfor-
mance of a hydrocarbon system that follows a harmonic
decline, i.e., b = 1 in Equation 3.5.16, is described by
Equations 3.5.20 and 3.5.24:

qt = qi

1 + Dit

Gp(t) =
(

qi

Di

)
ln
(

qi

qt

)

The above two expressions can be rearranged and expressed
respectively as:

1
qt

= 1
qi

+
(

Di

qi

)
t [3.5.29]

ln(qt) = ln(qi) −
(

Di

qi

)
Gp(t) [3.5.30]
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The basic two plots for harmonic decline curve analysis
are based on the above two relationships. Equation 3.5.29
indicates that a plot of 1/qt vs. t on a Cartesian scale will
yield a straight line with a slope of (Di/qi) and intercept of
1/qi . Equation 3.5.30 suggests that a plot of qt vs. Gp(t) on a
semilog scale will yield a straight line with a negative slope
of (Di/qi) and an intercept of qi . The method of least squares
can also be sued to calculate the decline rate Di , to give:

Di =
∑

t (tqi/qt) −∑t t∑
t t2

Other relationships that can be derived from Equations
3.5.29 and 3.5.30 include the time to reach the economic flow
rate qa (or any flow rate) and the corresponding cumulative
gas production Gp(a):

ta = qi − qa

qaDi
[3.5.31]

Gp(a) =
(

qi

Di

)
ln
(

qa

qt

)

Hyperbolic decline, 0 < b < 1 The two governing relation-
ships for a reservoir or a well when its production follows the
hyperbolic decline behavior are given by Equations 3.5.19
and 3.5.23, or:

qt = qi

(1 + bDit)1/b

Gp(t) =
[

qi

Di(1 − b)

][
1 −

(
qt

qi

)1−b
]

The following simplified iterative method is designed to
determine Di and b from the historical production data:

Step 1. Plot qt vs. t on a semilog scale and draw a smooth
curve through the points.

Step 2. Extend the curve to intercept the y axis at t = 0 and
read qi .

Step 3. Select the other end point of the smooth curve and
record the coordinates of the point and refer to it as
(t2, q2).

Step 4. Determine the coordinates of the middle point on the
smooth curve that corresponds to (t1, q1) with the
value of q1 as obtained from the following expression:
q1 = √

qiq2 [3.5.32]
The corresponding value of t1 is read from the
smooth curve at q1.

Step 5. Solve the following equation iteratively for b:

f (b) = t2

(
qi

q1

)b

− t1

(
qi

q2

)b

− (t2 − t1) = 0

[3.5.33]

The Newton–Raphson iterative method can be
employed to solve the above non-linear function by
using the following recursion technique:

bk+1 = bk − f (bk)
f ′(bk)

[3.5.34]

where the derivative f \(bk) is given by:

f \(bk) = t2

(
qi

q1

)bk

ln
(

qi

q1

)
− t1

(
qi

q2

)bk

ln
(

qi

q2

)

[3.5.35]

Starting with an initial value of b = 0. 5, i.e.,
bk = 0. 5, the method will usually converge after 4–5
iterations when setting the convergence criterion at
bk+1 − bk ≤ 10−6.

Step 6. Solve for Di by solving Equation 3.5.19 for Di and
using the calculated value of b from step 5 and the
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Figure 3.47 Rate–time plot for Example 3.18.

coordinates of a point on the smooth graph, i.e.,
(t2, q2), to give:

Di = (qi/q2)b − 1
bt2

[3.5.36]

The following example illustrates the proposed methodol-
ogy for determining b and Di.

Example 3.18a The following production data is reported
by Ikoku for a gas well:

Date Time qt Gp(t)
(years) (MMscf/day) (MMscf)

Jan. 1, 1979 0.0 10.00 0.00
July 1, 1979 0.5 8.40 1.67
Jan. 1, 1980 1.0 7.12 3.08
July 1, 1980 1.5 6.16 4.30
Jan. 1, 1981 2.0 5.36 5.35
July 1, 1981 2.5 4.72 6.27
Jan. 1, 1982 3.0 4.18 7.08
July 1, 1982 3.5 3.72 7.78
Jan. 1, 1983 4.0 3.36 8.44

Estimate the future production performance for the next
16 years.

Solution

Step 1. Determine the type of decline that adequately rep-
resents the historical data. This can be done by
constructing the following two plots:

(1) Plot qt vs. t on a semilog scale as shown in Figure
3.47. The plot does not yield a straight line and,
thus, the decline is not exponential.

(2) Plot qt vs. Gp(t) on semilog paper as shown in
Figure 3.48. The plot again does not produce a
straight line and, therefore, the decline is not a
harmonic.

The generated two plots indicate that the decline
must be hyperbolic

Step 2. From Figure 3.47, determine the initial flow rate qi
by extending the smooth curve to intercept with the
y axis, i.e., at t = 0, to give:

qi = 10 MMscf/day

aIkoku, C. Natural Gas Reservoir Engineering, John Wiley & Sons
(1984).
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Figure 3.48 Rate—cumulative plot for Example 3.18.

Step 3. Select the coordinates of the other end point on the
smooth curve as (t2, q2), to give:

t2 = 4 years

q2 = 3. 36 MMscf/day
Step 4. Calculate q1 from Equation 3.5.32 and determine

the corresponding time:

q1 = √
qiq2 =

√
(10)(3. 36) = 5. 8 MMscf/day

The corresponding time t1 = 1. 719 years.
Step 5. Assume b = 0. 5, and solve Equation 3.5.33 itera-

tively for b:

f (b) = t2

(
qi

q1

)b

− t1

(
qi

q2

)b

− (t2 − t1)

f (b) = 4(1. 725)b − 1. 719(2. 976)b − 2. 26
and:

f \(bk) = t2

(
qi

q1

)bk

ln
(

qi

q1

)
− t1

(
qi

q2

)bk

ln
(

qi

q2

)

f \(b) = 2. 18(1. 725)b − 1. 875(2. 976)b

with:

bk+1 = bk − f (bk)
f \(bk)

The iterative method can be conveniently performed
by constructing the following table:

k bk f (b) f \(b) bk+1

0 0.500000 7. 57 × 10−3 −0.36850 0.520540
1 0.520540 −4. 19 × 10−4 −0.40950 0.519517
2 0.519517 −1. 05 × 10−6 −0.40746 0.519514
3 0.519514 −6. 87 × 10−9 −0.40745 0.519514

The method converges after three iterations with a
value of b = 0. 5195.

Step 6. Solve for Di by using Equation 3.5.36:

Di = (qi/q2)b − 1
bt2

= (10/3. 36)0.5195 − 1
(0. 5195)(4)

= 0. 3668 year−1

or on a monthly basis Di = 0. 3668/12 = 0. 0306 month−1

or on a daily basis Di = 0. 3668/365 = 0. 001 day−1

Step 7. Use Equations 3.5.19 and 3.5.23 to predict the future
production performance of the gas well. Note in
Equation 3.5.19 that the denominator contains Dit
and, therefore, the product must be dimension-
less, or:

qt = 10(106)
[1 + 0. 5195Dit](1/0.5195)

= (10)(106)
[1 + 0. 5195(0. 3668)(t)](1/0.5195)

where:

qt = flow rate, MMscf/day
t = time, years

Di = decline rate, year −1

In Equation 3.5.23, the time basis in qi is expressed
in days and, therefore, Di must be expressed in
day−1, or:

Gp(t) =
[

qi

Di(1 − b)

][
1 −

(
qt

qi

)1−b
]

=
[

(10)(106)
(0. 001)(1 − 0. 5195)

]

×
[

1 −
(

qt

(10)(106)

)1−0.5195
]

Results of step 7 are tabulated below and shown
graphically in Figure 3.49:

Time Actual Calculated Actual Calc.
(years) q q cum. gas cum. gas

(MMscf/ (MMscf/ (MMMscf) (MMMscf)
day) day)

0 10 10 0 0
0.5 8.4 8.392971 1.67 1.671857
1 7.12 7.147962 3.08 3.08535
1.5 6.16 6.163401 4.3 4.296641
2 5.36 5.37108 5.35 5.346644
2.5 4.72 4.723797 6.27 6.265881
3 4.18 4.188031 7.08 7.077596
3.5 3.72 3.739441 7.78 7.799804
4 3.36 3.36 8.44 8.44669
5 2.757413 9.557617
6 2.304959 10.477755
7 1.956406 11.252814
8 1.68208 11.914924
9 1.462215 12.487334

10 1.283229 12.987298
11 1.135536 13.427888
12 1.012209 13.819197
13 0.908144 14.169139
14 0.819508 14.484015
15 0.743381 14.768899
16 0.677503 15.027928
17 0.620105 15.264506
18 0.569783 15.481464
19 0.525414 15.681171
20 0.486091 15.86563

Gentry (1972) developed a graphical method for the coef-
ficients b and Di as shown in Figures 3.50 and 3.51. Arps’s
decline curve exponent b is expressed in Figure 3.50 in terms
of the ratios qi/q and Gp/(tqi) with an upper limit for qi/q at
100. To determine the exponent b, enter the graph with the
abscissa with a value of Gp/(tqi) that corresponds to the last
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Figure 3.49 Decline curve data for Example 3.18.
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data point on the decline curve and enter the coordinates
with the value of the ratio of initial production rate to that of
the last rate on the decline curve qi/q. The exponent b is read
by the intersection of these two values. The initial decline
rate Di can be determined from Figure 3.51 by entering the
ordinate with the value of qi/q and moving to the right to the
curve that corresponds to the value of b. The initial decline
rate Di can be found by reading the value on the abscissa
divided by the time t from qi to q.

Example 3.19 Using the data given in Example 3.18,
recalculate the coefficients b and Di by using Gentry’s
graphs.

Solution

Step 1. Calculate the ratios qi/q and Gp/(tqi) as:
qi/q = 10/3. 36 = 2. 98

Gp/(tqi) = 8440/[(4 × 365)(10)] = 0. 58
Step 2. From Figure 3.50, draw a horizontal line from the y

axis at 2.98 and a vertical line from the x axis at 0.58
and read the value of b at the intersection of the two
lines, to give:

b = 0. 5
Step 3. Figure 3.51 with the values of 2.98 and 0.5 to give:

Dit = 1. 5 or Di = 1. 5/4 = 0. 38 year−1

In many cases gas wells are not produced at their full
capacity during their early life for various reasons, such as

limited capacity of flow lines, transportation, low demand, or
other types of restrictions. Figure 3.52 illustrates a model for
estimating the time pattern of production where the rate is
restricted.

Figure 3.52 shows that the well produces at a restricted
flow rate of qr for a total time of tr with a cumulative produc-
tion of Gpr . The proposed methodology for estimating the
restricted time tr is to set the total cumulative production
Gp(tr) that would have occurred under normal decline from
the initial well capacity qi down to qr equal to Gpr . Eventually,
the well will reach the time tr where it begins to decline with
a behavior that is similar to other wells in the area. The pro-
posed method for predicting the decline rate behavior for a

Time
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Figure 3.52 Estimation of the effect of restricting
maximum production rate.
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well under restricted flow is based on the assumption that
the following data is available and applicable to the well:

● coefficients of Arps’s equation, i.e., Di and b by analogy
with other wells;

● abandonment (economic) gas flow rate qa ;
● ultimate recoverable reserves Gpa;
● allowable (restricted) flow rate qr .

The methodology is summarized in the following steps:

Step 1. Calculate the initial well flow capacity qi that would
have occurred with no restrictions, as follows:
For exponential qi = GpaDi + qa [3.5.37]

For harmonic qi = qr

[
1 + DiGpa

qr
− ln

(
qr

qa

)]

[3.5.38]

For hyperbolic qi =
{

(qr)b + DibGpa

(qr)1−b
− b(qr)b

1 − b

×
[

1 −
(

qa

qr

)1−b
]}1/b

[3.5.39]

Step 2. Calculate the cumulative gas production during the
restricted flow rate period:

For exponential Gpr = qi −qr

Di
[3.5.40]

For harmonic Gpr =
(

qi

Di

)
ln
(

qi

qr

)
[3.5.41]

For hyperbolic Gpr =
[

qi

Di(1−b)

][
1−
(

qr

qi

)1−b
]

[3.5.42]

Step 3. Regardless of the type of decline, calculate the total
time of the restricted flow rate from:

tr = Gpr

qr
[3.5.43]

Step 4. Generate the well production performance as a func-
tion of time by applying the appropriate decline
relationships as given by Equations 3.5.18 through
3.5.29.

Example 3.20 The volumetric calculations on a gas
well show that the ultimate recoverable reserves Gpa are
25 MMMscf of gas. By analogy with other wells in the area,
the following data is assigned to the well:

exponential decline
allowable (restricted) production rate = 425 MMscf/month
economic limit = 30 MMscf/month
nominal decline rate = 0.044 month−1

Calculate the yearly production performance of the well.

Solution

Step 1. Estimate the initial flow rate qi from Equation 3.5.37:
qi = GpaDi + qa

= (0. 044)(25 000) + 30 = 1130 MMscf/month
Step 2. Calculate the cumulative gas production during the

restricted flow period by using Equation 3.5.40:

Gpr = qi − qr

Di

= 1130 − 425
0. 044

= 16. 023 MMscf

Step 3. Calculate the total time of the restricted flow from
Equation 3.5.43:

tr = Gpr

qr

= 16 023
425

= 37. 7 months = 3. 14 years

Step 4. The yearly production during the first three years is:

q = (425)(12) = 5100 MMscf/year

The fourth year is divided into 1.68 months, i.e., 0.14 years,
of constant production plus 10.32 months of declining pro-
duction, or:

For the first 1.68 months (1. 68)(425) = 714 MMscf

At the end of the fourth year:

q = 425 exp
[−0. 044(10. 32)

] = 270 MMscf/month

Cumulative gas production for the last 10.32 months is:

425 − 270
0. 044

= 3523 MMscf

Total production for the fourth year is:

714 + 3523 = 4237 MMscf

Year Production (MMscf/year)

1 5100
2 5100
3 5100
4 4237

The flow rate at the end of the fourth year, i.e., 270
MMscf/month, is set equal to the initial flow rate at the begin-
ning of the fifth year. The flow rate at the end of the fifth year,
qend, is calculated from Equation 3.5.40 as:

qend = qi exp[−Di(12)]
= 270 exp[−0. 044(12)] = 159 MMscf/month

with a cumulative gas production of:

Gp = qi − qend

Di
= 270 − 159

0. 044
= 2523 MMscf

And for the sixth year:

qend = 159 exp[−0. 044(12)] = 94 MMscf/month

as:

Gp = 159 − 94
0. 044

= 1482 MMscf

Results of the above repeated procedure are tabulated below:

t qi qend Yearly Cumulative
(years) (MMscf/ (MMSCF/ production production

month) month) (MMscf/year) (MMMscf)

1 425 425 5100 5.100
2 425 425 5100 10.200
3 425 425 5100 15.300
4 425 270 4237 19.537
5 270 159 2523 22.060
6 159 94 1482 23.542
7 94 55 886 24.428
8 55 33 500 24.928
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Reinitialization of Data Fetkovich (1980) pointed out that
there are several obvious situations where rate–time data
must be reinitialized for reasons that include among others:

● the drive or production mechanism has changed;
● an abrupt change in the number of wells on a lease or a

field due to infill drilling;
● changing the size of tubing would change qi and also the

decline exponent b.

Providing a well is not tubing or equipment limited, the
effects of stimulation will result in a change in deliverability
qi and possibly the remaining recoverable gas. However,
the decline exponent b normally can be assumed constant.
Fetkovich et al. (1996) suggested a “rule-of-thumb” equation
to approximate an increase in rate due to stimulation as:

(qi)new =
[

7 + sold

7 + snew

]
(qt)old

where:

(qt)old = producing rate just prior to stimulation
s = skin factor

Arps’s equation, i.e., Equation 3.5.16, can be expressed as:

qt = (qi)new

(1 + bt(Di)new)1/b

with:

(Di)new = (qi)new

(1 − b)G
where:

G = gas-in-place, scf

Type curve analysis
As presented in Chapter 1, type curve analysis of production
data is a technique where actual production rate and time are
history matched to a theoretical model. The production data
and theoretical model are generally expressed graphically in
dimensionless forms. Any variable can be made “dimension-
less” by multiplying it by a group of constants with opposite
dimensions, but the choice of this group will depend on the
type of problem to be solved. For example, to create the
dimensionless pressure drop pD, the actual pressure drop in
psi is multiplied by the group A with units of psi−1, or:

pD = A�p
Finding group A that makes a variable dimensionless is

derived from equations that describe reservoir fluid flow.
To introduce this concept, recall Darcy’s equation that
describes the radial, incompressible, steady-state flow as
expressed by:

Q =
[

0. 00708 kh
Bµ[ln(re/rwa) − 0. 5

]
�p

where rwa is the apparent (effective) wellbore radius and
defined by Equation 1.2.140 in terms of the skin factor s as:

rwa = rwe−s

Group A can be defined by rearranging Darcy’s equa-
tion as:

ln
(

re

rwa

)
− 1

2
=
[

0. 00708 kh
QBµ

]
�p

Because the left-hand slide of the above equation is dimen-
sionless, the right-hand side must be accordingly dimen-
sionless. This suggests that the term 0. 00708kh/QBµ is
essentially group A with units of psi−1 that defines the
dimensionless variable pD, or:

pD =
[

0. 00708 kh
QBµ

]
�p

Or the ratio of pD to �p as:
pD

�p
=
[

kh
141. 2QBµ

]

Taking the logarithm of both sides of this equation gives:

log(pD) = log(�p) + log
(

0. 00708 kh
QBµ

)
[3.5.44]

where:

Q = flow rate, STB/day
B = formation volume factor, bbl/STB
µ = viscosity, cp

For a constant flow rate, Equation 3.5.44 indicates that
the logarithm of the dimensionless pressure drop, log(pD),
will differ from the logarithm of the actual pressure drop,
log(�p), by a constant amount of:

log
(

0. 00708 kh
QBµ

)

Similarly, the dimensionless time tD is given in Chapter 1 by
Equation 1.2.75, with time t given in days, as:

tD =
[

0. 006328 k
φµctr2

w

]
t

Taking the logarithm of both sides of this equation gives:

log(tD) = log(t) + log
[

0. 006328 k
φµctr2

w

]
[3.5.45]

where:

t = time, days
ct = total compressibility coefficient, psi−1

φ = porosity

Hence, a graph of log(�p) vs. log(t) will have an identical
shape (i.e., parallel) to a graph of log(pD) vs. log(tD), although
the curve will be shifted by log(0. 00708kh/QBµ) vertically
in pressure and log(0. 000264k/φµctr2

w) horizontally in time.
This concept is illustrated in Chapter 1 by Figure 1.46 and
reproduced in this chapter for convenience.
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Figure 1.46 Concept of type curves.

Not only do these two curves have the same shape, but
if they are moved relative to each other until they coincide or
“match,” the vertical and horizontal displacements required
to achieve the match are related to these constants in Equa-
tions 3.5.44 and 3.5.45. Once these constants are determined
from the vertical and horizontal displacements, it is possible
to estimate reservoir properties such as permeability and
porosity. This process of matching two curves through the
vertical and horizontal displacements and determining the
reservoir or well properties is called type curve matching.

To fully understand the power and convenience of using
the dimensionless concept approach in solving engineering
problems, this concept is illustrated through the following
example.
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Example 3.21 A well is producing under transient
(unsteady-state) flow conditions. The following properties
are given:

pi = 3500 psi, B = 1. 44 bbl/STB

ct = 17. 6 × 10−6 psi−1, φ = 15%

µ = 1. 3 cp, h = 20 ft

Q = 360 STB/day, k = 22. 9 md

s = 0

(a) Calculate the pressure at radii 10 ft and 100 ft for the flow-
ing time 0.1, 0.5, 1.0, 2.0, 5.0, 10, 20, 50, and 100 hours.
Plot pi − p(r , t) vs. t on a log–log scale.

(b) Present the data from part (a) in terms of pi − p(r , t) vs.
(t/r2) on a log–log scale.

Solution

(a) During transient flow, Equation 1.2.66 is designed to
describe the pressure at any radius r and any time t
as given by:

p(r , t) = pi +
[

70. 6QBµ

kh

]
Ei
[−948φµctr2

kt

]

or:

pi − p(r , t) =
[−70. 6(360)(1. 444)(1. 3)

(22. 9)(20)

]

× Ei
[−948(0. 15)(1. 3)(17. 6 × 10−6r2)

(22. 9)t

]

pi − p(r , t) = −104Ei
[
−0. 0001418

r2

t

]

Values of pi − p(r , t) are presented as a function of time
and radius (i.e., at r = 10 feet and 100 feet) in the
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Figure 3.53 Pressure profile at 10 feet and 100 feet as a function of time.

following table and graphically in Figure 3.53:

Assumed r = 10 feet

t (hours) t/r2 Ei[−0. 0001418r2/t] pi − p(r , t)

0.1 0.001 −1.51 157
0.5 0.005 −3.02 314
1.0 0.010 −3.69 384
2.0 0.020 −4.38 455
5.0 0.050 −5.29 550

10.0 0.100 −5.98 622
20.0 0.200 −6.67 694
50.0 0.500 −7.60 790

100.0 1.000 −8.29 862

Assumed r = 100 feet

t (hours) t/r2 Ei[−0. 0001418r2/t] pi − p(r , t)

0.1 0.00001 0.00 0
0.5 0.00005 −0.19 2
1.0 0.00010 −0.12 12
2.0 0.00020 −0.37 38
5.0 0.00050 −0.95 99

10.0 0.00100 −1.51 157
20.0 0.00200 −2.14 223
50.0 0.00500 −3.02 314

100.0 0.00100 −3.69 386

(b) Figure 3.53 shows two different curves for the 10 and
100 feet radii. Obviously, the same calculations can be
repeated for any number of radii and, consequently, the
same number of curves will be generated. However,
the solution can be greatly simplified by examining
Figure 3.54. This plot shows that when the pressure dif-
ference pi − p(r , t) is plotted versus t/r2, the data for
both radii forms a common curve. In fact, the pressure
difference for any reservoir radius will plot on this exact
same curve.
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Figure 3.54 Pressure profile at 10 feet and 100 feet as a function of t/r2.

For example, in the same reservoir to calculate the
pressure p at 150 feet after 200 hours of transient flow,
then:

t/r2 = 200/1502 = 0. 0089
From Figure 3.54:

pi − p(r , t) = 370 psi
Thus:

p(r , t) = pi − 370 = 5000 − 370 = 4630 psi

Several investigators have employed the dimensionless vari-
ables approach to determine reserves and to describe the
recovery performance of hydrocarbon systems with time,
notably:

● Fetkovich;
● Carter;
● Palacio and Blasingame;
● Flowing material balance;
● Anash et al.;
● Decline curve analysis for fractured wells.

All the methods are based on defining a set of “Decline
curve dimensionless variables” that includes:

● decline curve dimensionless rate qDd;
● decline curve dimensionless cumulative production QDd;
● decline curve dimensionless time tDd.

These methods were developed with the objective of provid-
ing the engineer with an additional convenient tool for esti-
mating reserves and determining other reservoir properties
for oil and gas wells using the available performance data. A
review of these methods and their practical applications are
documented below.
Fetkovich type curve Type curve matching is an advanced
form of decline analysis proposed by Fetkovich (1980).
The author proposed that the concept of the dimension-
less variables approach can be extended for use in decline
curve analysis to simplify the calculations. He introduced
the decline curve dimensionless flow rate variable qdD and
decline curve dimensionless time tdD that are used in all
decline curve and type curve analysis techniques. Arps’s

relationships can be expressed in the following dimension-
less forms:

Hyperbolic
qt

qi
= 1

[1 + bDit]1/b

In a dimensionless form:

qDd = 1

[1 + btDd]1/b
[3.5.46]

where the decline curve dimensionless variables qDd and tDd
are defined by:

qDd = qt

qi
[3.5.47]

tDd = Dit [3.5.48]

Exponential
qt

qi
= 1

exp [Dit]

Similarly:

qDd = 1
exp [tDd]

[3.5.49]

Harmonic
qt

qi
= 1

1 + Dit

or:

qDd = 1
1 + tDd

[3.5.50]

where qDd and tDd are the decline curve dimensionless vari-
ables as defined by Equations 3.5.47 and 3.5.48, respectively.
During the boundary-dominated flow period, i.e., steady-
state or semisteady-state flow conditions, Darcy’s equation
can be used to describe the initial flow rate qi as:

qi = 0. 00708kh�p
Bµ
[
ln(re/rwa) − 1

2

] = kh( pi − pwf )
142. 2Bµ

[
ln(re/rwa) − 1

2

]
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Figure 3.55 Fetkovich type curves (After Fetkovich, 1980, JPT June 1980, copyright SPE 1980).

where:

q = flow rate, STB/day
B = formation, volume factor, bbl/STB
µ = viscosity, cp
k = permeability, md
h = thickness, ft

re = drainage radius, ft
rwa = apparent (effective) wellbore radius, ft

The ratio re/rwa is commonly referred to as the dimension-
less drainage radius rD. That is:
rD = re/rwa [3.5.51]
with:

rwa = rwe−s

The ratio re/rwa in of Darcy’s equation can be replaced with
rD, to give:

qi = kh( pi − pwf )
141. 2Bµ

[
ln(rD) − 1

2

]
Rearranging Darcy’s equation gives:[

141. 2Bµ

kh�p

]
qi = 1

ln(rD) − 1
2

It is obvious that the right-hand side of this equation is
dimensionless, which indicates that the left-hand side of the
equation is also dimensionless. The above relationship then
defines the dimensionless rate qD as:

qD =
[

141. 2Bµ

kh�p
qi

]
= 1

ln(rD) − 1
2

[3.5.52]

Recalling the dimensionless form of the diffusivity equation,
i.e., Equation 1.2.78, as:

∂2pD

∂r2
D

+ 1
rD

∂pD

∂rD
= ∂pD

∂rD

Fetkovich demonstrated that the analytical solutions to
the above transient flow diffusivity equation and the

pseudosteady-state decline curve equations could be com-
bined and presented in a family of “log–log” dimensionless
curves. To develop this link between the two flow regimes,
Fetkovich expressed the decline curve dimensionless vari-
ables qDd and tDd in terms of the transient dimensionless rate
qD and time tD. Combining Equation 3.5.47 with Equation
3.5.52, gives:

qDd = qt

qi
=

qt
kh(pi−p)

141. 2Bµ
[
ln(rD) − 1

2

]
or:
qDd = qD

[
ln(rD) − 1

2

]
[3.5.53]

Fetkovich expressed the decline curve dimensionless time
tDd in terms of the transient dimensionless time tD by:

tDd = tD
1
2

[
r2

D − 1
] [

ln(rD) − 1
2

] [3.5.54]

Replacing the dimensionless time tD by Equation 1.2.75
gives:

tDd = 1
1
2

[
r2

D − 1
] [

ln(rD) − 1
2

]
[

0. 006328t
φ(µct )r2

wa

]
[3.5.55]

Although Arps’s exponential and hyperbolic equations were
developed empirically on the basis of production data,
Fetkovich was able to place a physical basis to Arps’s
coefficients. Equations 3.5.48 and 3.5.55 indicate that the ini-
tial decline rate Di can be defined mathematically by the
following expression:

Di = 1
1
2

[
r2

D − 1
] [

ln(rD) − 1
2

]
[

0. 006328
φ(µct )r2

wa

]
[3.5.56]

Fetkovich arrived at his unified type curve; as shown in
Figure 3.55, by solving the dimensionless form of the
diffusivity equation using the constant-terminal solution
approach for several assumed values of rD and tDd and the
solution to Equation 3.5.46 as a function of tDd for several
values of b ranging from 0 to 1.
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Notice in Figure 3.55 that all curves coincide and become
indistinguishable at tDt ≈ 0. 3. Any data existing before a tDt
of 0.3 will appear to be exponentially declining regardless of
the true value of b and, thus, will plot as a straight line on
semilog paper.
With regard to the initial rate qi, it is not simply a producing
rate at early time; it is very specifically a pseudosteady-state
rate at the surface. It can be substantially less that the actual
early-time transient flow rates as would be produced from
low-permeability wells with large negative skins.

The basic steps used in Fetkovich type curve matching of
declining rate–time data are given below:

Step 1. Plot the historical flow rate qt versus time t in any
convenient units on log–log paper or tracing paper
with the same logarithmic cycles as the Fetkovich
type curve.

Step 2. Place the tracing paper data plot over the type curve
and slide the tracing paper with the plotted data,
keeping the coordinate axes parallel, until the actual
data points match one of the type curves with a
specific value of b.

Because decline type curve analysis is based
on boundary-dominated flow conditions, there is no
basis for choosing the proper b values for future
boundary-dominated production if only transient
data is available. In addition, because of the simi-
larity of curve shapes, unique type curve matches
are difficult to obtain with transient data only.
If it is apparent that boundary-dominated (i.e.,
pseudosteady-state) data is present and can be
matched on a curve for a particular value of b the
actual curve can simply be extrapolated following
the trend of the type curve into the future.

Step 3. From the match of that particular type curve of
step 2, record values of the reservoir dimensionless
radius re/rwa and the parameter b.

Step 4. Select any convenient match point “MP” on the
actual data plot (qt and t)MP and the corresponding
values lying beneath that point on the type curve
grid (qDd, tDd)MP.

Step 5. Calculate the initial surface gas flow rate qi at t = 0
from the rate match point:

qi =
[

qt

qDi

]
MP

[3.5.57]

Step 6. Calculate the initial decline rate Di from the time
match point:

Di =
[

tDd

t

]
MP

[3.5.58]

Step 7. Using the value of re/rwa from step 3 and the
calculated value of qi , calculate the formation per-
meability k by applying Darcy’s equation in one of
the following three forms:

● Pseudopressure form:

k = 1422[ln(re/rwa) − 0. 5]qi

h[m( pi) − m(pwf )] [3.5.59]

● Pressure-squared form:

k = 1422T (µgZ )avg[ln(re/rwa) − 0. 5]qi

h( p2
i − p2

wf )
[3.5.60]

● Pressure approximation form:

k = 141. 2(103)T (µgBg)[ln(re/rwa) − 0. 5]qi

h(pi − pwf )
[3.5.61]

where:

k = permeability, md
pi = initial pressure, psia

pwf = bottom-hole flowing pressure, psia
m(P) = pseudopressure, psi2/cp

qi = initial gas flow rate, Mscf/day
T = temperature, ◦R
h = thickness, ft

µg = gas viscosity, cp
Z = gas deviation factor

Bg = gas formation volume factor, bbl/scf

Step 8. Determine the reservoir pore volume (PV) of the
well drainage area at the beginning of the boundary-
dominated flow from the following expression:

PV = 56. 54T
(µgct )i[m(pi) − m(pwf )]

(
qi

Di

)
[3.5.62]

or in terms of pressure squared:

PV = 28. 27T (µgZ )avg

(µgct )i[p2
i − p2

wf ]
(

qi

Di

)
[3.5.63]

with:

re =
√

PV
πhφ

[3.5.64]

A = πre2

43 560
[3.5.65]

where:

PV = pore volume, ft3

φ = porosity, fraction
µg = gas viscosity, cp
ct = total compressibility coefficient, psi−1

qi = initial gas rate, Mscf/day
Di = decline rate, day−1

re = drainage radius of the well, ft
A = drainage area, acres

subscripts:

i = initial
avg = average

Step 9. Calculate the skin factor s from the re/rwa matching
parameter and the calculated values of A and re from
step 8:

s = ln
[(

re

rwa

)
MP

(
rw

re

)]
[3.5.66]

Step 10. Calculate the initial gas-in-place G from:

G = (PV)[1 − Sw]
5. 615Bgi

[3.5.67]

The initial gas-in-place can also estimated from the
following relationship:

G = qi

Di(1 − b)
[3.5.68]

where:

G = initial gas-in-place, scf
Sw = initial water saturation
Bgi = gas formation volume factor at pi , bbl/scf
PV = pore volume, ft3

An inherent problem when applying decline curve analy-
sis is having sufficient rate–time data to determine a unique
value for b as shown in the Fetkovich type curve. It illustrates
that for a shorter the producing time, the b value curves
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Figure 3.56 West Virginia gas well A type curve fit (Copyright SPE 1987).

approach one another, which leads to difficulty in obtaining
a unique match. Arguably, applying the type curve approach
with only three years of production history may be too short
for some pools. Unfortunately, since time is plotted on a
log scale, the production history becomes compressed so
that even when incremental history is added, it may still be
difficult to differentiate and clearly identify the appropriate
decline exponent b.

The following example illustrates the use of the type
curve approach to determine reserves and other reservoir
properties.

Example 3.22 Well A is a low-permeability gas well
located in West Virginia. It produces from the Onondaga
chert that has been hydraulically fractured with 50 000 gal of
3% gelled acid and 30 000 lb of sand. A conventional Horner
analysis of pressure buildup data on the well indicated the
following:

pi = 3268 psia, m(pi) = 794. 8 × 106 psi2/cp
k = 0. 082 md, s = −5. 4

The Fetkovich et al. (1987) provided the following additional
data on the gas well:

pwf = 500 psia, m(pwf ) = 20. 8 × 106 psi2/cp

µgi = 0. 0172 cp, cti = 177 × (10−6) psi−1

T = 620◦R, h = 70 ft
φ = 0. 06, Bgi = 0. 000853 bbl/scf
Sw = 0. 35, rw = 0. 35 ft

The historical rate time data for eight years was plotted and
matched to re/rwa stem of 20 and b = 0. 5, as shown in
Figure 3.56, with the following match point:

qt = 1000 Mscf/day, t = 100 days

qDd = 0. 58, tDd = 0. 126

Using the above data, calculate:

● permeability k;
● drainage area A;
● skin factor s;
● gas-in-place G.

Solution

Step 1. Using the match point, calculate qi and Di by applying
Equations 3.5.57 and 3.5.58, respectively:

qi =
[

qt

qDt

]
MP

= 1 000
0. 58

= 1 724 Mscf/day

and:

Di =
[

tDd

t

]
MP

= 0. 126
100

= 0. 00126 day−1

Step 2. Calculate the permeability k from Equation 3.5.59

k = 1442T [ln(re/rwa) − 0. 5]qi

h[m(pi) − m(pwf )]

= 1422(620)[ln(20) − 0. 5](1724. 1)
(70)[794. 8 − 20. 8](106)

= 0. 07 md

Step 3. Calculate the reservoir PV of the well drainage area
by using Equation 3.5.62:

PV = 56. 54T
(µgct )i[m(pi) − m(pwf )]

(
qi

Di

)

= 56. 54(620)
(0. 0172)(177)(10−6)[794. 8 − 20. 8](106)

× 1724. 1
0. 00126

= 20. 36 × 106 ft3

Step 4. Calculate the drainage radius and area by applying
Equations 3.5.64 and 3.5.65:

re =
√

PV
πhφ

=
√

(20. 36)106

π(70)(0. 06)
= 1242 ft
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and:

A = πre2

43 560

= π(1242)2

43 560
= 111 acres

Step 5. Determine the skin factor from Equation 3.5.66:

s = ln
[(

re

rwa

)
MP

(
rw

re

)]

= ln
[

(20)
(

0. 35
1242

)]
= −5. 18

Step 6. Calculate the initial gas-in-place by using Equation
3.5.67:

G = (PV)[1 − Sw]
5. 615Bgi

= (20. 36)(106)[1 − 0. 35]
(5. 615)(0. 000853)

= 2. 763 Bscf

The initial gas G can also be estimated from Equation
3.5.68, to give:

G = qi

Di(1 − b)

= 1. 7241(106)
0. 00126(1 − 0. 5)

= 2. 737 Bscf

Limits of exponent b and decline analysis of stratified
no-crossflow reservoirs Most reservoirs consist of several
layers with varying reservoir properties. Due to the fact that
no-crossflow reservoirs are perhaps the most prevalent and
important, reservoir heterogeneity is of considerable sig-
nificance in long-term prediction and reserve estimates. In
layered reservoirs with crossflow, adjacent layers can sim-
ply be combined into a single equivalent layer that can be
described as a homogeneous layer with averaging reservoir
properties of the cross-flowing layers. As shown later in this
section, the decline curve exponent b for a single homo-
geneous layer ranges between 0 and a maximum value of
0.5. For layered no-crossflow systems, values of the decline
curve exponent b range between 0.5 and 1 and therefore can
be used to identify the stratification. These separated lay-
ers might have the greatest potential for increasing current
production and recoverable reserves.

Recalling the back-pressure equation, i.e., Equation 3.1.20:

qg = C(p2
r − p2

wf )
n

where:

n = back-pressure curve exponent
c = performance coefficient

pr = reservoir pressure

Fetkovich et al. (1996) suggested that the Arps decline expo-
nent b and the decline rate can be expressed in terms of the
exponent n by:

b = 1
2n

[
(2n − 1) −

(
pwf

pi

)2
]

[3.5.69]

Di = 2n
( qi

G

)
[3.5.70]

where G is the initial gas-in-place. Equation 3.5.69 indicates
that as the reservoir pressure pi approaches pwf with deple-
tion, all the non-exponential decline (b 
= 0) will shift toward
exponential decline (b = 0) as depletion proceeds. Equation
3.5.69 also suggests that if the well is producing at a very low

bottom-hole flowing pressure (pwf = 0) or pwf � pi , it can
be reduced to the following expression:

b = 1 − 1
2n

[3.5.71]

The exponent n from a gas well back-pressure perfor-
mance curve can therefore be used to calculate or estimate
b and Di . Equation 3.5.70 provides the physical limits of b,
which is between 0 and 0.5, over the accepted theoretical
range of n which is between 0.5 and 1.0 for a single-layer
homogeneous system, as follows:

n b

(high k)0.50 0.0
0.56 0.1
0.62 0.2
0.71 0.3
0.83 0.4
(low k) 1.00 0.5

However, the harmonic decline exponent, b = 1, cannot
be obtained from the back-pressure exponent. The b value
of 0.4 should be considered as a good limiting value for gas
wells when not clearly defined by actual production data.

The following is a tabulation of the values of b that
should be expected for single-layer homogeneous or layered
crossflow systems.

b System characterization and identification

0.0 Gas wells undergoing liquid loading
Wells with high back-pressure
High-pressure gas
Low-pressure gas with back-pressure

curve exponent of n ≈ 0. 5
Poor water-flood performance (oil wells)
Gravity drainage with no solution gas (oil

wells)
Solution gas drive with unfavorable kg/ko

(oil wells)
0.3 Typical for solution gas drive reservoirs
0.4–0.5 Typical for gas wells, b = 0, for pwf ≈ 0;

b = 0, for pwf ≈ 0. 1pi
0.5 Gravity drainage for solution gas and for

water-drive oil reservoirs
Undeterminable Constant-rate or increasing-rate produc-

tion period
Flow rates are all in transient or infinite-

acting period
0. 5 < b < 0. 9 Layered or composite reservoir

The significance of the decline curve exponent b value
is that for a single-layer reservoir, the value of b will lie
between 0 and 0.5. With layered no-crossflow performance,
however, the b value can be between 0.5 and 1.0. As pointed
out by Fetkovich et al. (1996), the further the b value is
driven towards a value of 1.0, the more the unrecovered
reserves remain in the tight low-permeability layer and the
greater the potential to increase production and recoverable
reserves through stimulation of the low-permeability layer.
This suggests that decline curve analysis can be used to rec-
ognize and identify layered no-crossflow performance using
only readily available historical production data. Recognition
of the layers that are not being adequately drained com-
pared to other layers, i.e., differential depletion, is where the
opportunity lies. Stimulation of the less productive layers can
allow both increased production and reserves. Figure 3.57
presents the standard Arps depletion decline curves, as pre-
sented by Fetkovich et al. (1996). Eleven curves are shown
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Figure 3.57 Depletion decline curves (After Fetkovich, 1997, copyright SPE 1997).

with each being described by a b value which ranges between
0 and 1 in increments of 0.1. All of the values have meaning
and should be understood in order to apply decline curve
analysis properly. When decline curve analysis yields a b value
greater than 0.5 (layered no-crossflow production) it is inac-
curate to simply to make a prediction from the match point
values. This is because the match point represents a best
fit of the surface production data that includes production
from all layers. Multiple combinations of layer production
values can give the same composite curve and, therefore,
unrealistic forecasts in late time may be generated.

To demonstrate the effect of the layered no-crossflow
reservoir system on the exponent b, Fetkovich et al.
(1996) evaluated the production depletion performance
of a two-layered gas reservoir producing from two non-
communicated layers. The field produces from 10 wells and
contains an estimated 1.5 Bscf of gas-in-place at an initial
reservoir pressure of 428 psia. The reservoir has a gross
thickness of 350 ft with a shale barrier averaging 50 ft thick
that is clearly identified across the field and separates the
two layers. Core data indicates a bimodal distribution with a
permeability ratio between 10:1 and 20:1.

A type curve analysis and regression fit of the total field
composite log(qi) vs. log(t) yielded b = 0. 89 that is iden-
tical to all values obtained from individual well analysis.
To provide a quantitative analysis and an early recogni-
tion of a non-crossflow layered reservoir, Fetkovich (1980)
expressed the rate–time equation for a gas well in terms of
the back-pressure exponent n with a constant pwf of zero.
The derivation is based on combinging Arps’s hyperbolic
equation with the MBE (i.e., p/Z vs. Gp) and back-pressure
equation to give:
For 0. 5 < n < 1, 0 < b < 0. 5:

qt = qi[
1 + (2n − 1)

( qi
G

)
t
] 2n

2n−1
[3.5.72]

Gp(t) = G

{
1 −

[
1 + (2n − 1)

( qi

G

)
t
] 1

2n−1

}
[3.5.73]

For n = 0. 5, b = 0:

qt = qi exp
[
−
( qi

G

)
t
]

[3.5.74]

Gp(t) = G
{

1 − exp
[
−
( qi

G

)
t
]}

[3.5.75]

For n = 1, b = 0. 5:

qt = qi[
1 + ( qi

G

)
t
]2 [3.5.76]

Gp(t) = G − G

1 +
(

qi t
G

) [3.5.77]

The above relationships are based on pwf = 0, which implies
that qi = qmax as given by:

qi = qi max = khp2
i

1422T (µgZ )avg[ln(re/rw) − 0. 75 + s]
[3.5.78]

where:

qi max = stabilized absolute open-flow potential, i.e., at
Pwf = 0, Mscf/day

G = initial gas-in-place, Mscf
qt = gas flow rate at time t, Mscf/day
t = time

Gp(t) = cumulative gas production at time t, Mscf

For a commingled well producing from two layers at a
constant pwf , the total flow rate (qt)total is essentially the sum
of the flow rate from each layer, or:

(qt)total = (qt)1 + (qt)2

where the subscripts 1 and 2 represent the more permeable
layer and less permeable layer, respectively. For a hyperbolic
exponent of b = 0. 5, Equation 3.5.76 can be substituted into
the above expression to give:

(qmax)total[
1 + t

( qmax

G

)
total

]2 = (qmax)1[
1 + t

( qmax

G

)
1

]2 + (qmax)2[
1 + t

( qmax

G

)
2

]2

[3.5.79]

Equation 3.5.79 indicates that only if
(
qmax/G

)
1 =(

qmax/G
)

2 will the value of b = 0. 5 for each layer yield a
composite rate–time value of b = 0. 5.

Mattar and Anderson (2003) presented an excellent
review of methods that are available for analyzing produc-
tion data using traditional and modern type curves. Basically,
modern type curve analysis methods incorporate the flow-
ing pressure data along with production rates and they use
the analytical solutions to calculate hydrocarbon-in-place.
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Two important features of modern decline analysis that
improve upon the traditional techniques are:

(1) Normalizing of rates using flowing pressure drop: Plotting
a normalized rate (q/�p) enables the effects of back-
pressure changes to be accommodated in the reservoir
analysis.

(2) Handling the changing in gas compressibility with pres-
sure: Using pseudotime as the time function, instead of
real time, enables the gas material balance to be handled
rigorously as the reservoir pressure declines with time.

Carter type curve Fetkovich originally developed his type
curves for gas and oil wells that are producing at con-
stant pressures. Carter (1985) presented a new set of type
curves developed exclusively for the analysis of gas rate
data. Carter noted that the changes in fluid properties with
pressure significantly affect reservoir performance predic-
tions. Of utmost importance is the variation in the gas
viscosity–compressibility product µgcg, which was ignored
by Fetkovich. Carter developed another set of decline curves
for boundary-dominated flow that uses a new correlat-
ing parameter λ to represent the changes in µgcg during
depletion. The λ parameter, called the “dimensionless draw-
down correlating parameter,” is designated to reflect the
magnitude of pressure drawdown on µgcg and defined by:

λ = (µgcg)i

(µgcg)avg
[3.5.80]

or equivalently:

λ = (µgcg)i

2


m(pi) − m(pwf )

pi

Zi
− pwf

Zwf


 [3.5.81]

where:

cg = gas compressibility coefficient, psi−1

m(p) = real-gas pseudopressure, psi2/cp
pwf = bottom-hole flowing pressure, psi

pi = initial pressure, psi
µg = gas viscosity, cp
Z = gas deviation factor

For λ = 1, this indicates a negligible drawdown effect and
corresponds to b = 0 on the Fetkovich exponential decline
curve. Values of λ range between 0.55 and 1.0. The type
curves presented by Carter are based on specially defined
for dimensionless parameters:

(1) dimensionless time tD;
(2) dimensionless rate qD;
(3) dimensionless geometry parameter (η) that character-

izes the dimensionless radius reD and flow geometry;
(4) dimensionless drawdown correlating parameter λ.

Carter used a finite difference radial gas model to gen-
erate the data for constructing the type curves shown in
Figure 3.58.

The following steps summarize the type curve matching
procedure:

Step 1. Using Equation 3.5.80 or 3.5.81, calculates the
parameter λ:

λ = (µgcg)i

(µgcg)avg

or:

λ = (µgcg)i

2


m(pi) − m(pwf )

pi

Zi
− pwf

Zwf




Step 2. Plot gas rate q in Mscf/day or MMscf/day as a
function of time (t) in days using the same log–log
scale as the type curves. If the actual rate values are
erratic or fluctuate, it may be best to obtain averaged
values of rate by determining the slope of straight
lines drawn through adjacent points spaced at regu-
lar intervals on the plot of cumulative production Gp
versus time, i.e., slope = dGp/dt = qg. The result-
ing plot of qg vs. t should be made on tracing paper
or on a transparency so that it can be laid over the
type curves for matching.

Step 3. Match the rate data to a type curve corresponding
to the computed value of λ in step 1. If the computed
value of λ is not as one of the values for which a type
curve is shown, the needed curve can be obtained
by interpolation and graphical construction.

Step 4. From the match, values of (qD)MP and (tD)MP corre-
sponding to specific values for (q)MP and (t)MP are
recorded. Also, a value for the dimensionless geom-
etry parameter η is also obtained from the match.
It is strongly emphasized that late-time data points
(boundary-dominated pseudosteady-state flow con-
dition) are to be matched in preference to early-
time data points (unsteady-state flow condition)
because matching some early rate data often will be
impossible.

Step 5. Estimate the gas that would be recoverable by reduc-
ing the average reservoir pressure from its initial
value to pwf from the following expression:

�G = Gi − Gpwf = (qt)MP

(qDtD)MP

η

λ
[3.5.82]

Step 6. Calculate the initial gas-in-place Gi from:

Gi =




pi

Zi
pi

Zi
− pwf

Zwf


�G [3.5.83]

Step 7. Estimate the drainage area of the gas well from:

A = BgiGi

43 560φh(1 − Swi)
[3.5.84]

where:

Bgi = gas formation volume factor at pi, ft3/scf
A = drainage area, acres
h = thickness, ft
φ = porosity

Swi = initial water saturation

Example 3.23 The following production and reservoir
data was used by Carter to illustrate the proposed calculation
procedure.

p (psia) µg (cp) Z

1 0.0143 1.0000
601 0.0149 0.9641

1201 0.0157 0.9378
1801 0.0170 0.9231
2401 0.0188 0.9207
3001 0.0208 0.9298
3601 0.0230 0.9486
4201 0.0252 0.9747
4801 0.0275 1.0063
5401 0.0298 1.0418
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Figure 3.58 Radial–linear gas reservoir type curves (After Carter, SPEJ 1985, copyright SPE 1985).

pi = 5400 psia, pwf = 500 psi,

T = 726◦R, h = 50 ft

φ = 0. 070, Swi = 0. 50,

λ = 0. 55

Time (days) qt (MMscf/day)

1.27 8.300
10.20 3.400
20.50 2.630
40.90 2.090
81.90 1.700

163.80 1.410
400.00 1.070
800.00 0.791

1600.00 0.493
2000.00 0.402
3000.00 0.258
5000.00 0.127

10 000.00 0.036

Calculate the initial gas-in-place and the drainage area.

Solution

Step 1. The calculated value of λ is given as 0.55 and, there-
fore, the type curve for a λ value of 0.55 can be used
directly from Figure 3.58.

Step 2. Plot the production data, as shown in Figure 3.59, on
the same log–log scale as Figure 3.55 and determine
the match points of:

(q)MP = 1.0 MMscf/day

(t)MP = 1,000 days

(qD)MP = 0.605

(tD)MP = 1.1

η = 1.045

Step 3. Calculate �G from Equation 3.5.82:

�G = Gi − Gpwf = (qt)MP

(qDtD)MP

η

λ

= (1)(1000)
(0. 605)(1. 1)

1. 045
0. 55

= 2860 MMscf

TLFeBOOK



3/258 UNCONVENTIONAL GAS RESERVOIRS

λ = 1 

λ = .75

λ = .55

η = 1.234
η = 1.184
η = 1.045
η = 1.01
η = 1.004

0.1

0.1

0.01

0.01

1

1 10 100

10
D

im
en

si
on

le
ss

 r
at

e 
q D

Dimensionless time tD

Figure 3.59 Carter type curves for Example 3.23.

Step 4. Estimate the initial gas-in-place by applying Equation
3.5.83.

Gi =




pi

Zi
pi

Zi
− pwf

Zwf


�G

=



5400
1. 0418

5400
1. 0418

− 500
0. 970


 2860 = 3176 MMscf

Step 5. Calculate the gas formation volume factor Bgi at pi .

Bgi = 0. 0287
ZiT
pi

= 0. 02827
(1. 0418)(726)

5400

= 0. 00396 ft3/scf
Step 6. Determine the drainage area from Equation 3.5.84:

A = BgiGi

43 560φh(1 − Swi)

= 0. 00396(3176)(106)
43 560(0. 070)(50)(1 − 0. 50)

= 105 acres

Palacio–Blasingame type curves
Palacio and Blasingame (1993) presented an innovative tech-
nique for converting gas well production data with variable
rates and bottom-hole flowing pressures into “equivalent
constant-rate liquid data” that allows the liquid solutions to
be used to model gas flow. The reasoning for this approach
is that the constant-rate type curve solutions for liquid flow

problems are well established from the traditional well test
analysis approach. The new solution for the gas problem
is based on a material-balance-like time function and an
algorithm that allows:

● the use of decline curves that are specifically developed
for liquids;

● modeling of actual variable rate–variable pressure drop
production conditions;

● explicit computation of gas-in-place.

Under pseudosteady-state flow conditions, Equation
1.2.123 in Chapter 1 describes the radial flow of slightly
compressible liquids as:

pwf =
[

pi − 0. 23396QBt
Ahφct

]
− 162. 6QBµ

kh
log
[

4A
1. 781CAr2

w

]

where:

k = permeability, md
A = drainage area, ft2

CA = shape factor
Q = flow rate, STB/day
t = time, hours

ct = total compressibility coefficient, psi−1

Expressing the time t in days and converting from “log” to
natural logarithm “ln,” the above relation can be written as:

pi − pwf

q
= �p

q
= 70. 6

Bµ

kh
ln
[

4A
1. 781CAr2

wa

]
+
[

5. 615B
AhφCt

]
t

[3.5.85]
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or more conveniently as:

�p
q

= bpss + mt [3.5.86]

This expressions suggests that, under a pseudosteady-
state flowing condition, a plot of �p/q vs. t on a Cartesian
scale would yield a straight line with an intercept of bpss and
slope of m, with:

Intercept bpss = 70. 6
Bµ

kh
ln
[

4A
1. 781CAr2

wa

]
[3.5.87]

Slope m = 5. 615B
Ahφct

[3.5.88]

where:

bpss = constant in the pseudosteady-state “pss” equation
t = time, days
k = permeability, md
A = drainage area, ft2

q = flow rate, STB/day
B = formation volume factor, bbl/STB

CA = shape factor
ct = total compressibility, psi−1

rwa = apparent (effective) wellbore radius, ft

For a gas system flowing under pseudosteady-state con-
ditions, a similar equation to that of Equation 3.5.85 can be
expressed as:

m(pi) − m(pwf )
q

= �m(p)
q

= 711T
kh

(
ln

4A
1. 781CAr2

wa

)

+
[

56. 54T
φ(µgcg)iAh

]
t [3.5.89]

And in a linear form as:

�m(p)
q

= bpss + mt [3.5.90]

Similar to the liquid system, Equation 3.5.90 indicates that
a plot of �m(p)/q vs. t will form a straight line with:

Intercept bpss = 711T
kh

(
ln

4A
1. 781CAr2

wa

)

Slope m = 56. 54T
(µgct )i(φhA)

= 56. 54T
(µgct )i(PV)

where:

q = flow rate, Mscf/day
A = drainage area, ft2

T = temperature, ◦R
t = flow time, days

The linkage that allows for the transformation of con-
verting gas production data into equivalent constant-rate
liquid data is based on the use of a new time function called
“pseudo-equivalent time or normalized material balance
pseudo-time,” as defined by:

ta = (µgcg)i

qt

∫ t

o

[
qt

µgcg

]
dt = (µgcg)i

qt

ZiG
2pi

[m(pi) − m(p)]
[3.5.91]

where:

ta = pseudo-equivalent (normalized material balance)
time, days

t = time, days

G = original gas-in-place, Mscf
qt = gas flow rate at time t, Mscf/day
p = average pressure, psi

µg = gas viscosity at p, cp
cg = gas compressibility at p, psi−1

m(p) = normalized gas pseudo pressure, psi2/cp

In order to perform decline curve analysis under vari-
able rates and pressures, the authors derived a theoretical
expression for decline curve analysis that combines:

● the material balance relation;
● the pseudosteady-state equation;
● the normalized material balance time function ta .

to give the following relationship:[
qg

m(pi) − m(pwf )

]
bpss = 1

1 +
(

m
bpss

)
ta

[3.5.92]

where m(p) is the normalized pseudopressure as defined by:

m(pi) = µgiZi

pi

∫ pi

0

[
p

µgZ

]
dp [3.5.93]

m(p) = µgiZi

pi

∫ p

0

[
p

µgZ

]
dp [3.5.94]

and:

m = 1
Gcti

[3.5.95]

bpss = 70. 6µgiBgi

kgh

[
ln
(

4A
1. 781CAr2

wa

)]
[3.5.96]

where:

G = original gas-in-place, Mscf
cgi = gas compressibility at pi, psi−1

cti = total system compressibility at pi , psi−1

qg = gas flow rate, Mscf/day
kg = effective permeability to gas, md

m(p) = normalized pseudo-pressure, psia
pi = initial pressure

rwa = effective (apparent) wellbore radius, ft
Bgi = gas formation volume factor at pi , bbl/Mscf

Notice that Equation 3.5.92 is essentially expressed in the
same dimensionless form as the Fetkovich equation, i.e.,
Equation 3.5.148, or

qDd = 1
1 + (ta)Dd

[3.5.97]

with:

qDd =
[

qg

m(pi) − m(pwf )

]
bpss [3.5.98]

(ta)Dd =
(

m
bpss

)
ta [3.5.99]

It must be noted that the qDd definition is now in terms of
normalized pseudopressures and the modified dimension-
less decline time function (ta)Dt is not in terms of real time
but in terms of the material balance pseudotime. Also note
that Equation 3.5.98 traces the path of a harmonic decline on
the Fetkovich type curve with a hyperbolic exponent of b = 1.

However, there is a computational problem when applying
Equation 3.5.91 because it requires the value of G or the
average pressure p which is itself a function of G. The method
is iterative in nature and requires rearranging of Equation
3.5.92 in the following familiar form of linear relationship:
m(pi) − m(p)

qg
= bpss + mta [3.5.100]
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The iterative procedure for determining G and p is
described in the following steps:

Step 1. Using the available gas properties, set up a table of
Z , µ, p/Z , (p/Zµ) vs. p for the gas system:

Time p Z µ p/Z p/(Zµ)

0 pi Zi µi pi/Zi pi/(Zµ)i
. . . . . .
. . . . . .
. . . . . .

Step 2. Plot (p/Zµ) vs. p on a Cartesian scale and numeri-
cally determine the area under the curve for several
values of p. Multiply each area by (Ziµi/pi) to give
the normalized pseudopressure as:

m(p) = µgiZi

pi

∫ p

0

[
p

µgZ

]
dp

The required calculations of this step can be per-
formed in the following tabulated form:

p Area =
∫ p

0

[
p

µgZ

]
dp m(p) = (area)

µgiZi

pi

0 0 0
. . .
pi . .

Step 3. Draw plots of m(p) and p/Z vs. p on a Cartesian
scale.

Step 4. Assume a value for the initial gas-in-place G.
Step 5. For each production data point of Gp and t, calculate

p/Z from the gas MBE, i.e., Equation 3.3.11:
p

Z
= pi

Zi

(
1 − Gp

G

)

Step 6. From the plot generated in step 3, use the graph of p
vs. p/Z for each value of the ratio p/Z and determine
the value of the corresponding average reservoir
pressure p. For each value of the average reservoir
pressure p, determine the values m(p) for each p.

Step 7. For each production data point, calculate ta by
applying Equation 3.5.91:

ta = (µgcg)i

qt

ZiG
2pi

[m(pi) − m(p)]
The calculation of ta can be conveniently performed
in the following tabulated form:

t qt Gp p m(p) ta = (µgcg)i

qi

ZiG
2pi

[mpi − m(p)]

. . . . . .

. . . . . .

. . . . . .

Step 8. Based on the linear relationship given by Equa-
tion 3.5.100, plot

[
m(pi) − m(p)

]
/qg vs. ta on a

Cartesian scale and determine the slope m.
Step 9. Recalculate the initial gas-in-place G by using the

value m from step 8 and applying Equation 3.5.95
to give:

G = 1
ctim

Step 10. The new value of G from step 8 is used for the next
iteration, i.e., step 4, and this process could continue
until some convergence tolerance for G is met.

Palacio and Blasingame developed a modified Fetkovich–
Carter type curve, as shown in Figure 3.60, to give the
performance of constant-rate and constant-pressure gas flow
solutions, the traditional Arps curve stems. To obtain a
more accurate match to decline type curves than using flow
rate data alone, the authors introduced the following two
complementary plotting functions:
Integral function (qDd)i:

(qDd)i = 1
ta

∫ ta

0

(
qg

m(pi) − m(pwf )

)
dta [3.5.101]

Derivative of the integral function (qDd)id:

(qDd)id =
(−1

ta

)
d

dta

[
1
ta

∫ ta

0

(
qg

m(pi) − m(pwf )

)
dta

]

[3.5.102]

Both functions can easily be generated by using simple
numerical integration and differentiation methods.

To analyze gas production data, the proposed method
involves the following basic steps:

Step 1. Calculate the initial gas-in-place G as outlined
previously.

Step 2. Construct the following table:

t qg ta pwf m(pwf )
qg

[m(pi) − m(pwf )]
. . . . . .
. . . . . .
. . . . . .

Plot qg/
[
m(pi) − m(p)

]
vs. ta on a Cartesian scale.

Step 3. Using the well production data as tabulated and
plotted in step 2, compute the two complementary
plotting functions as given by Equations 3.5.101 and
3.5.102 as a function of ta :

(qDd)i = 1
ta

∫ ta

0

(
qg

m(pi) − m(pwf )

)
dta

(qDd)id =
(−1

ta

)
d

dta

[
1
ta

∫ ta

0

(
qg

m(pi) − m(pwf )

)
dta

]

Step 4. Plot both functions, i.e., (qDd)i and (qDd)id, versus ta
on tracing paper so it can be laid over the type curve
of Figure 3.60 for matching.

Step 5. Establish a match point MP and the corresponding
dimensionless radius reD value to confirm the final
value of G and to determine other properties:

G = 1
cti

[
ta

tDd

]
MP

[
(qDd)i

qDd

]
MP

[3.5.103]

A = 5. 615GBgi

hφ(1 − Swi)

re =
√

A
π

rwa = re

reD

s = − ln
(

rwa

rw

)

k = 141. 2Bgiµgi

h

[
ln
(

re

rw

)
− 1

2

] [
(qDd)i

qDd

]
MP
[3.5.104]
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Figure 3.60 Palacio-Blasingame type curve.
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Figure 3.61 Palacio-Blasingame West Virginia gas well example.

where:

G = gas-in-place, Mscf
Bgi = gas formation volume factor at pi, bbl/Mscf

A = drainage area, ft2

s = skin factor
reD = dimensionless drainage radius
Swi = connate water saturation

The authors used the West Virginia gas well “A,” as given
by Fetkovich in Example 3.22, to demonstrate the use of

the proposed type curve. The resulting fit of the data given
in Example 3.22 to Placio and Blasingame is shown in
Figure 3.61.

Flowing material balance The flowing material balance
method is a new technique that can be used to estimate
the original gas-in-place (OGIP). The method as introduced
by Mattar and Anderson (2003) uses the concept of the
normalized rate and material balance pseudotime to create
a simple linear plot, which extrapolates to fluids-in-place.
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The method uses the available production data in a man-
ner similar to that of Palacio and Blasingame’s approach.
The authors showed that for a depletion drive gas reser-
voir flowing under pseudosteady-state conditions, the flow
system can be described by:

q
m(pi) − m(pwf )

= q
�m(p)

=
(

−1
Gb�

pss

)
QN + 1

b�
pss

where QN is the normalized cumulative production as
given by:

QN = 2qtpita

(ctµiZi)�m(p)
and ta is the Palacio and Blasingame normalized material
balance pseudotime as given by:

ta = (µgcg)i

qt

ZiG
2pi

[m(pi) − m(p)]

The authors defined b\
pss as the inverse productivity index,

in psi2/cp-MMscf, as:

b\
pss = 1. 417 × 106T

kh

[
ln(re/rwa) − 3

4

]

where:

pi = initial pressure, psi
G = Original gas in place
re = drainage radius, ft

rwa = apparent well bore radius, ft

Thus, the above expression suggests that a plot of
q/�m(p) versus 2qpita/(ctiµiZi�m(p) on a Cartesian scale
would produce a straight line with following characteristics:

● x axis intercept gives gas-in-place G;
● y axis intercept gives b\

pss;
● slope gives (−1/Gb\

pss).

Specific steps in estimating G are summarized below:

Step 1. Using the available gas properties, set up a table of
Z , µ, p/Z , (p/Zµ) vs. p for the gas system.

Step 2. Plot (p/Zµ) vs. p on a Cartesian scale and numeri-
cally determine the area under the curve for several
values of p to give m(p) at each pressure.

Step 3. Assume a value for the initial gas-in-place G.
Step 4. Using the assumed value of G and for each produc-

tion data point of Gp at time t, calculate p/Z from the
gas MBE, i.e., Equation 3.3.11:

p

Z
= pi

Zi

(
1 − Gp

G

)

Step 5. For each production data point of qt and t, calculate
ta and the normalized cumulative production QN:

ta = (µgcg)i

qt

ZiG
2pi

[m(pi) − m(p)]

QN = 2qtpita

(ctµiZi)�m(p)
Step 6. Plot q/�p vs. QN on a Cartesian scale and obtain the

best line through the date points. Extrapolate the line
to the x axis and read the original-gas-in-place G.

Step 7. The new value of G from step 5 is used for the next
iteration, i.e., step 3, and this process could continue
until some convergence tolerance for G is met.

Anash et al. type curves The changes in gas proper-
ties can significantly affect reservoir performance during
depletion; of utmost importance is the variation in the gas
viscosity–compressibility product µgcg which was ignored
by Fetkovich in developing his type curves. Anash et al.
(2000) proposed three functional forms to describe the

product µgct as a function of pressure. They conveniently
expressed the pressure in a dimensionless form as generated
from the gas MBE, to give:

p
Z

= pi

Zi

(
1 − Gp

G

)

In a dimensionless form, the above MBE is expressed as:
pD = (1 − GpD)

where:

pD = p/Z
pi/Zi

GpD = Gp

G
[3.5.105]

Anash and his co-authors indicated that the product (µgct )
can be expressed in a “dimensionless ratio” of (µgct )i/µgct )
as a function of the dimensionless pressure pD by one of the
following three forms:

(1) First-order polynomial: The first form is a first-degree
polynomial that is adequate in describing the product
µgct as a function of pressure at low gas reservoir pres-
sure below 5000 psi, i.e., pi < 5000. The polynomial is
expressed in a dimensionless form as:
µicti

µct
= pD [3.5.106]

where:

cti = total system compressibility at pi, psi−1

µi = gas viscosity at pi, cp

(2) Exponential model: The second form is adequate in
describing the product µgct for high-pressure gas reser-
voirs, i.e., pi > 8000 psi:
µicti

µct
= βo exp(β1pD) [3.5.107]

(3) General polynomial model: A third-or fourth-degree poly-
nomial is considered by the authors as a general model
that is applicable to all gas reservoir systems with any
range of pressures, as given by
µicti

µct
= a0 + a1pD + a2p2

D + a3p3
D + a4p4

D [3.5.108]

The coefficients in Equations 3.5.107 and 3.5.108, i.e., β0,
β1, a0, a1, etc., can be determined by plotting the dimen-
sionless ratio µicti/µct vs. pD on a Cartesian scale, as shown
in Figure 3.62, and using the least-squares type regression
model to determine the coefficients.

The authors also developed the following fundamental
form of the stabilized gas flow equation as:

dGp

dt
= qg = Jg

cti

∫ pD

pwD

[
µicti

µct

]
dpD

with the dimensionless bottom-hole flowing pressure as
defined by:

pwD = pwf /Zwf

pi/Zi

where:

qg = gas flow rate, scf/day
pwf = flowing pressure, psia
Zwf = gas deviation factor at pwf

Jg = productivity index, scf/day, psia

Anash et al. presented their solutions in a “type curve” for-
mat in terms of a set of the familiar dimensionless variables
qDd, tDd, reD, and a newly introduced correlating parame-
ter β that is a function of the dimensionless pressure. They
presented three type curve sets, as shown in Figures 3.63
through 3.65, one for each of the functional forms selected
to describe the product µct (i.e., first-order polynomial,
exponential model, or general polynomial).
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Legend: Data Trends
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Figure 3.62 Typical distribution of the viscosity–compressibility function (After Anash et al., 2000).
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Legend: "Knowles" Type Curves 
(Semi-Analytical Solutions)

Fluid Parameters:
γg = 0.55;  T = 150°F;  pi = 4000 psia

β = 0.998
β = 0.875
β = 0.75
β = 0.625
β = 0.50

Legend: Type Curves for the Assumption of a Linear Relation of µct versus p/z 
(i.e., the "First-Order" Polynomial Model). This is the "Pressure-Squared" 
Flow Solution, and is Valid for Low Pressure Reservoirs (p1 < 5000 psia)

Solutions Legend: Boundary-Dominated Flow Region
Solid Lines = "Carter" Type Curves (Numerical Simulation)
Dashed Lines = Semi-Analytical Gas Flow Solutions

Figure 3.63 “First-order” polynomial solution for real-gas flow under boundary-dominated flow conditions. Solution
assumes a µ ct profile that is linear with pD (Permission to copy by the SPE, 2000).
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Figure 3.64 “Exponential” solutions for real-gas flow under boundary-dominated flow conditions (Permission to copy
by the SPE, 2000).

10−2

10−1

100

101

10−3 10−2 10−1 100 101 102

t
Dd

q D
d

Solutions Legend: Boundary-Dominated Flow Region
Solid Lines = "Carter" Type Curves (Numerical Simulation)
Dashed Lines = Semi-Analytical Gas Flow Solutions

Depletion "Stems"
(Boundary-Dominated Flow Region-

Volumetric Reservoir Behavior)

Cases for pi = 8000
and 12,000 psia

overlay one another

Transient "Stems"
(Transient Radial Flow Region-

Analytical Solutions)

Legend: "General Polynomial" Model 
(Semi-Analytical Solutions)

Fluid Parameters:
γg = 0.55;  T = 150°F;  pi = 4000, 8000 and 
 12,000 psia

β = 0.998
β = 0.875
β = 0.75
β = 0.625
β = 0.50

Legend: Type Curves for the Assumption of an General Polynomial 
Relation of µct versus plz (γg = 0.55; T = 150°F; pi = 4000, 
8000, and 12,000 psia)

β = 0.998 β = 0.5 (pi = 4000 psia

0.75

0.625

0.5

0.875

reD = re/r'w = 4

12 7

1828
4880
160800

1 × 104

0.4

Figure 3.65 “General polynomial” solution for real-gas flow under boundary-dominated flow conditions (Permission
to copy by the SPE, 2000).

The methodology of employing the Anash et al. type curve
is summarized by the following steps:

Step 1. Using the available gas properties, prepare a plot
of (µicti/µct ) vs. pD, where:

pD = p/Z
pi/Zi

Step 2. From the generated plot, select the appropriate
functional form that describes the resulting curve.
That is:
First-order polynomial:

µicti

µct
= pD
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Exponential model:
µicti

µct
= β0 exp(β1pD)

General polynomial model:
µicti

µct
= ao + a1pD + a2p2

D + a3p3
D + a4p4

D

Use a regression model, i.e., leastsquares, deter-
mine the coefficient of the selected functional form
that adequately describes (µicti/µct ) vs. pD.

Step 3. Plot the historical flow rate qg versus time t on log–
log scale with the same logarithmic cycles as the
one given by the selected type curves (i.e., Figures
3.63 through 3.65).

Step 4. Using the type curve matching technique described
previously, select a match point and record:

(qg)MP and (qDd)MP

(t)MP and (tDd)MP

(reD)MP

Step 5. Calculate the dimensionless pressure pwD using the
bottom-hole flowing pressure:

pwD = pwf /Zwf

pi/Zi

Step 6. Depending on the selected functional form in step 2,
calculate the constant α for the selected functional
model:
For the first-order polynomial:

α = 1
2

(1 − p2
wD) [3.5.109]

For the exponential model:

α = β0

β1

[
exp(β1) − exp(β1pwD)

]
[3.5.110]

where β0 and β1 are the coefficients of the expo-
nential model.
For the polynomial function (assuming a fourth
degree polynomial)
α = A0 + A1 + A2 + A3 + A4 [3.5.111]
where:
A0 = −(A1pwD + A2p2

wD + A3p3
wD + A4p4

wD)
[3.5.112]

where:

A1 = a0 A2 = a1

2
A3 = a2

3
A4 = a3

4
Step 7. Calculate the well productivity index Jg, in

scf/day-psia, by using the flow rate match point and
the constant α of step 6 in the following relation:

Jg = Cti

α

(
qg

qDd

)
MP

[3.5.113]

Step 8. Estimate the original gas-in-place G, in scf, from the
time match point:

G = Jg

Cti

(
t

tDd

)
MP

[3.5.114]

Step 9. Calculate the reservoir drainage area A, in ft2, from
the following expression:

A = 5. 615BgiG
φh(1 − Swi)

[3.5.115]

where:

A = drainage area, ft2

Bgi = gas formation volume factor at pi , bbl/scf
Swi = connate water saturation

Step 10. Calculate the permeability k, in md, from the match
curve of the dimensionless drainage radius reD:

k = 141. 2µiBgiJg

h

(
ln[reD]MP − 1

2

)
[3.5.116]

Step 11. Calculate the skin factor from the following rela-
tionships:

Drainage radius re =
√

A
π

[3.5.117]

Apparent wellbore radius rwa = re

(reD)MP
[3.5.118]

Skin factor s = − ln
(

rwa

rw

)
[3.5.119]

Example 3.24 The West Virginia gas well “A” is a verti-
cal gas well which has been hydraulically fractured and is
undergoing depletion. The production data was presented
by Fetkovich and used in Example 3.22. A summary of the
reservoir and fluid properties is given below:

rw = 0. 354 ft, h = 70 ft

φ = 0. 06, T = 160◦F

s = 5. 17, k = 0. 07 md

γg = 0. 57, Bgi = 0. 00071 bbl/scf

µgi = 0. 0225 cp, cti = 0. 000184 psi−1

pi = 4, 175 psia, pwf = 710 psia

α = 0. 4855 (first-order polynomial)

Swi = 0. 35

Solution

Step 1. Figure 3.66 shows the type curve match of the
production data with that of Figure 3.63 to give:

(qDd)MP = 1. 0

(qg)MP = 1. 98 × 106 scf/day

(tDd)MP = 1. 0

(t)MP = 695 days

(reD)MP = 28
Step 2. Calculate the productivity index from Equation

3.5.113:

Jg = Cti

α

(
qg

qDd

)
MP

= 0. 000184
0. 4855

(
1. 98 × 106

1. 0

)
= 743. 758 scf/day-psi

Step 3. Solve for G by applying Equation 3.5.114:

G = Jg

Cti

(
t

tDd

)
MP

= 743. 758
0. 0001824

(
695
1. 0

)
= 2. 834 Bscf

Step 4. Calculate the drainage area from Equation 3.5.115:

A = 5. 615BgiG
φh(1 − Swi)

= 5. 615(0. 00071)(2. 834 × 109)
(0. 06)(70)(1 − 0. 35)

= 4. 1398 × 106 ft2 = 95 acres
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Data for West Virginia Gas Well:

Analysis Results:

pi = 4175 psia (r = 0.9498)

α = 0.4701 (dimensionless)

rW = 0.354 ft

PWi = 710 psia (zWf = 0.9488)

γg = 0.57 (sin = 1)  T = 160°F

h = 70 ft

G = 2.664 Bscf

k = 0.0701 md
Jg = 768.119 Scf/D/psi

Figure 3.66 Type curve analysis of West Virginia gas well “A” (SPE 14238). “General polynomial” type curve analysis
approach (Permission to copy by the SPE, 2000)

Step 5. Compute the permeability from the match on the
reD = 28 transient stem by using Equation 3.5.116:

k= (141.2)(0.0225)(0.00071)(743.76)
70

(
ln(28)− 1

2

)

=0.0679 md

Step 6. Calculate the skin factor by applying Equations
3.5.117 and 3.5.118:

re =
√

A
π

=
√

4. 1398 × 106

π
= 1147. 9 ft

rwa = re

(reD)MP
= 1147. 9

28
= 40. 997 ft

s = − ln
(

rwa

rw

)
= − ln

(
40. 997
0. 354

)
= −4. 752

Decline curve analysis for fractured wells Pratikno et al.
(2003) developed a new set of type curves specifically for
finite conductivity, vertically fractured wells centered in
bounded circular reservoirs. The authors used analytical
solutions to develop these type curves and to establish a
relation for the decline variables.

Recall that the general dimensionless pressure equation
for a bounded reservoir during pseudosteady-state flow is
given by Equation 1.2.125:

pD = 2π tDA + 1
2
[ln(A/r2

w)] + 1
2
[ln(2. 2458/CA)] + s

with the dimensionless time based on the wellbore radius
tD or drainage area tDA as given by Equations 1.2.75a and
1.2.75b as:

tD = 0. 0002637kt
φµctr2

w

tDA = 0. 0002637kt
φµctA

= tA

(
r2

w

A

)

The authors adopted the above form and suggested that for a
well producing under pseudosteady-state (pss) at a constant
rate with a finite conductivity fracture in a circular reservoir,
the dimensionless pressure drop can be expressed as:

pD = 2π tDA + bDpss

or:

bDpss = pD − 2π tDA

Where the term bDpss is the dimensionless pseudosteady-
state constant that is independent of time; however, bDpss is
a function of:

● the dimensionless radius reD and
● the dimensionless fracture conductivity FCD.

The above two dimensionless parameters were defined in
Chapter 1 by:

FCD = kf

k
wf

xf
= FC

kxf

reD = re

xf

The authors noted that during pseudosteady flow, the equa-
tion describing the flow during this period yields a constant
value for a given values of reD and FCD that is closely given
by the following relationship:

bDpss = ln(reD) − 0. 049298 + 0. 43464
r2

eD

+ a1 + a2u + a3u2 + a4u3 + a5u4

1 + b1u + b2u2 + b3u3 + b4u4

with:

u = ln(FCD)
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Figure 3.67 Fetkovich–McCray decline type curve—rate versus material balance time format for a well with a finite
conductivity vertical fracture (FcD = 0. 1) (Permission to copy by the SPE, 2003).

where:

a1 = 0. 93626800 b1 = −0. 38553900
a2 = −1. 0048900 b2 = −0. 06988650
a3 = 0. 31973300 b3 = −0. 04846530
a4 = −0. 0423532 b4 = −0. 00813558
a5 = 0. 00221799

Based on the above equations, Pratikno et al. used Pala-
cio and Blasingame’s previously defined functions (i.e., ta ,
(qDd)i, and (qDd)id) and the parameters reD and FCD to gen-
erate a set of decline curves for a sequence of 13 values for
FCD with a sampling of reD = 2, 3, 4, 5, 10, 20, 30, 40, 50, 100,
200, 300, 400, 500, and 1000. Type curves for FCD of 0.1, 1,
10, 100, 1000 are shown in Figures 3.67 through 3.71.

The authors recommended the following type curve
matching procedure that is similar to the methodology used
in applying Palacio and Blasingame’s type curve:

Solution

Step 1. Analyze the available well testing data using the
Gringarten or Cinco–Samaniego method, as pre-
sented in Chapter 1, to calculate the dimensionless
fracture conductivity FCD and the fracture half-
length xf .

Step 2. Assemble the available well data in terms of bottom-
hole pressure and the flow rate qt (in STB/day for oil
or Mscf/day for gas) as a function of time. Calculate
the material balance pseudotime ta for each given
data point by using:

For oil ta = Np

qt

For gas ta = (µgcg)i

qt

ZiG
2pi

[m(pi)−m(p)]

where m(pi) and m(p) are the normalized
pseudopressures as defined by Equations 3.5.93

and 3.5.94:

m(pi) = µgiZi

pi

∫ pi

0

[
p

µgZ

]
dp

m(p) = µgiZi

pi

∫ p

0

[
p

µgZ

]
dp

Note that the initial gas-in-place G must be calculated
iteratively, as illustrated previously by Palacio and
Blasingame.

Step 3. Using the well production data as tabulated and
plotted in step 2, compute the following three com-
plementary plotting functions:

(1) pressure drop normalized rate qDd;
(2) pressure drop normalized rate integral function

(qDd)i;
(3) pressure drop normalized rate integral–derivative

function (qDd)id.

For gas:

qDd = qg

m(pi) − m(pwf )

(qDd)i = 1
ta

∫ ta

0

(
qg

m(pi) − m(pwf )

)
dta

(qDd)id =
(−1

ta

)
d

dta

[
1
ta

∫ ta

0

(
qg

m(pi) − m(pwf )

)
dta

]

For oil:

qDd = qo

pi − pwf

(qDd)i = 1
ta

∫ ta

0

(
qo

pi − pwf

)
dta

(qDd)id =
(−1

ta

)
d

dta

[
1
ta

∫ ta

0

(
qo

pi − pwf

)
dta

]
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Figure 3.68 Fetkovich–McCray decline type curve—rate versus material balance time format for a well with a finite
conductivity vertical fracture (FcD = 1) (Permission to copy by the SPE, 2003).
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Figure 3.69 Fetkovich–McCray decline type curve—rate versus material balance time format for a well with a finite
conductivity vertical fracture (FcD = 10) (Permission to copy by the SPE, 2003).

Step 4. Plot the three gas or oil functions, i.e., qDd, (qDd)i, and
(qDd)id, versus ta on tracing paper so it can be laid
over the type curve with the appropriate value FCD.

Step 5. Establish a match point “MP” for each of the three
functions (qDd, (qDd)i and (qDd)id). Once a “match” is

obtained, record the “time” and “rate” match points
as well as the dimensionless radius reD value:

(1) Rate-axis “match point”: Any (q/�p)MP −
(qDd)MP pair.
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Figure 3.70 Fetkovich–McCray decline type curve—rate versus material balance time format for a well with a finite
conductivity vertical fracture (FcD = 100) (Permission to copy by the SPE, 2003).
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Figure 3.71 Fetkovich–McCray decline type curve—rate versus material balance time format for a well with a finite
conductivity vertical fracture (FcD = 1000) (Permission to copy by the SPE, 2003).
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Figure 3.72 Match of production data for Example 1 on the Fetkovich–McCray decline type curve (pseudopressure
drop normalized rate versus material balance time format) for a well with a finite conductivity vertical fracture (FcD = 5)
(Permission to copy by the SPE, 2003).

(2) Time-axis “match point”: Any (t)MP − (tDd)MP
pair.

(3) Transient flow stem: Select (q/�p), (q/�p)i,
and (q/�p)id functions that best match the
transient data stem and record reD.

Step 6. Solve for bDpss by using the values of FCD and reD:

u = ln(FCD)

bDpss = ln(reD) − 0. 049298 + 0. 43464
r2

eD

+ a1 + a2u + a3u2 + a4u3 + a5u4

1 + b1u + b2u2 + b3u3 + b4u4

Step 7. Using the results of the match point, estimate the
following reservoir properties:
For gas:

G = 1
cti

[
ta

tDd

]
MP

[
(qg/�m(p))

qDd

]

MP

kg = 141. 2Bgiµgi

h

[
(qg/�m(p)MP)

(qDd)MP

]
bDpss

A = 5. 615GBgi

hφ(1 − Swi)

re =
√

A
π

For oil:

N = 1
ct

[
ta

tDd

]
MP

[
(qo/�p)i

qDd

]
MP

ko = 141. 2Boiµgoi

h

[
(qo/�p)MP

(qDd)MP

]
bDpss

A = 5. 615NBoi

hφ(1 − Swi)

re =
√

A
π

where:

G = gas-in-place, Mscf
N = oil-in-place, STB

Bgi = gas formation volume factor at pi , bbl/Mscf
A = drainage area, ft2

re = drainage radius, ft
Swi = connate water saturation

Step 8. Calculate the fracture half-length xf and compare
with step 1:

xf = re

reD

Example 3.25 The Texas Field vertical gas well has been
hydraulically fractured and is undergoing depletion. A sum-
mary of the reservoir and fluid properties is given below:

rw = 0. 333 ft, h = 170 ft

φ = 0. 088, T = 300◦F

γg = 0. 70, Bgi = 0. 5498 bblM/scf

µgi = 0. 0361 cp, cti = 5. 1032 × 10−5 psi−1

pi = 9330 psia, pwf = 710 psia

Swi = 0. 131, FCD = 5. 0

Figure 3.72 shows the type curve match for FCD = 5, with
the matching points as given below:

(qDd)MP = 1. 0
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[(qg/�m(p))]MP = 0. 89 Mscf/psi

(tDd)MP = 1. 0

(ta)MP = 58 days

(reD)MP = 2. 0
Perform type curve analysis on this gas well.

Solution

Step 1. Solve for bDpss by using the values of FCD and reD:
u = ln(FCD) = ln(5) = 1. 60944

bDpss = ln(reD) − 0. 049298 + 0. 43464
r2

eD

+ a1 + a2u + a3u2 + a4u3 + a5u4

1 + b1u + b2u2 + b3u3 + b4u4

= ln(2) − 0. 049298 + 0. 43464
22

+ a1 + a2u + a3u2 + a4u3 + a5u4

1 + b1u + b2u2 + b3u3 + b4u4 = 1. 00222

Step 2. Using the results of the match point, estimate the
following reservoir properties:

G = 1
cti

[
ta

tDd

]
MP

[
(qg/�m(p))

qDd

]

MP

= 1
5. 1032 × 10−5

[
58
1. 0

]
MP

[
0. 89
1. 0

]

= 1. 012 × 106 MMscf

kg = 141. 2Bgiµgi

h

[
(qg/�m(p)MP)

(qDd)MP)

]
bDpss

= 141. 2(0. 5498)(0. 0361)
170

[
0. 89
1. 0

]
1. 00222

= 0. 015 md

A = 5. 615GBgi

hφ(1 − Swi)

= 5. 615(1. 012 × 106)(0. 5498)
(170)(0. 088)(1 − 0. 131)

= 240 195 ft2

= 5. 51 acres

re =
√

A
π

=
√

240 195
π

= 277 ft

Step 3. Calculate the fracture half-length xf and compare
with step 1:

xf = re

reD
= 277

2
= 138 ft

3.6 Gas Hydrates

Gas hydrates are solid crystalline compounds formed by the
physical combination of gas and water under pressure and
temperatures considerably above the freezing point of water.
In the presence of free water, hydrate will form when the tem-
perature is below a certain degree; this temperature is called
“hydrate temperature Th.” Gas hydrate crystals resemble ice
or wet snow in appearance but do not have the solid structure
of ice. The main framework of the hydrate crystal is formed
with water molecules. The gas molecules occupy void spaces
(cages) in the water crystal lattice; however, enough cages

must be filled with hydrocarbon molecules to stabilize the
crystal lattice. When the hydrate “snow” is tossed on the
ground, it causes a distinct cracking sound resulting from
the escaping of gas molecules as they rupture the crystal
lattice of the hydrate molecules.

Two types of hydrate crystal lattices are known, with each
containing void spaces of two different sizes:

(1) Structure I of the lattice has voids of the size to accept
small molecules such as methane and ethane. These
“guest” gas molecules are called “hydrate formers.” In
general, light components such as C1, C2, and CO2 form
structure I hydrates.

(2) Structure II of the lattice has larger voids (i.e., “cages
or cavities”) that allow the entrapment of the heavier
alkanes with medium-sized molecules, such as C3, i −
C4, and n − C4, in addition to methane and ethane, to
form structure II hydrates. Several studies have shown
that a stable hydrate structure is hydrate structure II.
However, the gases are very lean; structure I is expected
to be the hydrate stable structure.

All components heavier than C4, i.e., C5+, do not contribute
to the formation of hydrates and therefore are identified as
“non-hydrate components.”

Gas hydrates generate considerable operational and safety
concerns in subsea pipelines and process equipment. The
current practice in the petroleum industry for avoiding gas
hydrate is to operate outside the hydrate stability zone.
During the flow of natural gas, it becomes necessary to
define, and thereby avoid, conditions that promote the for-
mation of hydrates. This is essential since hydrates can cause
numerous problems such as:

● choking the flow string, surface lines, and other equip-
ment;

● completely blocking flow lines and surface equipment;
● hydrate formation in the flow string resulting in a lower

value of measured wellhead pressures.

Sloan (2000) listed several conditions that tend to promote
the formation of gas hydrates. These are:

● the presence of free water and gas molecules that range
in size from methane to butane;

● the presence of H2S or CO2 as a substantial factor con-
tributing to the formation of hydrate since these acid
gases are more soluble in water than hydrocarbons;

● temperatures below the “hydrate formation temperature”
for the pressure and gas composition considered;

● high operating pressures that increase the “hydrate
formation temperature”;

● high velocity or agitation through piping or equipment;
● the presence of small “seed” crystal of hydrate;
● natural gas at or below its water dewpoint with liquid water

present.

The above conditions necessary for hydrate formation
lead to the following four classic, thermodynamic prevention
methods:

(1) Water removal provides the best protection.
(2) Maintaining a high temperature throughout the flow sys-

tem, i.e., insulation, pipe bundling, or electrical heating.
(3) Hydrate prevention is achieved most frequently by

injecting an inhibitor, such as methanol or monoethylene
glycol, which acts as antifreezes.

(4) Kinetic inhibitors are low-molecular-weight polymers
dissolved in a carrier solvent and injected into the water
phase in the pipeline. These inhibitors bond to the
hydrate surface and prevent significant crystal growth
for a period longer than the free water residence time in
a pipeline.
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Figure 3.73 Phase diagram for a typical mixture of
water and light hydrocarbon.

3.6.1 Phase diagrams for hydrates
The temperature and pressure conditions for hydrate for-
mation in surface gas processing facilities are generally
much lower than those considered in production and reser-
voir engineering. The conditions of initial hydrate formation
are often given by simple p–T phase diagrams for water–
hydrocarbon systems. A schematic illustration of the phase
diagram for a typical mixture of water and light hydro-
carbon is shown in Figure 3.73. This graphical illustration
of the diagram shows a lower quadruple point “Q1” and
upper quadruple point “Q2.” The quadruple point defines
the condition at which four phases are in equilibrium.

Each quadruple point is at the intersection of four three-
phase lines. The lower quadruple point Q1 represents the
point at which ice, hydrate, water, and hydrocarbon gas
exist in equilibrium. At temperatures below the tempera-
ture that corresponds to point Q1, hydrates form from vapor
and ice. The upper quadruple point Q2 represents the point
at which water, liquid hydrocarbon, hydrocarbon gas, and
hydrate exist in equilibrium, and marks the upper tempera-
ture limit for hydrate formation for that particular gas–water
system. Some of the lighter natural-gas components, such as
methane and nitrogen, do not have an upper quadruple point,
so no upper temperature limit exists for hydrate formation.
This is the reason that hydrates can still form at high temper-
atures (up to 120◦F) in the surface facilities of high-pressure
wells.

The line Q1–Q2 separates the area in which water and gas
combine to form hydrates. The vertical line extending from
point Q2 separates the area of water and hydrocarbon liquid
from the area of hydrate and water.

It is convenient to divide hydrate formation into the
following two categories:

Category I: Hydrate formation due to a decrease in temper-
ature with no sudden pressure drop, such as in
the flow string or surface line.

Category II: Hydrate formation where sudden expansion
occurs, such as in orifices, back-pressure regu-
lators, or chokes.

Figure 3.74 presents a graphical method for approximat-
ing hydrate formation conditions and for estimating the
permissible expansion condition of natural gases without
the formation of hydrates. This figure shows the hydrate-
forming conditions as described by a family of “hydrate
formation lines” representing natural gases with various
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Figure 3.74 Pressure–temperature curves for predicting
hydrate (Courtesy Gas Processors Suppliers Association).

specific gravities. Hydrates will form whenever the coordi-
nates of the point representing the pressure and temperature
are located to the left of the hydrate formation line for the gas
in question. This graphical correlation can be used to approx-
imate the hydrate-forming temperature as the temperature
deceases along flow string and flow lines, i.e., category I.

Example 3.26 A gas of 0.8 specific gravity is at 1000 psia.
To what extent can the temperature be lowered without
hydrate formation in the presence of free water?

Solution From Figure 3.74, at a specific gravity of 0.8 and
a pressure of 1000 psia, hydrate temperature is 66◦F. Thus,
hydrates may form at or below 66◦F.

Example 3.27 A gas has a specific gravity of 0.7 and
exists at 60◦F. What would be the pressure above which
hydrates could be expected to form?

Solution From Figure 3.74, hydrate will form above 680
psia.

It should be pointed out that the graphical correlation
presented in Figure 3.74 was developed for pure water–gas
systems; however, the presence of dissolved solids in the
water will reduce the temperatures at which natural gases
will form hydrates.

When a water–wet gas expands rapidly through a valve,
orifice, or other restrictions, hydrates may form because
of rapid gas cooling caused by Joule–Thomson expansion.
That is:

∂T
∂p

= RT 2

pCP

(
∂Z
∂T

)
P

where:

T = temperature
p = pressure
Z = gas compressibility factor

CP = specific heat at constant pressure
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Figure 3.75 Permissible expansion of a 0.6 gravity natural gas without hydrate formation (Courtesy Gas Processors
Suppliers Association).

This reduction in temperature due to the sudden reduc-
tion in pressure, i.e., ∂T/∂p, could cause the condensation
of water vapor from the gas and bring the mixture to the
conditions necessary for hydrate formation. Figures 3.75
through 3.79 can be used to estimate the maximum reduction
in pressure without causing the formation of hydrates.

The chart is entered at the intersection of the initial
pressure and initial temperature isotherm; and the low-
est pressure to which the gas can be expanded without
forming hydrate is read directly from the x axis below the
intersection.

Example 3.28 How far can a gas of 0.7 specific gravity at
1500 psia and 120◦F be expanded without hydrate formation?

Solution From Figure 3.76, select the graph on the y axis
with the initial pressure of 1500 psia and move horizontally to
the right to intersect with the 120◦F temperature isotherm.
Read the “final” pressure on the x axis, to give 300 psia.
Hence, this gas may be expanded to a final pressure of 300
psia without the possibility of hydrate formation.

Ostergaard et al. (2000) proposed a new correlation to
predict the hydrate-free zone of reservoir fluids that range
in composition from black oil to lean natural-gas systems.
The authors separated the components of the hydrocarbon
system into the following two groups:

(1) hydrate-forming hydrocarbons “h” that include methane,
ethane, propane, and butanes;

(2) non-hydrate-forming hydrocarbons “nh” that include
pentanes and heavier components.

Define the following correlating parameters:

fh = yC1 + yC2 + yC3 + yi−C4 + yn−C4 [3.6.1]

fnh = yC5+ [3.6.2]

Fm = fnh

fh
[3.6.3]

γh = mh

28. 96
=
∑n−C4

i=C1
yimi

28. 96
[3.6.4]
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Figure 3.76 Permissible expansion of a 0.7 gravity natural gas without hydrate formation (Courtesy Gas Processors
Suppliers Association).

where:

h = hydrate-forming components C1 through C4
nh = non-hydrate-forming components, C5 and heavier
Fm = molar ratio between the non-hydrate-forming and

hydrate-forming components
γh = specific gravity of hydrate-forming components

The authors correlated the hydrate dissociation pressure
ph of fluids containing only hydrocarbons as a function of the
above defined parameters by the following expression:

ph = 0. 1450377 exp
{[

a1

(γh + a2)3 + a3Fm + a4F 2
m + a5

]
T

+ a6

(γh + a7)3 + a8Fm + a9F 2
m + a10

}
[3.6.5]

where:

ph = hydrate dissociation pressure, psi
T = temperature, ◦R
ai = constants as given below

ai Value

a1 2. 5074400 × 10−3

a2 0.4685200
a3 1. 2146440 × 10−2

a4 −4. 6761110 × 10−4

a5 0.0720122
a6 3. 6625000 × 10−4

a7 −0. 4850540
a8 −5. 4437600
a9 3. 8900000 × 10−3

a10 −29. 9351000

Equation 3.6.5 was developed using data on black
oil, volatile oil, gas condensate, and natural gas sys-
tems in the range of 32◦F to 68◦F, which covers the
practical range of hydrate formation for reservoir fluids
transportation.
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Figure 3.77 Permissible expansion of a 0.8 gravity natural gas without hydrate formation (Courtesy Gas Processors
Suppliers Association).

Equation 3.6.5 can also be arranged and solved for the
temperature, to give:

T =
ln(6. 89476ph) − a6

(γh+a7)3 + a8Fm + a9F 2
m + a10[

a1
(γh+a2)3 + a3Fm + a4F 2

m + a5

]

The authors pointed out that N2 and CO2 do not obey
the general trend given for hydrocarbons in Equation 3.6.5.
Therefore, to account for the pressure of N2 and CO2 in
the hydrocarbon system, they treated each of these two
non-hydrocarbon fractions separately and developed the
following correction factors:

ECO2 = 1. 0 +
[

(b1Fm + b2)
yCO2

1 − yN2

]
[3.6.6]

EN2 = 1. 0 +
[

(b3Fm + b4)
yN2

1 − γCO2

]
[3.6.7]

with:

b1 =−2.0943×10−4
(

T
1.8

−273.15
)3

+3.809×10−3

×
(

T
1.8

−273.15
)2

−2.42×10−2
(

T
1.8

−273.15
)

+0.423 [3.6.8]

b2 = 2. 3498 × 10−4
(

T
1. 8

− 273. 15
)2

− 2. 086 × 10−3
(

T
1. 8

− 273. 15
)2

+ 1. 63 × 10−2
(

T
1. 8

− 273. 15
)

+ 0. 650 [3.6.9]
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Figure 3.78 Permissible expansion of a 0.9 gravity natural gas without hydrate formation (Courtesy Gas Processors
Suppliers Association).

b3 = 1. 1374 × 10−4
(

T
1. 8

− 273. 15
)3

+ 2. 61 × 10−4
(

T
1. 8

− 273. 15
)2

+ 1. 26 × 10−2
(

T
1. 8

− 273. 15
)

+ 1. 123 [3.6.10]

b4 = 4. 335 × 10−5
(

T
1. 8

− 273. 15
)3

− 7. 7 × 10−5
(

T
1. 8

− 273. 15
)2

+ 4. 0 × 10−3
(

T
1. 8

− 273. 15
)

+ 1. 048 [3.6.11]

where:

yN2 = mole fraction of N2
yCO2 = mole fraction of CO2

T = temperature, ◦R
Fm = molar ratio as defined by Equation 3.6.3

The total, i.e., corrected, hydrate dissociation pressure
pcorr is given by:
pcorr = phEN2 ECO2 [3.6.12]

To demonstrate these correlations, Ostergaard and
coworkers presented the following example:

Example 3.29 A gas condensate system has the follow-
ing composition:

Component yi1 (%) Mi

CO2 2.38 44.01
N2 0.58 28.01
C1 73.95 16.04
C2 7.51 30.07
C3 4.08 44.10
i-C4 0.61 58.12
n-C4 1.58 58.12
i-C5 0.50 72.15
n-C5 0.74 72.15
C6 0.89 84.00
C7+ 7.18 –

Calculate the hydrate dissociation pressure at 45◦F, i.e.,
505◦R.
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Figure 3.79 Permissible expansion of a 1.0 gravity natural gas without hydrate formation (Courtesy Gas Processors
Suppliers Association).

Solution

Step 1. Calculate fh and fnh from Equations 3.6.1 and 3.6.2:
fh = yC1 + yC2 + yC3 + yi−C4 + yn−C4

= 73. 95 + 7. 51 + 4. 08 + 0. 61 + 1. 58 = 87. 73%

fnh = yC5+ = yi−C5 + yn−C5 + yC6 + yC7+

= 0. 5 + 0. 74 + 0. 89 + 7. 18 = 9. 31%
Step 2. Calculate Fm by applying Equation 3.6.3:

Fm = fnh

fh
= 9. 31

87. 73
= 0. 1061

Step 3. Determine the specific gravity of the hydrate-
forming components by normalizing their mole
fractions as shown below:

Component yi Normalized y∗
i Mi Miy∗

i

C1 0.7395 0.8429 16.04 13.520
C2 0.0751 0.0856 30.07 2.574
C3 0.0408 0.0465 44.10 2.051

Component yi Normalized y∗
i Mi Miy∗

i

i-C4 0.0061 0.0070 58.12 0.407
n-C4 0.0158 0.0180 58.12 1.046∑ = 0. 8773

∑ = 1. 0000
∑ = 19. 5980

γh = 19. 598
28. 96

= 0. 6766

Step 4. Using the temperature T and the calculated values
of Fm and γh in Equation 3.6.5 gives:

ph = 236. 4 psia
Step 5. Calculate the constants b1 and b2 for CO2 by applying

Equations 3.6.8 and 3.6.9 to give:

b1 = −2. 0943 × 10−4
(

505
1. 8

− 273. 15
)3

+ 3. 809 × 10−3
(

505
1. 8

− 273. 15
)2

− 2. 42 × 10−2

×
(

505
1. 8

− 273. 15
)

+ 0. 423 = 0. 368
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b2 = 2. 3498 × 10−4
(

505
1. 8

− 273. 15
)2

− 2. 086 × 10−3
(

505
1. 8

− 273. 15
)2

+ 1. 63 × 10−2

×
(

505
1. 8

− 273. 15
)

+ 0. 650 = 0. 752

Step 6. Calculate the CO2 correction factor ECO2 by using
Equation 3.6.6:

ECO2 =1.0+
[

(b1Fm +b2)
yCO2

1−yN2

]

=1.0+
[(

0.368×0.1061+0.752
) 0.0238

1−0.0058

]

=1.019

Step 7. Correct for the presence of N2, to give:

b3 = 1. 1374 × 10−4
(

505
1. 8

− 273. 15
)3

+ 2. 61 × 10−4
(

505
1. 8

− 273. 15
)2

+ 1. 26 × 10−2

×
(

505
1. 8

− 273. 15
)

+ 1. 123 = 1. 277

b4 = 4. 335 × 10−5
(

505
1. 8

− 273. 15
)3

− 7. 7 × 10−5
(

505
1. 8

− 273. 15
)2

+ 4. 0 × 10−3

×
(

505
1. 8

− 273. 15
)

+ 1. 048 = 1. 091

EN2 =1.0+
[

(b3Fm +b4)
yN2

1−γCO2

]

=1.0+
[(

1.277×0.1061+1.091
) 0.0058

1−0.00238

]

=1.007

Step 8. Estimate the total (corrected) hydrate dissociation
pressure by using Equation 3.6.12, to give:

pcorr = phEN2 ECO2

= (236. 4)(1. 019)(1. 007) = 243 psia

Makogon (1981) developed an analytical relationship
between hydrate and conditions in terms of pressure and
temperature as a function of specific gravity of the gas. The
expression is given by:
log(p) = b + 0. 0497(T + kT 2) [3.6.13]
where:

T = temperature, ◦C
p = pressure, atm

The coefficients b and k are expressed graphically as
a function of the specific gravity of the gas, as shown in
Figure 3.80.

Example 3.30 Find the pressure at which hydrate forms
at T = 40◦F for a natural gas with a specific gravity of 0.631,
using Equation 3.6.13.
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Figure 3.80 Coefficients b and k of Equation 3.6.14.

Solution

Step 1. Convert the given temperature from ◦F to ◦C:
T = (40 − 32)/1. 8 = 4. 4◦C

Step 2. Determine values of the coefficients b and k from
Figure 3.80, to give:

b = 0. 91

k = 0. 006
Step 3. Solve for p by applying Equation 3.6.13

log(p) = b + 0. 0497(T + kT 2)

= 0. 91 + 0. 0497[4. 4 + 0. 006(4. 4)2]
= 1. 1368

p = 101.1368 = 13. 70 atm = 201 psia
Figure 3.76 gives a value of 224 psia as compared
with the above value of 201.

Carson and Katz (1942) adopted the concept of the equi-
librium ratios, i.e., K values, for estimating hydrate-forming
conditions. They proposed that hydrates are the equivalent
of solid solutions and not mixed crystals, and therefore pos-
tulated that hydrate-forming conditions could be estimated
from empirically determined vapor–solid equilibrium ratios
as defined by:

Ki(v − s) = yi

xi(s)
[3.6.14]

where:

Ki(v − s) = equilibrium ratio of component i between
vapor and solid

yi = mole fraction of component i in the vapor
(gas) phase

xi(s) = mole fraction of component i in the solid
phase on a water-free basis

The calculation of the hydrate-forming conditions in terms
of pressure or temperature is analogous to the dewpoint cal-
culation of gas mixtures. In general, a gas in the presence of
free water phase will form a hydrate when:

n∑
i=1

yi

Ki(v − s)
= 1 [3.6.15]
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Figure 3.81 Vapor–solid equilibrium constant for methane (Carson & Katz, 1942, courtesy SPE-AIME).

Whitson and Brule (2000) pointed out that the vapor–solid
equilibrium ratio cannot be used to perform flash calcu-
lations and determine hydrate-phase splits or equilibrium-
phase compositions, since Ki(s) is based on the mole fraction
of a “guest” component in the solid-phase hydrate mixture
on a water-free basis.

Carson and Katz developed K value charts for the hydrate-
forming molecules that include methane through butanes,
CO2, and H2S, as shown in Figures 3.81 through 3.87.
It should be noted that Ki(s) for non-hydrate formers are
assumed to be infinity, i.e., Ki(s) = ∞.

The solution of Equation 3.6.15 for the hydrate-forming
pressure or temperature is an iterative process. The process
involves assuming several values of p or T and calculating the
equilibrium ratios at each assumed value until the constraint
represented by Equation 3.6.15 is met, i.e., summation is
equal to 1.

Example 3.31 Using the equilibrium ratio approach, cal-
culate the hydrate formation pressure ph at 50◦F for the
following gas mixture:

Component yi

CO2 0.002
N2 0.094
C1 0.784
C2 0.060
C3 0.036
i-C4 0.005
n-C4 0.019

The experimentally observed hydrate formation pressure
is 325 psia at 50◦F.

Solution

Step 1. For simplicity, assume two different pressures, 300
psia and 350 psia, and calculate the equilibrium ratios

at these pressures, to give:

Component yi At 300 psia At 350 psia

Ki(v−s) yi/Ki(v−s) Ki(v−s) yi/Ki(v−s)

CO2 0.002 3.0 0.0007 2.300 0.0008
N2 0.094 ∞ 0 ∞ 0
C1 0.784 2.04 0.3841 1.900 0.4126
C2 0.060 0.79 0.0759 0.630 0.0952
C3 0.036 0.113 0.3185 0.086 0.4186
i-C4 0.005 0.0725 0.0689 0.058 0.0862
n-C4 0.019 0.21 0.0900 0.210 0.0900∑

1.000 0.9381 1.1034

Step 2. Interpolating linearly at
∑

yi/Ki(v−s) = 1 gives:

350 − 300
1. 1035 − 0. 9381

= ph − 300
1. 0 − 0. 9381

Hydrate-forming pressure ph = 319 psia, which compares
favorably with the observed value of 325 psia.

Example 3.32 Calculate the temperature for hydrate for-
mation at 435 psi for a gas with a 0.728 specific gravity with
the following composition:

Component yi

CO2 0.04
N2 0.06
C1 0.78
C2 0.06
C3 0.03
i-C4 0.01
C5+ 0.02

TLFeBOOK



3/280 UNCONVENTIONAL GAS RESERVOIRS

10
0 

ps
i A

BS
15

0
20

0

25
0

30
0

40
0

50
0

60
0

10
00

20
00

15
00

25
00

30
00

40
00

80
0

1 1.0

9

8

7

6

5

4

3

1

2 0.2

0.1

0.3

0.4

0.6

0.8

30 40 50 60 70 80
TEMPERATURE , °F

K

Figure 3.82 Vapor–solid equilibrium constant for ethane (Carson & Katz, 1942, courtesy SPE-AIME).

Solution The iterative procedure for estimating the
hydrate-forming temperature is given in the following tab-
ulated form:

T = 59◦F T = 50◦F T = 54◦F

Component yi Ki(v−s) yi/Ki(v−s) Ki(v−s) yi/Ki(v−s) Ki(v−s) yi/Ki(v−s)

CO2 0.04 5.00 0.0008 1.700 0.0200 3.000 0.011
N2 0.06 ∞ 0 ∞ 0 ∞ 0
C1 0.78 1.80 0.4330 1.650 0.4730 1.740 0.448
C2 0.06 1.30 0.0460 0.475 0.1260 0.740 0.081
C3 0.03 0.27 0.1100 0.066 0.4540 0.120 0.250
i-C4 0.01 0.08 0.1250 0.026 0.3840 0.047 0.213
C5+ 0.02 ∞ 0 ∞ 0 ∞ 0
Total 1.00 1.457 1.003

The temperature at which hydrate will form is approxi-
mately 54◦F.

Sloan (1984) curve–fitted the Katz-Carson charts by the
following expression:

ln
(
Ki(v−s)

) = A0 + A1T + A2p + A3

T
+ A4

p
+ A5pT

+ A6T 2 + A7p2 + A8

(
p
T

)
+ A9 ln

(
p
T

)

+ A10

p2 + A11

(
T
p

)
+ A12

(
T 2

p

)
+ A13

(
p

T 2

)

+ A14

(
T
p3

)
+ A15T 3 + A16

(
p3

T 2

)
+ A17T 4

where:

T = temperature, ◦F
p = pressure, psia

The coefficients A0 through A17 are given in Table 3.2.

Example 3.33 Resolve Example 3.32 by using Equation
3.6.13.

Solution

Step 1. Convert the given pressure from psia to atm:
p = 435/14. 7 = 29. 6

Step 2. Determine the coefficients b and k from Figure 3.82
at the specific gravity of the gas, i.e., 0.728, to give:

b = 0. 8

k = 0. 0077
Step 3. Apply Equation 3.6.13, to give:

log(p) = b + 0. 0497(T + kT 2)

log(29. 6) = 0. 8 + 0. 0497(T + 0. 0077T 2)

0. 000383T 2 + 0. 0497T − 0. 6713 = 0
Using the quadratic formula, gives:

T = −0.497+√(0.0497)2 −(4)(0.000383)(−0.6713)
(2)(0.000383)

=12.33◦C
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Figure 3.83 Vapor–solid equilibrium constant for propane (Carson & Katz, 1942, courtesy SPE-AIME).

or:

T = (1. 8)(12. 33) + 32 = 54. 2◦F

3.6.2 Hydrates in subsurface
One explanation for hydrate formation is that the entrance
of the gaseous molecules into vacant lattice cavities in the
liquid water structure causes the water to solidify at tem-
peratures above the freezing point of water. In general,
ethane, propane, and butane raise the hydrate formation
temperature for methane. For example, 1% of propane raises

the hydrate-forming temperature from 41◦ to 49◦F at 600
psia. Hydrogen sulfide and carbon dioxide are also relatively
significant contributors in causing hydrates, whereas N2 and
C5+ have no noticeable effect. These solid ice-like mixtures
of natural gas and water have been found in formations under
deep water along the continental margins of America and
beneath the permafrost (i.e., permanently frozen ground)
in Arctic basins. The permafrost occurs where the mean
atmospheric temperature is just under 32◦F.

Muller (1947) suggested that lowering of the earth’s tem-
perature took place in early Pleistocene times, “perhaps a
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Figure 3.84 Vapor–solid equilibrium constant for i-butane (Carson & Katz, 1942, courtesy SPE-AIME).

million years ago.” If formation natural gases were cooled
under pressure in the presence of free water, hydrates would
form in the cooling process before ice temperatures were
reached. If further lowering of temperature brought the
layer into a permafrost condition, then the hydrates would
remain as such. In colder climates (such as Alaska, northern
Canada, and Siberia) and beneath the oceans, conditions are
appropriate for gas hydrate formation.

The essential condition for gas hydrate stability at a given
depth is that the actual earth temperature at that depth is
lower than the hydrate-forming temperature correspond-
ing to the pressure and gas composition conditions. The
thickness of a potential hydrate zone can be an impor-
tant variable in drilling operations where drilling through
hydrates requires special precautions. It can also be of sig-
nificance in determining regions where hydrate occurrences
might be sufficiently thick to justify gas recovery. The exis-
tence of a gas hydrate stability condition, however, does not
ensure that hydrates exist in that region, but only that they can
exist. In addition, if gas and water coexist within the hydrate
stability zone, then they must exist in gas hydrate form.

Consider the earth temperature curve for the Cape Simp-
son area of Alaska, as shown in Figure 3.88. Pressure data
from a drill stem test (DST) and a repeated formation test
(RFT) indicates a pressure gradient of 0.435 psi/ft. Assum-
ing a 0.6 gas gravity with its hydrate-forming pressure and
temperature as given in Figure 3.74, this hydrate p–T curve
can be converted into a depth versus temperature plot by
dividing the pressures by 0.435, as shown by Katz (1971) in
Figure 3.88. These two curves intersect at 2100 ft in depth.
Katz pointed out that at Cape Simpson, we would expect to
find water in the form of ice down to 900 ft and hydrates
between 900 and 2100 ft of 0.6 gas gravity.

Using the temperature profile as a function of depth for
the Prudhoe Bay Field as shown in Figure 3.89, Katz (1971)

estimated that the hydrate zone thickness at Prudhoe Bay
for a 0.6 gravity gas might occur between 2000 and 4000 ft.
Godbole et al. (1988) pointed out that the first confirmed evi-
dence of the presence of gas hydrates in Alaska was obtained
on March 15, 1972, when Arco and Exxon recovered gas
hydrate core samples in pressurized core barrels at several
depths between 1893 and 2546 ft from the Northwest Eileen
well 2 in the Prudhoe Bay Field.

Studies by Holder et al. (1987) and Godbole et al. (1988) on
the occurrence of in-situ natural-gas hydrates in the Arctic
North Slope of Alaska and beneath the ocean floor sug-
gest that the factors controlling the depth and thickness
of natural-gas–hydrate zones in these regions and affecting
their stabilities include:

● geothermal gradient;
● pressure gradient;
● gas composition;
● permafrost thickness;
● ocean-bottom temperature;
● mean average annual surface temperature;
● water salinity.

Various methods have been proposed for harvesting the
gas in hydrate form that essentially require heat to melt the
hydrate or lowering the pressure on the hydrate to release
the gas. Specifically:

● steam injection;
● hot brine injection;
● fire-flood;
● chemicals injection;
● depressurizing.

Holder and Anger (1982) suggested that in the depres-
surizing scheme, pressure reduction causes destabilization
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Figure 3.87 Vapor–solid equilibrium constant for H2S (Carson & Katz, 1942, courtesy SPE-AIME).

Table 3.2 Values of coefficients A0 through A17 in Slolan’s equation

Component A0 A1 A2 A3 A4 A5

CH4 1.63636 0.0 0.0 31.6621 −49.3534 5.31 × 10−6

C2H6 6.41934 0.0 0.0 −290.283 2629.10 0.0
C3H8 −7.8499 0.0 0.0 47.056 0.0 −1.17 × 10−6

i-C4H10 −2.17137 0.0 0.0 0.0 0.0 0.0
n-C4H10 −37.211 0.86564 0.0 732.20 0.0 0.0
N2 1.78857 0.0 −0.001356 −6.187 0.0 0.0
CO2 9.0242 0.0 0.0 −207.033 0.0 4.66 × 10−5

H2S −4.7071 0.06192 0.0 82.627 0.0 −7.39 × 10−6

A6 A7 A8 A9 A10 A11

CH4 0.0 0.0 0.128525 −0.78338 0.0 0.0
C2H6 0.0 9.0 × 10−8 0.129759 −1.19703 −8.46 × 104 −71.0352
C3H8 7.145 × 10−4 0.0 0.0 0.12348 1.669 × 104 0.0
i-C4H10 1.251 × 10−3 1.0 × 10−8 0.166097 −2.75945 0.0 0.0
n-C4H10 0.0 9.37 × 10−6 −1.07657 0.0 0.0 −66.221
N2 0.0 2.5 × 10−7 0.0 0.0 0.0 0.0
CO2 −6.992 × 10−3 2.89 × 10−6 −6.223 × 10−3 0.0 0.0 0.0
H2S 0.0 0.0 0.240869 −0.64405 0.0 0.0

A12 A13 A14 A15 A16 A17

CH4 0.0 −5.3569 0.0 −2.3 × 10−7 −2.0 × 10−8 0.0
C2H6 0.596404 −4.7437 7.82 × 104 0.0 0.0 0.0
C3H8 0.23319 0.0 −4.48 × 104 5.5 × 10−6 0.0 0.0
i-C4H10 0.0 0.0 −8.84 × 102 0.0 −5.7 × 10−7 −1.0 × 10−8

n-C4H10 0.0 0.0 9.17 × 105 0.0 4.98 × 10−6 −1.26 × 10−6

N2 0.0 0.0 5.87 × 105 0.0 1.0 × 10−8 1.1 × 10−7

CO2 0.27098 0.0 0.0 8.82 × 10−5 2.55 × 10−6 0.0
H2S 0.0 −12.704 0.0 −1.3 × 10−6 0.0 0.0
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Figure 3.88 Method for locating the thickness of hydrate layer (Permission to copy SPE, copyright SPE 1971).

Hydrates 0.6 gravity
gas

Temperature °F

D
E

P
T

H
, F

E
E

T

0

1000

2000

3000

4000

5000

6000
10 20 30 40 50 60 70 80 90

M
ethane

H
yd

ra
te

s
0.

6 
G

r 
G

as
P

er
m

of
ro

st
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copyright SPE 1971).

of hydrates. As hydrates dissociate, they absorb heat from
the surrounding formation. The hydrates continue to disso-
ciate until they generate enough gas to raise the reservoir
pressure to the equilibrium pressure of hydrates at a new
temperature, which is lower than the original value. A tem-
perature gradient is thus generated between the hydrates
(sink) and surrounding media (source), and heat flows to
the hydrates. The rate of dissociation of hydrates, however,
is controlled by the rate of heat influx from the surround-
ing media or by the thermal conductivity of the surrounding
rock matrix.

Many question need to be answered if gas is to be
produced from hydrates. For example:

● The form in which hydrates exist in a reservoir should
be known. Hydrates may exist in different types (all
hydrates, excess water, and excess ice, in conjunction
with free gas or oil) and in different forms (massive,
laminated, dispersed, or nodular). Each case will have
a different effect on the method of production and on the
economics.

● The saturation of hydrates in the reservoir.
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Figure 3.90 Production history for a typical Medicine Hat property (Permission to copy SPE, copyright SPE 1995).

● There could be several problems associated with gas pro-
duction, such as pore blockage by ice and blockage of the
wellbore resulting from re-formation of hydrates during
flow of gas through the production well.

● Economics of the project is perhaps the most important
impacting factor for the success of gas recovery from
subsurface hydrate accumulations.

Despite the above concerns, subsurface hydrates exhibit
several characteristics, especially compared with other
unconventional gas resources, that increase their impor-
tance as potential energy resources and make their future
recovery likely. These include a higher concentration of gas
in hydrated form, enormously large deposits of hydrates,
and their wide occurrence in the world.

3.7 Shallow Gas Reservoirs

Tight, shallow gas reservoirs present a number of unique
challenges in determining reserves accurately. Traditional
methods such as decline analysis and material balance are
inaccurate due to the formation’s low permeability and the
usually poor-quality pressure data. The low permeabilities
cause long transient periods that are not separated early
from production decline with conventional decline analysis,
resulting in lower confidence in selecting the appropriate
decline characteristics which effect recovery factors and
remaining reserves significantly. In an excellent paper, West
and Cochrane (1994) used the Medicine Hat Field in west-
ern Canada as an example of these types of reservoirs and
developed a methodology, called the extended material bal-
ance technique, to evaluate gas reserves and potential infill
drilling.

The Medicine Hat Field is a tight, shallow gas reser-
voir producing from multiple highly interbedded, silty sand
formations with poor permeabilities of less than 0.1 md.
This poor permeability is the main characteristic of these
reservoirs that affects conventional decline analysis. Due to
these low permeabilities, and in part to commingled mul-
tilayer production effects, wells experience long transient
periods before they begin experiencing pseudosteady-state
flow that represents the decline portion of their lives. One of
the principal assumptions often neglected when conducting
decline analysis is that the pseudosteady state must have
been achieved. The initial transient production trend of a

well or group of wells is not indicative of the long-term
decline of the well. Distinguishing the transient production
of a well from its pseudosteady-state production is often dif-
ficult, and this can lead to errors in determining the decline
characteristic (exponential, hyperbolic, or harmonic) of the
well. Figure 3.90 shows the production history from a tight,
shallow gas well and illustrates the difficulty in selecting
the correct decline. Another characteristic of tight, shallow
gas reservoirs that affects conventional decline analysis is
that constant reservoir conditions, an assumption required
for conventional decline analysis, do not exist because of
increasing drawdown, changing operating strategies, erratic
development, and deregulation.

Material balance is affected by tight, shallow gas reser-
voirs because the pressure data is limited, of poor quality,
and non-representative of a majority of the wells. Because
the risk of drilling dry holes is low and drill stem tests
(DSTs) are not cost-effective in the development of shal-
low gas, DST data is very limited. Reservoir pressures are
recorded only for government-designated “control” wells,
which account for only 5% of all wells. Shallow gas produces
from multiple formations, and production from these for-
mations is typically commingled, exhibiting some degree
of pressure equalization. Unfortunately, the control wells
are segregated by tubing/packers, and consequently the
control-well pressure data is not representative of most com-
mingled wells. In addition, pressure monitoring has been
very inconsistent. Varied measurement points (downhole or
wellhead), inconsistent shut-in times, and different analysis
types (e.g., buildup and static gradient) make quantitative
pressure tracking difficult. As Figure 3.91 shows, both these
problems result in a scatter of data, which makes material
balance extremely difficult.

Wells in the Medicine Hat shallow gas area are generally
cased, perforated, and fractured in one, two, or all three for-
mations as ownerships vary not only areally but between
formations. The Milk River and Medicine Hat formations
are usually produced commingled. Historically, the Second
White Specks formation has been segregated from the other
two; recently, however, commingled production from all
three formations has been approved. Spacing for shallow
gas is usually two to four wells per section.

As a result of the poor reservoir quality and low pres-
sure, well productivity is very low. Initial rates rarely
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Figure 3.91 Scatter pressure data for a typical Medicine Hat property (Permission to copy SPE, copyright SPE 1995).

exceed 700 Mscf/day. Current average production per well
is approximately 50 Mscf/day for a three-formation com-
pletion. There are approximately 24 000 wells producing
from the Milk River formation in southern Alberta and
Saskatchewan with total estimated gas reserves of 5.3 Tscf.
West and Cochrane (1994) developed an iterative methodol-
ogy, called extended material balance “EMB”, to determine
gas reserves in 2300 wells in the Medicine Hat Field.

The EMB technique is essentially an iterative process for
obtaining a suitable p/Z vs. Gp line for a reservoir where
pressure data is inadequate. It combines the principles of
volumetric gas depletion with the gas deliverability equation.
The deliverability equation for radial flow of gas describes
the relationship between the pressure differential in the
wellbore and the gas flow rate from the well:
Qg = C[p2

r − p2
wf ]n [3.7.1]

Due to the very low production rates from the wells in
Medicine Hat shallow gas, a laminar flow regime exists
which can be described with an exponent n = 1. The terms
making up the coefficient C in Equation 3.7.1 are either fixed
reservoir parameters (kh, re, rw, and T ) that do not vary with
time or terms that fluctuate with pressure, temperature, and
gas composition, i.e., µg and Z . The performance coefficient
C is given by:

C = kh
1422TµgZ [ln(re/rw) − 0. 5] [3.7.2]

Because the original reservoir pressure in these shallow
formations is low, the differences between initial and aban-
donment pressures are not significant and the variation in the
pressure-dependent terms over time can be assumed negligi-
ble. C may be considered constant for a given Medicine Hat
shallow gas reservoir over its life. With these simplifications
for shallow gas, the deliverability equation becomes:
Qg = C[p2

r − p2
wf ] [3.7.3]

The sum of the instantaneous production rates with time
will yield the relationship between Gp and reservoir pres-
sure, similar to the MBE. By use of this common relation-
ship, with the unknowns being reservoir pressure p and
the performance coefficient C, the EMB method involves
iterating to find the correct p/Z vs. Gp relationship to give
a constant C with time. The proposed iterative method is
applied as outlined in the following steps:

Step 1. To avoid calculating individual reserves for each of
the 2300 wells, West and Cochrane (1995) grouped

wells by formation and by date on production. The
authors verified this simplification on a test group by
ensuring that the reserves from the group of wells
yielded the same results as the sum of the individual
well reserves. These groupings were used for each
of the 10 properties, and the results of the groupings
combined to give a property production forecast.
Also, to estimate the reservoir decline characteris-
tics more accurately, the rates were normalized to
reflect changes in the bottom-hole flowing pressure
(BHFP).

Step 2 Using the gas specific gravity and reservoir tempera-
ture, calculate the gas deviation factor Z as a function
of pressure and plot p/Z vs. p on a Cartesian scale.

Step 3. An initial estimate for the p/Z variation with Gp is
made by guessing an initial pressure pi , and a linear
slope m of Equation 3.3.10:

p
Z

= pi

Zi
− [m] Gp

with the slope m as defined by:

m =
(

pi

Zi

)
1
G

Step 4. Starting at the initial production date for the prop-
erty, the p/Z versus time relationship is established
by simply substituting the actual cumulative produc-
tion Gp into the MBE with estimated slope m and
pi because actual cumulative production Gp versus
time is known. The reservoir pressure p can then be
constructed as a function of time from the plot of p/Z
as a function of p, i.e., step 2.

Step 5. Knowing the actual production rates, Qg , and BHFPs
pwf for each monthly time interval, and having
estimated reservoir pressures p from step 3, C is
calculated for each time interval with Equation 3.7.3:

C = Qg

p2 − p2
wf

Step 6. C is plotted versus time. If C is not constant (i.e.,
the plot is not a horizontal line), a new p/Z versus
Gp is guessed and the process repeated from step 3
through step 5.

Step 7. Once a constant C solution is obtained, the represen-
tative p/Z relationship has been defined for reserves
determination.
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Figure 3.92 Example of a successful EMB solution–flat kh profile (Permission to copy SPE, copyright SPE1995).

Use of the EMB method in the Medicine Hat shallow gas
makes the fundamental assumptions (1) that the gas pool
depletes volumetrically (i.e., no water influx) and (2) that all
wells behave like an average well with the same deliverability
constant, turbulence constant, and BHFP, which is a reason-
able assumption given the number of wells in the area, the
homogeneity of the rocks, and the observed well production
trends.

In the EMB evaluation, West and Cochrane pointed out
that wells for each property were grouped according to pro-
ducing interval so that the actual production from the wells
could be related to a particular reservoir pressure trend.
When calculating the coefficient C as outlined above, a total
C based on grouped production was calculated and then
divided by the number of wells producing in a given time
interval to give an average C value. This average C value
was used to calculate an average permeability/thickness, kh,
for comparison with actual kh data obtained through buildup
analysis for the reservoir from:

kh = 1422TµgZ [ln(re/rw) − 0. 5]C

For that reason kh versus time was plotted instead of C
versus time in the method. Figure 3.92 shows a flat kh versus
time profile indicating a valid p/Z vs. Gp relationship.

Problems

1. The following information is available on a volumetric
gas reservoir:

Initial reservoir temperature, Ti = 155◦F

Initial reservoir pressure, pi = 3500 psia

Specific gravity of gas, γg = 0. 65(air = 1)

Thickness of reservoir, h = 20 ft

Porosity of the reservoir, φ = 10%

Initial water saturation, Swi = 25%

After producing 300 MMscf, the reservoir pressure
declined to 2500 psia. Estimate the areal extent of this
reservoir.

2. The following pressures and cumulative production
dataa is available for a natural-gas reservoir:

p (psia) Z Gp
(MMMscf)

2080 0.759 0
1885 0.767 6.873
1620 0.787 14.002
1205 0.828 23.687
888 0.866 31.009
645 0.900 36.207

(a) Estimate the initial gas-in-place.
(b) Estimate the recoverable reserves at an abandon-

ment pressure of 500 psia. Assume za = 1. 00.
(c) What is the recovery factor at the abandonment

pressure of 500 psia?

3. A gas field with an active water drive showed a pressure
decline from 3000 to 2000 psia over a 10 month period.
From the following production data, match the past his-
tory and calculate the original hydrocarbon gas in the
reservoir. Assume z = 0. 8 in the range of reservoir
pressures and T = 140◦F.

Dataa

t, months 0 2.5 5.0 7.5 10.0
p, psia 3000 2750 2500 2250 2000
Gp, MMscf 0 97.6 218.9 355.4 500.0

4. A volumetric gas reservoir produced 600 MMscf of
gas of 0.62 specific gravity when the reservoir pres-
sure declined from 3600 to 2600 psi. The reservoir
temperature is reported at 140◦F. Calculate:

(a) gas initially in place;
(b) remaining reserves to an abandonment pressure of

500 psi;
(c) ultimate gas recovery at abandonment.

aChi Ikoku, Natural Gas Reservoir Engineering, John Wiley & Sons,
1984.
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5. The following information on a water drive gas reservoir
is given:

Bulk volume = 100 000 acre-ft

Gas gravity = 0. 6

Porosity = 15%

Swi = 25%

T = 140◦F

pi = 3500 psi

Reservoir pressure has declined to 3000 psi while pro-
ducing 30 MMMscf of gas and no water production.
Calculate the cumulative water influx.

6. The pertinent data for thew Mobil–David Field is given
below:

G = 70 MMMscf

pi = 9507 psi

f = 24%fSwi = 35%

cw = 401 × 10−6 psi−1,

cf = 3. 4 × 10−6 psi−1,

γg = 0. 74

T = 266◦F

For this volumetric abnormally pressured reservoir, cal-
culate and plot cumulative gas production as a function
of pressure.

7. A gas well is producing under a constant bottom-hole
flowing pressure of 1000 psi. The specific gravity of the
produced gas is 0.65. Given:

pi = 1500 psi

rw = 0. 33 ft

re = 1000 ft

k = 20 md

h = 20 ft

T = 140◦F

s = 0. 40

calculate the gas flow rate by using:

(a) the real-gas pseudopressure approach;
(b) the pressure-squared approximation.

8. The following dataa was obtained from a back-pressure
test on a gas well:

Qg (Mscf/day) pwf (psi)

0 481
4928 456
6479 444
8062 430
9640 415

(a) Calculate values of C and n.
(b) Determine the AOF.
(c) Generate the IPR curves at reservoir pressures of

481 and 300 psi.

aChi Ikoku, Natural Gas Reservoir Engineering, John Wiley & Sons,
1984.

9. The following back-pressure test data is available:

Qg (Mscf/day) pwf (psi)

0 5240
1000 4500
1350 4191
2000 3530
2500 2821

Given:

gas gravity = 0. 78
porosity = 12%

swi = 15%
T = 281◦F

(a) generate the current IPR curve by using:
(i) the simplified back-pressure equation;

(ii) the laminar–Inertial–turbulent (LIT) methods:

● pressure-squared approach
● pressure-approach
● pseudo-pressure approach;

(b) repeat part (a) for a future reservoir pressure of 4000
psi.

10. A 3000 foot horizontal gas well is draining an area of
approximately 180 acres, given:

pi = 2500 psi, pwf = 1500 psi, k = 25 md

T = 120◦F, rw = 0. 25, h = 20 ft

γg = 0. 65

Calculate the gas flow rate.
11. Given the sorption isotherm data below for a coal sam-

ple from the CBM field, calculate Langmuir’s isotherm
constant Vm and Langmuir’s pressure constant b:

p (psi) V, (scf/ton)

87.4 92.4
140.3 135.84
235.75 191.76
254.15 210
350.75 247.68
579.6 318.36
583.05 320.64
869.4 374.28
1151.15 407.4
1159.2 408.6

12. The following production data is available from a dry gas
field:

qt (MMscf/day) Gp (MMscf) qt (MMscf/day) Gp (MMscf)

384 19 200 249.6 364 800
403.2 38 400 236.4 422 400
364.8 57 600 220.8 441 600
370.8 115 200 211.2 460 800
326.4 192 000 220.8 480 000
297.6 288 000

Estimate:

(a) the future cumulative gas production when gas flow
rate reaches 100 MMscf/day;

(b) extra time to reach 100 MMscf/day.
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13. A gas well has the following production history:

Date Time (months) qt (MMscf/month)

1/1/2000 0 1017
2/1/2000 1 978
3/1/2000 2 941
4/1/2000 3 905
5/1/2000 4 874
6/1/2000 5 839
7/1/2000 6 809
8/1/2000 7 778
9/1/2000 8 747
10/1/2000 9 722
11/1/2000 10 691
12/1/2000 11 667
1/1/2001 12 641

(a) Use the first six months of the production history
data to determine the coefficient of the decline curve
equation.

(b) Predict flow rates and cumulative gas production
from August 1, 2000 through January 1, 2001.

(c) Assuming that the economic limit is 20 MMscf/month,
estimate the time to reach the economic limit and the
corresponding cumulative gas production.

14. The volumetric calculations on a gas well show that the
ultimate recoverable reserves Gpa are 18 MMMscf of
gas. By analogy with other wells in the area, the following
data is assigned to the well:

Exponential decline

Allowable (restricted) production rate = 425 MMscf/month

Economic limit = 20 MMscf/month

Nominal decline rate = 0.034 month−1

Calculate the yearly production performance of the well.
15. The following data is available on a gas well production:

pi = 4100 psia, pwf = 400 psi, T = 600◦R

h = 40 ft, φ = 0. 10, Swi = 0. 30

γg = 0. 65,

Time (days) qt (MMscf/day)

0.7874 5.146
6.324 2.108
12.71 1.6306
25.358 1.2958
50.778 1.054
101.556 0.8742
248 0.6634
496 0.49042
992 0.30566
1240 0.24924
1860 0.15996
3100 0.07874
6200 0.02232

Calculate the initial gas-in-place and the drainage area.
16. A gas of 0.7 specific gravity is at 800 psia. To what

extent can the temperature be lowered without hydrate
formation in the presence of free water?

17. A gas has a specific gravity of 0.75 and exists at 70◦F.
What would be the pressure above which hydrates could
be expected to form?

18. How far can a 0.76 gravity gas at 1400 psia and 110◦F be
expanded without hydrate formation?
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Each reservoir is composed of a unique combination of geo-
metric form, geological rock properties, fluid characteristics,
and primary drive mechanism. Although no two reservoirs
are identical in all aspects, they can be grouped according to
the primary recovery mechanism by which they produce. It
has been observed that each drive mechanism has certain
typical performance characteristics in terms of:

● ultimate recovery factor;
● pressure decline rate;
● gas–oil ratio;
● water production.

The recovery of oil by any of the natural drive mechanisms is
called “primary recovery.” The term refers to the production
of hydrocarbons from a reservoir without the use of any
process (such as fluid injection) to supplement the natural
energy of the reservoir.

The two main objectives of this chapter are:

(1) To introduce and give a detailed discussion of the various
primary recovery mechanisms and their effects on the
overall performance of oil reservoirs.

(2) To provide the basic principles of the material balance
equation and other governing relationships that can
be used to predict the volumetric performance of oil
reservoirs.

4.1 Primary Recovery Mechanisms

For a proper understanding of reservoir behavior and pre-
dicting future performance, it is necessary to have knowl-
edge of the driving mechanisms that control the behavior of
fluids within reservoirs.

The overall performance of oil reservoirs is largely deter-
mined by the nature of the energy, i.e., driving mechanism,
available for moving the oil to the wellbore. There are basi-
cally six driving mechanisms that provide the natural energy
necessary for oil recovery:

(1) rock and liquid expansion drive;
(2) depletion drive;
(3) gas cap drive;
(4) water drive;
(5) gravity drainage drive;
(6) combination drive.

These six driving mechanisms are presented below.

4.1.1 Rock and liquid expansion
When an oil reservoir initially exists at a pressure higher
than its bubble point pressure, the reservoir is called an
“undersaturated oil reservoir.” At pressures above the bub-
ble point pressure, crude oil, connate water, and rock are the
only materials present. As the reservoir pressure declines,
the rock and fluids expand due to their individual compress-
ibilities. The reservoir rock compressibility is the result of
two factors:

(1) expansion of the individual rock grains, and
(2) formation compaction.

Both of these factors are the results of a decrease of fluid
pressure within the pore spaces, and both tend to reduce
the pore volume through the reduction of the porosity.

As the expansion of the fluids and reduction in the pore vol-
ume occur with decreasing reservoir pressure, the crude oil
and water will be forced out of the pore space to the wellbore.
Because liquids and rocks are only slightly compressible,
the reservoir will experience a rapid pressure decline. The
oil reservoir under this driving mechanism is characterized
by a constant gas–oil ratio that is equal to the gas solubility
at the bubble point pressure.

This driving mechanism is considered the least efficient
driving force and usually results in the recovery of only a
small percentage of the total oil-in-place.

4.1.2 Depletion drive mechanism
This driving form may also be referred to by the following
various terms:

● solution gas drive;
● dissolved gas drive;
● internal gas drive.

In this type of reservoir, the principal source of energy is
a result of gas liberation from the crude oil and the subse-
quent expansion of the solution gas as the reservoir pressure
is reduced. As pressure falls below the bubble point pres-
sure, gas bubbles are liberated within the microscopic pore
spaces. These bubbles expand and force the crude oil out of
the pore space as shown conceptually in Figure 4.1.

Cole (1969) suggests that a depletion drive reservoir can
be identified by the following characteristics:

Pressure behavior: The reservoir pressure declines
rapidly and continuously. This reservoir pressure behav-
ior is attributed to the fact that no extraneous fluids or gas
caps are available to provide a replacement of the gas and
oil withdrawals.
Water production: The absence of a water drive means
there will be little or no water production with the oil
during the entire producing life of the reservoir.

A depletion drive reservoir is characterized by a rapidly
increasing gas–oil ratio from all wells, regardless of their
structural position. After the reservoir pressure has been
reduced below the bubble point pressure, gas evolves
from solution throughout the reservoir. Once the gas
saturation exceeds the critical gas saturation, free gas
begins to flow toward the wellbore and the gas–oil ratio
increases. The gas will also begin a vertical movement

Oil Producing Wells

Oil Producing Wells

A. Original Conditions

B. 50% Depleted

OIL

Figure 4.1 Solution gas drive reservoir. (After Clark,
N.J., Elements of Petroleum Reservoirs, SPE, 1969).
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Figure 4.2 Production data for a solution gas drive reservoir. (After Clark, N.J., Elements of Petroleum Reservoirs,
SPE, 1969).

due to gravitational forces, which may result in the for-
mation of a secondary gas cap. Vertical permeability is an
important factor in the formation of a secondary gas cap.
Unique oil recovery: Oil production by depletion drive
is usually the least efficient recovery method. This is a
direct result of the formation of gas saturation through-
out the reservoir. Ultimate oil recovery from depletion
drive reservoirs may vary from less than 5% to about 30%.
The low recovery from this type of reservoir suggests
that large quantities of oil remain in the reservoir and,
therefore, depletion drive reservoirs are considered the
best candidates for secondary recovery applications.

The above characteristic trends occurring during the pro-
duction life of depletion drive reservoirs are shown in
Figure 4.2 and summarized below:

Characteristics Trend

Reservoir pressure Declines rapidly and continuously
Gas–oil ratio Increases to maximum and then

declines
Water production None
Well behavior Requires pumping at early stage
Oil recovery 5% to 30%

4.1.3 Gas cap drive
Gas cap drive reservoirs can be identified by the presence of
a gas cap with little or no water drive as shown in Figure 4.3.
Due to the ability of the gas cap to expand, these reservoirs
are characterized by a slow decline in the reservoir pressure.
The natural energy available to produce the crude oil comes
from the following two sources:

(1) expansion of the gas cap gas, and
(2) expansion of the solution gas as it is liberated.

Cole (1969) and Clark (1969) presented a comprehensive
review of the characteristic trends associated with gas cap
drive reservoirs. These characteristic trends are summa-
rized below:

Reservoir pressure: The reservoir pressure falls slowly and
continuously. Pressure tends to be maintained at a higher
level than in a depletion drive reservoir. The degree of
pressure maintenance depends upon the volume of gas
in the gas cap compared to the oil volume.

Oil Producing Well

Oil Zone Oil Zone
Gas Cap

Gas Cap

A. Cross Section View

A. Map View

OIL ZONE

Figure 4.3 Gas cap drive reservoir (After Clark, N.J.,
Elements of Petroleum Reservoirs, SPE, 1969).

Water production: Absent or negligible water production.
Gas–oil ratio: The gas–oil ratio rises continuously in
upstructure wells. As the expanding gas cap reaches the
producing intervals of upstructure wells, the gas–oil ratio
from the affected wells will increase to high values.
Ultimate oil recovery: Oil recovery by gas cap expansion
is actually a frontal drive displacing mechanism which,
therefore, yields considerably larger recovery efficiency
than that of depletion drive reservoirs. This larger recov-
ery efficiency is also attributed to the fact that no gas
saturation is being formed throughout the reservoir at
the same time. Figure 4.4 shows the relative positions of
the gas–oil contact at different times in the producing life
of the reservoir. The expected oil recovery ranges from
20% to 40%.
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Producing Well

A. Initial fluid distribution

B. Gas cap expansion due to oil production

Gas

Gas

Oil

Figure 4.4 Gas cap drive reservoir (After Cole, F.,
Reservoir Engineering Manual, Gulf Publishing Company,
1969).
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Figure 4.5 Effect of gas cap size on ultimate oil
recovery (After Cole, F., Reservoir Engineering Manual,
Gulf Publishing Company, 1969).

The ultimate oil recovery from a gas cap drive reservoir
will vary depending largely on the following six important
parameters:

(1) Size of the original gas cap: As shown graphically in
Figure 4.5, the ultimate oil recovery increases with
increasing size of the gas cap.

(2) Vertical permeability: Good vertical permeability will
permit the oil to move downward with less bypassing
of gas.

(3) Oil viscosity: As the oil viscosity increases, the
amount of gas bypassing will also increase, which
leads to a lower oil recovery.

(4) Degree of conservation of the gas: In order to con-
serve gas, and thereby increase ultimate oil recovery,
it is necessary to shut in the wells that produce
excessive gas.

(5) Oil production rate: As the reservoir pressure
declines with production, solution gas evolves from
the crude oil and the gas saturation increases con-
tinuously. If the gas saturation exceeds the critical
gas saturation, the evolved gas begins to flow in the
oil zone. As a result of creating a mobile gas phase
in the oil zone, the following two events will occur:
(1) the effective permeability to oil will be decreased
as a result of the increased gas saturation; and (2)
the effective permeability to gas will be increased,
thereby increasing the flow of gas.

The formation of the free gas saturation in the oil
zone cannot be prevented without resorting to pres-
sure maintenance operations. Therefore, in order
to achieve maximum benefit from a gas cap drive-
producing mechanism, gas saturation in the oil zone
must be kept to an absolute minimum. This can be
accomplished by taking advantage of gravitational
segregation of the fluids. In fact, an efficiently oper-
ated gas cap drive reservoir must also have an effi-
cient gravity segregation drive. As the gas saturation
is formed in the oil zone it must be allowed to migrate
upstructure to the gas cap. Thus, a gas cap drive
reservoir is in reality a combination-driving reservoir,
although it is not usually considered as such.

Lower producing rates will permit the maximum
amount of free gas in the oil zone to migrate to the
gas cap. Therefore gas cap drive reservoirs are rate
sensitive, as lower producing rates will usually result
in increased recovery.

(6) Dip angle: The size of the gas cap determines the over-
all field oil recovery. When the gas cap is considered
the main driving mechanism, its size is a measure of
the reservoir energy available to produce the crude
oil system. Such recovery normally will be 20% to 40%
of the original oil-in-place, but if some other features
are present to assist, such as steep angle of dip which
allows good oil drainage to the bottom of the struc-
ture, considerably higher recoveries (up to 60% or
greater) may be obtained. Conversely, extremely thin
oil columns (where early breakthrough of the advanc-
ing gas cap occurs in producing wells) may limit oil
recovery to lower figures regardless of the size of
the gas cap. Figure 4.6 shows typical production and
pressure data for a gas cap drive reservoir.

Well behavior: Because of the effects of gas cap expan-
sion on maintaining reservoir pressure and the effect of
decreased liquid column weight as it is produced out the
well, gas cap drive reservoirs tend to flow longer than
depletion drive reservoirs.

4.1.4 Water drive mechanism
Many reservoirs are bounded on a portion or all of their
peripheries by water-bearing rocks called aquifers. The
aquifers may be so large compared to the reservoir they
adjoin as to appear infinite for all practical purposes, and
they may range down to those so small as to be negligible in
their effects on the reservoir performance.

The aquifer itself may be entirely bounded by imperme-
able rock so that the reservoir and aquifer together form
a closed (volumetric) unit. On the other hand, the reser-
voir may outcrop at one or more places where it may be
replenished by surface water as shown schematically in
Figure 4.7.
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Figure 4.6 Production data for a gas cap drive reservoir (After Clark, N.J., Elements of Petroleum Reservoirs, SPE,
1969. Courtesy of API).

Out Crop
Of Sand

Oil Well

Flow

Water

Figure 4.7 Reservoir having artesian water drive (After Clark, N.J., Elements of Petroleum Reservoirs, SPE, 1969).

It is common to speak of edge water or bottom water
in discussing water influx into a reservoir. Bottom water
occurs directly beneath the oil and edge water occurs off
the flanks of the structure at the edge of the oil as illustrated
in Figure 4.8. Regardless of the source of water, the water
drive is the result of water moving into the pore spaces orig-
inally occupied by oil, replacing the oil and displacing it to
the producing wells.

Cole (1969) presented the following discussion on the
characteristics that can be used for identification of the
water-driving mechanism.

Reservoir pressure
The decline in the reservoir pressure is usually very gradual.
Figure 4.9 shows the pressure–production history of a typ-
ical water drive reservoir. It is not uncommon for many
thousands of barrels of oil to be produced for each pound per

Bottom-water DriveEdge-water Drive

Reservoir
Reservoir

Aquifer

AquiferAquifer

Figure 4.8 Aquifer geometries.

square inch drop in reservoir pressure. The reason for the
small decline in reservoir pressure is that oil and gas with-
drawals from the reservoir are replaced almost volume for
volume by water encroaching into the oil zone. Several large
oil reservoirs in the Gulf Coast areas of the United States
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Figure 4.9 Pressure–production history for a water drive
reservoir.

have such active water drives that the reservoir pressure
has declined by only about 1 psi per million barrels of oil pro-
duced. Although pressure history is normally plotted versus
cumulative oil production, it should be understood that total
reservoir fluid withdrawals are the really important criteria
in the maintenance of reservoir pressure. In a water drive
reservoir, only a certain number of barrels of water can move
into the reservoir as a result of a unit pressure drop within the
reservoir. Since the principal income production is from oil,
if the withdrawals of water and gas can be minimized, then
the withdrawal of oil from the reservoir can be maximized
with minimum pressure decline. Therefore, it is extremely
important to reduce water and gas production to an absolute
minimum. This can usually be accomplished by shutting in
wells that are producing large quantities of these fluids, and
where possible transferring their allowable oil production to
other wells producing with lower water–oil or gas–oil ratios.

Water production
Early excess water production occurs in structurally low
wells. This is characteristic of a water drive reservoir, and
provided the water is encroaching in a uniform manner, noth-
ing can or should be done to restrict this encroachment, as
the water will probably provide the most efficient displacing
mechanism possible. If the reservoir has one or more lenses
of very high permeability, then the water may be moving
through this more permeable zone. In this case, it may be
economically feasible to perform remedial operations to shut
off this permeable zone producing water. It should be real-
ized that in most cases the oil which is being recovered from
a structurally low well will be recovered from wells located
higher on the structure and any expenses involved in reme-
dial work to reduce the water–oil ratio of structurally low
wells may be needless expenditure.

Gas–oil ratio
There is normally little change in the producing gas–oil ratio
during the life of the reservoir. This is especially true if the
reservoir does not have an initial free gas cap. Pressure
will be maintained as a result of water encroachment and
therefore there will be relatively little gas released from
solution.

Ultimate oil recovery
Ultimate recovery from water drive reservoirs is usually
much larger than recovery under any other producing
mechanism. Recovery is dependent upon the efficiency of

the flushing action of the water as it displaces the oil. In gen-
eral, as the reservoir heterogeneity increases, the recovery
will decrease, due to the uneven advance of the displacing
water. The rate of water advance is normally faster in zones of
high permeability. This results in earlier high water–oil ratios
and consequent earlier economic limits. Where the reservoir
is more or less homogeneous, the advancing waterfront will
be more uniform, and when the economic limit, due primarily
to high water–oil ratios, has been reached, a greater portion
of the reservoir will have been contacted by the advancing
water.

Ultimate oil recovery is also affected by the degree of activ-
ity of the water drive. In a very active water drive where the
degree of pressure maintenance is good, the role of solution
gas in the recovery process is reduced to almost zero, with
maximum advantage being taken of the water as a displac-
ing force. This should result in maximum oil recovery from
the reservoir. The ultimate oil recovery normally ranges
from 35% to 75% of the original oil-in-place. The character-
istic trends of a water drive reservoir are shown graphically
in Figure 4.10 and summarized below:

Characteristics Trend

Reservoir pressure Remains high
Surface gas–oil ratio Remains low
Water production Starts early and increases to

appreciable amounts
Well behavior Flow until water production

gets excessive
Expected oil recovery 35% to 75%

4.1.5 Gravity drainage drive
The mechanism of gravity drainage occurs in petroleum
reservoirs as a result of differences in densities of the reser-
voir fluids. The effects of gravitational forces can be simply
illustrated by placing a quantity of crude oil and a quantity
of water in a jar and agitating the contents. After agitation,
the jar is placed at rest, and the more dense fluid (normally
water) will settle to the bottom of the jar, while the less dense
fluid (normally oil) will rest on top of the denser fluid. The
fluids have separated as a result of the gravitational forces
acting on them.

The fluids in petroleum reservoirs have all been subjected
to the forces of gravity, as evidenced by the relative posi-
tions of the fluids, i.e., gas on top, oil underlying the gas,
and water underlying oil. The relative positions of the reser-
voir fluids are shown in Figure 4.11. Due to the long periods
of time involved in the petroleum accumulation and migra-
tion process, it is generally assumed that the reservoir fluids
are in equilibrium. If the reservoir fluids are in equilibrium
then the gas–oil and oil–water contacts should be essentially
horizontal. Although it is difficult to determine precisely the
reservoir fluid contacts, the best available data indicates that,
in most reservoirs, the fluid contacts actually are essentially
horizontal.

Gravity segregation of fluids is probably present to some
degree in all petroleum reservoirs, but it may contribute
substantially to oil production in some reservoirs.

Cole (1969) stated that reservoirs operating largely under
a gravity drainage producing mechanism are characterized
by the following.

Reservoir pressure
Variable rates of pressure decline depend principally upon
the amount of gas conservation. Strictly speaking, where the
gas is conserved, and reservoir pressure is maintained, the
reservoir would be operating under combined gas cap drive
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Figure 4.10 Production data for a water drive reservoir (After Clark, N.J., Elements of Petroleum Reservoirs, SPE,
1969. Courtesy of API).
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Figure 4.11 Initial fluids distribution in an oil reservoir.

and gravity drainage mechanisms. Therefore, for the reser-
voir to be operating solely as a result of gravity drainage, the
reservoir would show a rapid pressure decline. This would
require the upstructure migration of the evolved gas where
it later was produced from structurally high wells, resulting
in rapid loss of pressure.

Gas–oil ratio
These types of reservoirs typically show low gas–oil ratios
from structurally located low wells. This is caused by migra-
tion of the evolved gas upstructure due to gravitational
segregation of the fluids. On the other hand, the structurally
high wells will experience an increasing gas–oil ratio as a
result of the upstructure migration of the gas released from
the crude oil.

Secondary gas cap
A secondary gas cap can be found in reservoirs that initially
were undersaturated. Obviously the gravity drainage mecha-
nism does not become operative until the reservoir pressure
has declined below the saturation pressure, since above the
saturation pressure there will be no free gas in the reservoir.

Water production
Gravity drainage reservoirs have little or no water produc-
tion. Water production is essentially indicative of a water
drive reservoir.

Ultimate oil recovery
Ultimate recovery from gravity drainage reservoirs will vary
widely, due primarily to the extent of depletion by gravity
drainage alone. Where gravity drainage is good, or where
producing rates are restricted to take maximum advantage
of the gravitational forces, recovery will be high. There are
reported cases where recovery from gravity drainage reser-
voirs has exceeded 80% of the initial oil-in-place. In other
reservoirs where depletion drive also plays an important role
in the oil recovery process, the ultimate recovery will be less.

In operating gravity drainage reservoirs, it is essential that
the oil saturation in the vicinity of the wellbore must be main-
tained as high as possible. There are two obvious reasons for
this requirement:

(1) high oil saturation means a higher oil flow rate;
(2) high oil saturation means a lower gas flow rate.

If the liberated solution gas is allowed to flow upstructure
instead of toward the wellbore, then high oil saturation in
the vicinity of the wellbore can be maintained.

In order to take maximum advantage of the gravity
drainage producing mechanism, wells should be located as
low as structurally possible. This will result in maximum
conservation of the reservoir gas. A typical gravity drainage
reservoir is shown in Figure 4.12.

As discussed by Cole (1969), there are five factors that
affect ultimate recovery from gravity drainage reservoirs:

(1) Permeability in the direction of dip: Good permeability,
particularly in the vertical direction and in the direc-
tion of migration of the oil, is a prerequisite for efficient
gravity drainage. For example, a reservoir with little
structural relief which also contained many more or less
continuous shale “breaks” could probably not be oper-
ated under gravity drainage because the oil could not
flow to the base of the structure.
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Figure 4.12 Gravity drainage reservoir (After Cole, F.,
Reservoir Engineering Manual, Gulf Publishing Company,
1969).

(2) Dip of the reservoir: In most reservoirs, the permeabil-
ity in the direction of dip is considerably larger than the
permeability transverse to the direction of dip. There-
fore, as the dip of the reservoir increases, the oil and
gas can flow along the direction of dip (which is also the
direction of greatest permeability) and still achieve their
desired structural position.

(3) Reservoir producing rates: Since the gravity drainage
rate is limited, the reservoir producing rates should
be limited to the gravity drainage rate, and then maxi-
mum recovery will result. If the reservoir producing rate
exceeds the gravity drainage rate the depletion drive pro-
ducing mechanism will become more significant with a
consequent reduction in ultimate oil recovery.

(4) Oil viscosity: Oil viscosity is important because the grav-
ity drainage rate is dependent upon the viscosity of the
oil. In the fluid flow equations, as the viscosity decreases
the flow rate increases. Therefore, the gravity drainage
rate will increase as the reservoir oil viscosity decreases.

(5) Relative permeability characteristics: For an efficient
gravity drive mechanism to be operative, the gas must
flow upstructure while the oil flows downstructure.
Although this situation involves counterflow of the oil
and gas, both fluids are flowing and therefore relative
permeability characteristics of the formation are very
important.

4.1.6 Combination drive mechanism
The driving mechanism most commonly encountered is one
in which both water and free gas are available in some degree
to displace the oil toward the producing wells. The most com-
mon type of drive encountered, therefore, is a combination
drive mechanism as illustrated in Figure 4.13.

Two combinations of driving forces are usually present in
combination drive reservoirs:

(1) depletion drive and a weak water drive, or
(2) depletion drive with a small gas cap and a weak water

drive.

In addition, gravity segregation can also play an important
role in any of these two drives. In general, combination
drive reservoirs can be recognized by the occurrence of a
combination of some of the following factors.

Reservoir pressure
These types of reservoirs usually experience a relatively
rapid pressure decline. Water encroachment and/or exter-
nal gas cap expansion are insufficient to maintain reservoir
pressures.

Oil Zone

Water

Water Basin

Oil Zone

Gas Cap

Gas Cap

A. Cross Section

B. Map View

Figure 4.13 Combination-drive reservoir (After Clark,
N.J., Elements of Petroleum Reservoirs, SPE, 1969).

Water production
The producing wells that are structurally located near the ini-
tial oil–water contact will slowly exhibit increasing water pro-
ducing rates due to the increase in the water encroachment
from the associated aquifer.

Gas–oil ratio
If a small gas cap is present the structurally high wells will
exhibit continually increasing gas–oil ratios, provided the
gas cap is expanding. It is possible that the gas cap will
shrink due to production of excess free gas, in which case
the structurally high wells will exhibit a decreasing gas–oil
ratio. This condition should be avoided whenever possible,
as large volumes of oil can be lost as a result of a shrinking
gas cap.

Ultimate oil recovery
As a substantial percentage of the total oil recovery may be
due to the depletion drive mechanism, the gas–oil ratio of
structurally low wells will also continue to increase, due to
evolution of solution gas from the crude oil throughout the
reservoir as pressure is reduced. Ultimate recovery from
combination drive reservoirs is usually greater than recov-
ery from depletion drive reservoirs but less than recovery
from water drive or gas cap drive reservoirs. Actual recov-
ery will depend upon the degree to which it is possible to
reduce the magnitude of recovery by depletion drive. In most
combination drive reservoirs it will be economically feasible
to institute some type of pressure maintenance operation,
either gas injection or water injection, or both gas and water
injection, depending upon the availability of the fluids.

4.2 The Material Balance Equation

The material balance equation (MBE) has long been rec-
ognized as one of the basic tools of reservoir engineers
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for interpreting and predicting reservoir performance. The
MBE, when properly applied, can be used to:

● estimate initial hydrocarbon volumes in place;
● predict reservoir pressure;
● calculate water influx;
● predict future reservoir performance;
● predict ultimate hydrocarbon recovery under various

types of primary drive mechanisms.

Although in some cases it is possible to solve the MBE
simultaneously for the initial hydrocarbon volumes, i.e., oil
and gas volumes, and the water influx, generally one or the
other must be known from other data or methods that do
not depend on the material balance calculations. The accu-
racy of the calculated values depends on the reliability of
the available data and if the reservoir characteristics meet
the assumptions that are associated with the development
of the MBE. The equation is structured to simply keep inven-
tory of all materials entering, leaving, and accumulating in
the reservoir.

The concept the MBE was presented by Schilthuis in
1936 and is simply based on the principle of the volumetric
balance. It states that the cumulative withdrawal of reservoir
fluids is equal to the combined effects of fluid expansion,
pore volume compaction, and water influx. In its simplest
form, the equation can be written on a volumetric basis as:

Initial volume = volume remaining + volume removed

Since oil, gas, and water are present in petroleum reservoirs,
the MBE can be expressed for the total fluids or for any one
of the fluids present. Three different forms of the MBE are
presented below in details. These are:

(1) generalized MBE;
(2) MBE as an equation of a straight line;
(3) Tracy’s form of the MBE.

4.3 Generalized MBE

The MBE is designed to treat the reservoir as a single tank or
region that is characterized by homogeneous rock proper-
ties and described by an average pressure, i.e., no pressure
variation throughout the reservoir, at any particular time
or stage of production. Therefore, the MBE is commonly
referred to as a tank model or zero-dimensional (0-D) model.
These assumptions are of course unrealistic since reservoirs
are generally considered heterogeneous with considerable
variation in pressures throughout the reservoir. However,
it is shown that the tank-type model accurately predict the
behavior of the reservoir in most cases if accurate average
pressures and production data are available.

4.3.1 Basic assumptions in the MBE
The MBE keeps an inventory on all material entering, leav-
ing, or accumulating within a region over discrete periods of
time during the production history. The calculation is most
vulnerable to many of its underlying assumptions early in the
depletion sequence when fluid movements are limited and
pressure changes are small. Uneven depletion and partial
reservoir development compound the accuracy problem.

The basic assumptions in the MBE are as follows:

Constant temperature
Pressure–volume changes in the reservoir are assumed to
occur without any temperature changes. If any tempera-
ture changes occur, they are usually sufficiently small to be
ignored without significant error.

Reservoir characteristics
The reservoir has uniform porosity, permeability, and
thickness characteristics. In addition, the shifting in the
gas–oil contact or oil–water contact is uniform throughout
the reservoir.

Fluid recovery
The fluid recovery is considered independent of the rate,
number of wells, or location of the wells. The time element is
not explicitly expressed in the material balance when applied
to predict future reservoir performance.

Pressure equilibrium
All parts of the reservoir have the same pressure and
fluid properties are therefore constant throughout. Minor
variations in the vicinity of the wellbores may usually be
ignored. Substantial pressure variation across the reservoir
may cause excessive calculation error.

It is assumed that the PVT samples or data sets represent
the actual fluid compositions and that reliable and represen-
tative laboratory procedures have been used. Notably, the
vast majority of material balances assume that differential
depletion data represents reservoir flow and that separator
flash data may be used to correct for the wellbore transition
to surface conditions. Such “black-oil” PVT treatments relate
volume changes to temperature and pressure only. They lose
validity in cases of volatile oil or gas condensate reservoirs
where compositions are also important. Special laboratory
procedures may be used to improve PVT data for volatile
fluid situations.

Constant reservoir volume
Reservoir volume is assumed to be constant except for those
conditions of rock and water expansion or water influx that
are specifically considered in the equation. The formation is
considered to be sufficiently competent that no significant
volume change will occur through movement or reworking
of the formation due to overburden pressure as the internal
reservoir pressure is reduced. The constant-volume assump-
tion also relates to an area of interest to which the equation
is applied.

Reliable production data
All production data should be recorded with respect to the
same time period. If possible, gas cap and solution gas
production records should be maintained separately.

Gas and oil gravity measurements should be recorded
in conjunction with the fluid volume data. Some reservoirs
require a more detailed analysis and the material balance to
be solved for volumetric segments. The produced fluid grav-
ities will aid in the selection of the volumetric segments and
also in the averaging of fluid properties. There are essen-
tially three types of production data that must be recorded
in order to use the MBE in performing reliable reservoir
calculations. These are:

(1) Oil production data, even for properties not of inter-
est, can usually be obtained from various sources and
is usually fairly reliable.

(2) Gas production data is becoming more available and reli-
able as the market value of this commodity increases;
unfortunately, this data will often be more questionable
where gas is flared.

(3) The water production term need represent only the
net withdrawals of water; therefore, where subsurface
disposal of produced brine is to the same source for-
mation, most of the error due to poor data will be
eliminated.
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Developing the MBE
Before deriving the material balance, it is convenient to
denote certain terms by symbols for brevity. The symbols
used conform where possible to the standard nomenclature
adopted by the Society of Petroleum Engineers.

pi Initial reservoir pressure, psi
p Volumetric average reservoir pressure
�p Change in reservoir pressure = pi – p, psi
pb Bubble point pressure, psi
N Initial (original) oil-in-place, STB
Np Cumulative oil produced, STB
Gp Cumulative gas produced, scf
Wp Cumulative water produced
Rp Cumulative gas–oil ratio, scf/STB
GOR Instantaneous gas–oil ratio, scf/STB
Rsi Initial gas solubility, scf/STB
Rs Gas solubility, scf/STB
Boi Initial oil formation volume factor, bbl/STB
Bo Oil formation volume factor, bbl/STB
Bgi Initial gas formation volume factor, bbl/scf
Bg Gas formation volume factor, bbl/scf
Wing Cumulative water injected, STB
Ginj Cumulative gas injected, scf
We Cumulative water influx, bbl
m Ratio of initial gas cap gas reservoir volume to initial

reservoir oil volume, bbl/bbl
G Initial gas cap gas, scf
PV Pore volume, bbl
cw Water compressibility, psi−1

cf Formation (rock) compressibility, psi−1

Several of the material balance calculations require the total
pore volume (PV) as expressed in terms of the initial oil
volume N and the volume of the gas cap. The expression for
the total PV can be derived by conveniently introducing the
parameter m into the relationship as follows.

Define the ratio m as:

m = initial volume of gas cap in bbl
volume of oil initially in place in bbl

= GBgi

NBoi

pi

Gas

Oil Zone

p

New Gas Cap
Volume

Evolved Gas
Gas Injection

Water Injection
Rock Expansion

Net Water

Remaining Oil
Np, Wp, and Gp

Figure 4.14 Tank-model concept.

Solving for the volume of the gas cap gives:
Initial volume of the gas cap, GBgi = mNBoi, bbl

The total initial volume of the hydrocarbon system is then
given by:
Initial oil volume + initial gas cap volume = (PV)(1 − Swi)

NBoi + mNBoi = (PV)(1 − Swi)
Solving for PV gives:

PV = NBoi(1 + m)
1 − Swi

[4.3.1]

where:

Swi = initial water saturation
N = initial oil-in-place, STB

PV = total pore volume, bbl
m = ratio of initial gas cap gas reservoir volume to

initial reservoir oil volume, bbl/bbl

Treating the reservoir PV as an idealized container as illus-
trated in Figure 4.14, volumetric balance expressions can be
derived to account for all volumetric changes which occur
during the natural productive life of the reservoir. The MBE
can be written in a generalized form as follows:
PV occupied by the oil initially in place at pi

+ PV occupied by the gas in the gas cap at pi

= PV occupied by the remaining oil at p

+ PV occupied by the gas in the gas cap at p

+ PV occupied by the evolved solution gas at p

+ PV occupied by the net water influx at p

+ change in PV due to connate water expansion and

+ pore volume reduction due to rock expansion

+ PV occupied by the injected gas at p

+ PV occupied by the injected water at p [4.3.2]
The above nine terms composing the MBE can be deter-
mined separately from the hydrocarbon PVT and rock
properties, as follows.
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Hydrocarbon PV occupied by the oil initially in place

Volume occupied by initial oil in place = NBoi, bbl [4.3.3]

where:

N = oil initially in place, STB
Boi = oil formation volume factor at initial reservoir

pressure pi , bbl/STB

Hydrocarbon PV occupied by the gas in the gas cap

Volume of gas cap = mNBoi, bbl [4.3.4]

where m is a dimensionless parameter and defined as the
ratio of gas cap volume to the oil zone volume.

Hydrocarbon PV occupied by the remaining oil

Volume of the remaining oil = (N − Np)Bo, bbl [4.3.5]

where:

Np = cumulative oil production, STB
Bo = oil formation volume factor at reservoir

pressure p, bbl/STB

Hydrocarbon PV occupied by the gas cap
at reservoir pressure p
As the reservoir pressure drops to a new level p, the gas
in the gas cap expands and occupies a larger volume.
Assuming no gas is produced from the gas cap during the
pressure declines, the new volume of the gas cap can be
determined as:

Volume of the gas cap at p =
[

mNBoi

Bgi

]
Bg, bbl [4.3.6]

where:

Bgi = gas formation volume factor at initial reservoir
pressure, bbl/scf

Bg = current gas formation volume factor, bbl/scf

Hydrocarbon PV occupied by the evolved solution gas
Some of the solution gas that has been evolved from the oil
will remain in the pore space and occupies a certain volume
that can be determined by applying the following material
balance on the solution gas:[

volume of the evolved gas
that remains in the PV

]
=
[

volume of gas initially
in solution

]

−
[

volume of gas
produced

]

−
[

volume of gas
remaining in solution

]

or:
volume of the evolved

gas that remains
in the PV


=[NRsi −NpRp −(N −Np

)
Rs
]
Bg

[4.3.7]

where:

Np = cumulative oil produced, STB
Rp = net cumulative produced gas–oil ratio, scf/STB
Rs = current gas solubility factor, scf/STB
Bg = current gas formation volume factor, bbl/scf
Rsi = gas solubility at initial reservoir pressure, scf/STB

PV occupied by the net water influx

Net water influx = We − WpBw [4.3.8]

where:

We = cumulative water influx, bbl
Wp = cumulative water produced, STB
Bw = water formation volume factor, bbl/STB

Change in PV due to initial water and rock expansion
The component describing the reduction in the hydrocarbon
PV due to the expansion of initial (connate) water and the
reservoir rock cannot be neglected for an undersaturated oil
reservoir. The water compressibility cw and rock compress-
ibility cf are generally of the same order of magnitude as the
compressibility of the oil. However, the effect of these two
components can generally be neglected for gas cap drive
reservoirs or when the reservoir pressure drops below the
bubble point pressure.

The compressibility coefficient c which describes the
changes in the volume (expansion) of the fluid or material
with changing pressure is given by:

c = −1
V

∂V
∂p

or:

�V = Vc�p

where �V represents the net changes or expansion of the
material as a result of changes in the pressure. Therefore,
the reduction in the PV due to the expansion of the connate
water in the oil zone and the gas cap is given by:

Connate water expansion = [(PV)Swi
]

cw�p

Substituting for PV with Equation 4.3.1, gives:

Expansion of connate water =
[

NBoi(1 + m)
1 − Swi

Swi

]
cw�p

[4.3.9]

where:

�p = change in reservoir pressure, pi − p
cw = water compressibility coefficient, psi−1

m = ratio of the volume of the gas cap gas to the
reservoir oil volume, bbl/bbl

Similarly, as fluids are produced and pressure declines,
the entire reservoir PV is reduced (compaction) and this
negative change in PV expels an equal volume of fluid as
production. The reduction in the PV due to the expansion of
the reservoir rock is given by:

Change in PV = NBoi(1 + m)
1 − Swi

cf�p [4.3.10]

Combining the expansions of the connate water and forma-
tion as represented by Equations 4.3.9 and 4.3.10 gives:

Total changes in the PV = NBoi(1 + m)
(

Swicw + cf

1 − Swi

)
�p

[4.3.11]

The connate water and formation compressibilities are gen-
erally small in comparison to the compressibility of oil and
gas. However, values of cw and cf are significant for under-
saturated oil reservoirs and they account for an appreciable
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fraction of the production above the bubble point. Ranges of
compressibilities are given below:

Undersaturated oil 5–50 ×10−6 psi−1

Water 2–4 ×10−6 psi−1

Formation 3–10 ×10−6 psi−1

Gas at 1000 psi 500–1000 ×10−6 psi−1

Gas at 5000 psi 50–200 ×10−6 psi−1

PV occupied by the injection gas and water
Assuming that Ginj volumes of gas and Wing volumes of water
have been injected for pressure maintenance, the total PV
occupied by the two injected fluids is given by:

Total volume = GinjBginj + WinjBw [4.3.12]

where:

Ginj = cumulative gas injected, scf
Bginj = injected gas formation volume factor, bbl/scf
Wing = cumulative water injected, STB

Bw = water formation volume factor, bbl/STB

Combining Equations 4.3.3 through 4.3.12 with Equation
4.3.2 and rearranging gives:

N =
(

NpBo +(Gp −NpRs)Bg −(We −WpBw)−GinjBginj

−WinjBw

)/(
(Bo −Boi)+(Rsi −Rs)Bg +mBoi

[
(Bg/Bgi)

−1
]+Boi(1+m)

[
(Swicw +cf )/(1−Swi)

]
�p
)

[4.3.13]

where:

N = initial oil-in-place, STB
Gp = cumulative gas produced, scf
Np = cumulative oil produced, STB
Rsi = gas solubility at initial pressure, scf/STB
m = ratio of gas cap gas volume to oil volume, bbl/bbl

Bgi = gas formation volume factor at pi , bbl/scf
Bginj = gas formation volume factor of the injected gas,

bbl/scf

Recognizing that the cumulative gas produced Gp can be
expressed in terms of the cumulative gas–oil ratio Rp and
cumulative oil produced, then:

Gp = RpNp [4.3.14]

Combining Equation 4.3.14 with 4.3.13 gives:

N =
(

Np
[
Bo + (Rp − Rs)Bg

]− (We − WpBw)

− GinjBginj − WinjBwi

)/(
(Bo − Boi) + (Rsi − Rs)Bg

+ mBoi
[(

Bg
/

Bgi
)− 1

]+ Boi(1 + m)

× [(Swicw + cf )
/

(1 − Swi)
]
�p
)

[4.3.15]

This relationship is referred to as the generalized MBE. A
more convenient form of the MBE can be arrived at, by
introducing the concept of the total (two-phase) formation
volume factor Bt into the equation. This oil PVT property is
defined as:

Bt = Bo + (Rsi − Rs)Bg [4.3.16]

Introducing Bt into Equation 4.3.15 and assuming, for the
sake of simplicity, that there is no water or gas injection,
gives:

N =
(

Np
[
Bt + (Rp − Rsi)Bg

]− (We − WpBw)
)/

(
(Bt − Bti) + mBti

[
Bg/Bgi

/− 1
]

+ Bti(1 + m)
[
(Swicw + cf )

/
(1 − Swi)

]
�p
)

[4.3.17]

(note that Bti = Boi) where:

Swi = initial water saturation
Rp = cumulative produced gas–oil ratio, scf/STB
�p = change in the volumetric average reservoir

pressure, psi
Bg = gas formation volume factor, bbl/scf

Example 4.1 The Anadarko Field is a combination drive
reservoir. The current reservoir pressure is estimated at
2500 psi. The reservoir production data and PVT information
are given below:

Initial reservoir Current reservoir
condition condition

p, psi 3000 2500
Bo, bbl/STB 1.35 1.33
Rs, scf/STB 600 500
Np, MMSTB 0 5
Gp, MMMscf 0 5.5
Bw, bbl/STB 1.00 1.00
We, MMbbl 0 3
Wp, MMbbl 0 0.2
Bg, bbl/scf 0.0011 0.0015
cf , cw 0 0

The following additional information is available:

Volume of bulk oil zone = 100 000 acres-ft

Volume of bulk gas zone = 20 000 acres-ft

Calculate the initial oil-in-place.

Solution

Step 1. Assuming the same porosity and connate water for
the oil and gas zones, calculate m:

m = 7758φ(1 − Swi)(Ah)gas cap

7758φ(1 − Swi)(Ah)oil zone

= 7758φ(1 − Swi)20 000
7758φ(1 − Swi)100 000

= 20 000
100 000

= 0. 2

Step 2. Calculate the cumulative gas–oil ratio Rp:

Rp = Gp

Np

= 5. 5 × 109

5 × 106 = 1100 scf/STB
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Step 3. Solve for the initial oil-in-place by applying Equation
4.3.15:

N =
(

Np
[
Bo + (Rp − Rs)Bg

]− (We − WpBw)
)/

(
(Bo − Boi) + (Rsi − Rs)Bg + mBoi

[(
Bg/Bgi

)− 1
]

+ Boi(1 + m)
[
(Swicw + cf )(1 − Swi)

]
�p
)

=
(

5 × 106[1. 33 + (1100 − 500)0. 0015
]

− (3 × 106 − 0. 2 × 106)
)/(

(1. 35 − 1. 33)

+ (600 − 500)0. 0015 + (0. 2)(1. 35)

× [(0. 0015/0. 0011) − 1
]) = 31. 14 MMSTB

4.3.2 Increasing primary recovery
It should be obvious that many steps can be taken to increase
the ultimate primary recovery from a reservoir. Some of
these steps can be surmised from the previous discussions,
and others have been specifically noted when various sub-
jects have been discussed. At this point we get involved with
the problem of semantics when we attempt to define primary
recovery. Strictly speaking, we can define secondary recov-
ery as any production obtained using artificial energy in the
reservoir. This automatically places pressure maintenance
through gas or water injection in the secondary recovery
category. Traditionally, most engineers in the oil patch pre-
fer to think of pressure maintenance as an aid to primary
recovery. It appears that we can logically classify the mea-
sures available for improving oil recovery during primary
production as:

● well control procedures, and
● reservoir control procedures, e.g., pressure maintenance.

Well control
It should be stated that any steps taken to increase the oil
or gas producing rate from an oil or gas reservoir gener-
ally increase the ultimate recovery from that reservoir by
placing the economic limit further along the cumulative pro-
duction scale. It is recognized that there is a particular rate
of production at which the producing costs equal the oper-
ating expenses. Producing from an oil or gas well below this
particular rate results in a net loss. If the productive capacity
of a well can be increased it is clear that additional oil will
be produced before the economic rate is reached. Conse-
quently, acidizing, paraffin control, sand control, clean-out,
and other means actually increase ultimate production from
that well.

It is clear that production of gas and water decreases the
natural reservoir energy. If the production of gas and water
from an oil reservoir can be minimized, a larger ultimate pro-
duction may be obtained. The same concept can be similarly
applied for minimizing the production of water from a gas
reservoir.

Proper control of the individual well rate is a big factor
in the control of gas and water coning or fingering. This
general problem is not restricted to water drive and gas cap
drive reservoirs. In a solution gas drive reservoir it may be
possible to produce a well at too high a rate from an ulti-
mate recovery standpoint because excessive drawdown of
the producing well pressure results in an excessive gas–oil

ratio and corresponding waste of the solution gas. The engi-
neer should be aware of this possibility and test wells in
a solution gas drive reservoir to see if the gas–oil ratio is
sensitive.

It should be observed that excessive drawdown in a solu-
tion gas drive reservoir through excessive producing rates
often causes excessive deposition of paraffin in the tubing
and occasionally in the reservoir itself. Keeping gas in solu-
tion in the oil by keeping the well pressure as high as possible
minimizes the paraffin deposition. Of course, deposition of
paraffin in the tubing is not serious when compared to the
deposition of paraffin in the reservoir. Given enough time
and money, the paraffin can be cleaned from the tubing
and flow lines. However, it is problematic whether paraffin
deposited in the pores of the formation around the wellbore
can be cleaned from these pores. Consequently, the opera-
tor should be very careful to avoid such deposition in the
formation.

Another adverse effect that may be caused by an excess
producing rate is the production of sand. Many unconsoli-
dated formations tend to flow sand through perforations and
into the producing system when flow rates are excessive. It
may be possible to improve this situation with screens, gravel
packing, or consolidating materials.

The proper positioning of wells in a reservoir also plays a
big part in the control of gas and water production. It is obvi-
ous that wells should be positioned as far as possible from the
original gas–oil, water–oil, and gas–water contacts in order
to minimize the production of unwanted gas and water. The
positioning of the producing wells must, or course, be consis-
tent with the needs for reservoir drainage, the total reservoir
producing capacity, and the cost of development.

In determining the proper well spacing to use in a par-
ticular reservoir, the engineer should make certain that full
recognition is given to the pressure distribution that will pre-
vail in the drainage area of a well when the economic limit
is reached. In a continuous reservoir there is no limit on the
amount of reservoir that can be affected by one well. How-
ever, the engineer should be concerned with the additional
oil that can be recovered prior to reaching the economic
limit rate by increasing the drainage volume, or radius, of
a well. In very tight reservoirs we may be able to accom-
plish only a small reduction in the reservoir pressure in the
additional reservoir volume. This effect may be nearly off-
set by the reduction of the well rate caused by the increase
in the drainage radius. Thus, care should be exercised to
ensure that the greatest well spacing possible is also the
most economical.

Total reservoir control
The effect of water and gas production on the recovery in
an oil reservoir can be shown by solving Equation 4.3.15 for
the produced oil:

Np = N [Bo−Boi +(Rsi −Rs)Bg +(cf +cwSwc)�pBoi /(1−Swc)]
Bo−RsBg

−
BgGp −mNBoi

(
Bg

Bgi
−1
)

−We +WpBw

Bo −RsBg

It should be noted that the oil production obtainable at a
particular reservoir pressure is almost directly reduced by
the reservoir volume of gas (GpBg) and water produced
(WpBw). Furthermore, the derivation of the MBE shows that
the cumulative gas production, Gp, is the net produced gas
defined as the produced gas less the injected gas. Similarly, if
the water encroachment, We, is defined as the natural water
encroachment, the produced water, Wp, must represent the
net water produced, defined as the water produced less the
water injected. Therefore, if produced water or produced
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gas can be injected without adversely affecting the amount
of water or gas produced, the amount of oil produced at a
particular reservoir pressure can be increased.

It is well known that the most efficient natural reservoir
drive is water encroachment. The next most efficient is gas
cap expansion, and the least efficient is solution gas drive.
Consequently, it is important for the reservoir engineer to
control production from a reservoir so that as little oil as
possible is produced by solution gas drive and as much oil
as possible is produced by water drive. However, when two or
more drives operate in a reservoir, it is not always clear how
much production results from each drive. One convenient
method of estimating the amount of production resulting
from each drive is to use material balance drive indices.

4.3.3 Reservoir driving indices
In a combination drive reservoir where all the driving mech-
anisms are simultaneously present, it is of a practical interest
to determine the relative magnitude of each of the driving
mechanisms and its contribution to the production. This
objective can be achieved by rearranging Equation 4.3.15
in the following generalized form:

N (Bt − Bti)
A

+ NmBti(Bg − Bgi)/Bgi

A
+ We − WpBw

A

+
NBoi(1 + m)

[
cwSwi + cf

1 − Swi

]
(pi − p)

A

+ WinjBwinj

A
+ GinjBginj

A
= 1 [4.3.18]

with the parameter A as defined by:

A = Np
[
Bt + (Rp − Rsi)Bg

]
[4.3.19]

Equation 4.3.18 can be abbreviated and expressed as:

DDI + SDI + WDI + EDI + WII + GII = 1. 0 [4.3.20]

where:

DDI = depletion drive index
SDI = segregation (gas cap) drive index

WDI = water drive index
EDI = expansion (rock and liquid) depletion index
WII = injected water index
GII = injected gas index

The numerators of the six terms in Equation 4.3.18 represent
the total net change in the volume due to gas cap and fluid
expansions, net water influx, and fluid injection, while the
denominator represents the cumulate reservoir voidage of
produced oil and gas. Since the total volume increase must
be equal to the total voidage, the sum of the four indices must
therefore be necessarily equal to 1. Furthermore, the value
of each index must be less than or equal to unity, but cannot
be negative. The four terms on the left-hand side of Equation
4.3.20 represent the four major primary driving mechanisms
by which oil may be recovered from oil reservoirs. As pre-
sented earlier in this chapter, these driving forces are as
follows.

Depletion drive Depletion drive is the oil recovery mech-
anism wherein the production of the oil from its reservoir
rock is achieved by the expansion of the original oil volume
with all its original dissolved gas. This driving mechanism
is represented mathematically by the first term of Equation
4.3.18 or:

DDI = N
(
Bt − Bti

)
/A [4.3.21]

where DDI is termed the depletion drive index.

Segregation drive Segregation drive (gas cap drive) is the
mechanism wherein the displacement of oil from the forma-
tion is accomplished by the expansion of the original free
gas cap. This driving force is described by the second term
of Equation 4.3.18, or:
SDI = [NmBti

(
Bg − Bgi

)
/Bgi

]
/A [4.3.22]

where SDI is termed the segregation drive index. It should
be pointed out that it is usually impossible to eliminate the
production of the gas cap gas and, thus, cause gas cap shrink-
age. This distinct possibility of the shrinkage of the gas cap,
and, therefore, reducing SDI, could be a result of the random
location of producing wells. It will be necessary to eliminate
gas cap shrinkage by either shutting in wells that produce
gas from the gas cap or returning fluid to the gas cap to
replace the gas which has been produced. It is common
practice to return some of the produced gas to the reser-
voir in order to maintain the size of the gas cap. In some
cases, it has been more economical to return water instead
of gas to the gas cap. This may be feasible when there are
no facilities readily available for compressing the gas. Cole
(1969) pointed out that this particular technique has been
successfully applied in several cases, although the possibility
of gravity segregation has to be considered.
Water drive Water drive is the mechanism wherein the
displacement of the oil is accomplished by the net encroach-
ment of water into the oil zone. This mechanism is repre-
sented by the third term of Equation 4.3.18, or:
WDI = (We − WpBw)/A [4.3.23]
where WDI is referred to as the water drive index.
Expansion drive index For undersaturated oil reservoirs
with no water influx, the principal source of energy is a result
of the rock and fluid expansion as represented by the fourth
term in Equation 4.3.18 as:

EDI =
NBoi(1 + m)

[
cwSwi + cf

1 − Swi

]
(pi − p)

A
When all the other three driving mechanisms are contribut-
ing to the production of oil and gas from the reservoir, the
contribution of the rock and fluid expansion to the oil recov-
ery is usually too small and essentially negligible and can be
ignored.
Injected water drive index The relative efficiency of
the water injection pressure maintenance operations is
expressed by:

WII = WinjBwinj

A
The magnitude of WII indicates the importance of the
injected water as an improved recovery agent.
Injected gas drive index Similar to the injected water drive
index, the magnitude of its value indicates the relative impor-
tance this drive mechanism as compared to the other indices,
as given by:

GII = GinjBginj

A
Note that for a depletion drive reservoir under pressure
maintenance operations by gas injection, Equation 4.3.20 is
reduced to:

DDI + EDI + GII = 1. 0
Since the recovery by depletion drive and expansion of the
fluid and rock are usually poor, it is essential to maintain a
high injected gas drive index. If the reservoir pressure can
be maintained constant or declining at a slow rate, the val-
ues of DDI and EDI will be minimized because the changes
in the numerators of both terms will essentially approach
zeros. Theoretically, the highest recovery would occur at
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constant reservoir pressure; however, economic factors and
feasibility of operation may dictate some pressure reduction.

In the absence of gas or water injection, Cole (1969)
pointed out that since the sum of the remaining four driv-
ing indexes is equal to 1, it follows that if the magnitude
of one of the index terms is reduced, then one or both of
the remaining terms must be correspondingly increased. An
effective water drive will usually result in maximum recov-
ery from the reservoir. Therefore, if possible, the reservoir
should be operated to yield a maximum water drive index
and minimum values for the depletion drive index and the
gas cap drive index. Maximum advantage should be taken of
the most efficient drive available, and where the water drive
is too weak to provide an effective displacing force, it may
be possible to utilize the displacing energy of the gas cap. In
any event, the depletion drive index should be maintained
as low as possible at all times, as this is normally the most
inefficient driving force available.

Equation 4.3.20 can be solved at any time to determine
the magnitude of the various driving indexes. The forces
displacing the oil and gas from the reservoir are subject to
change from time to time and for this reason Equation 4.3.20
should be solved periodically to determine whether there
has been any change in the driving indexes. Changes in fluid
withdrawal rates are primarily responsible for changes in the
driving indexes. For example, reducing the oil producing
rate could result in an increased water drive index and a
correspondingly reduced depletion drive index in a reservoir
containing a weak water drive. Also, by shutting in wells
producing large quantities of water, the water drive index
could be increased, as the net water influx (gross water influx
minus water production) is the important factor.

When the reservoir has a very weak water drive, but has
a fairly large gas cap, the most efficient reservoir produc-
ing mechanism may be the gas cap, in which case a large
gas cap drive index is desirable. Theoretically, recovery by
gas cap drive is independent of producing rate, as the gas
is readily expansible. Low vertical permeability could limit
the rate of expansion of the gas cap, in which case the gas
cap drive index would be rate sensitive. Also, gas coning
into producing wells will reduce the effectiveness of the gas
cap expansion due to the production of free gas. Gas con-
ing is usually a rate-sensitive phenomenon: the higher the
producing rates, the greater the amount of coning.

An important factor in determining the effectiveness of a
gas cap drive is the degree of conservation of the gas cap gas.
As a practical mater, it will often be impossible, because of
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Figure 4.15 Driving indexes in a combination drive reservoir (After Clark N.J., Elements of Petroleum Reservoirs, SPE,
1969).

royalty owners or lease agreements, to completely eliminate
gas cap gas production. Where free gas is being produced,
the gas cap drive index can often be markedly increased
by shutting in high gas–oil-ratio wells, and, if possible,
transferring their allowables to other low gas–oil-ratio wells.

Figure 4.15 shows a set of plots that represents various
driving indexes for a combination drive reservoir. At point
A some of the structurally low wells are reworked to reduce
water production. This results in an effective increase in the
water drive index. At point B workover operations are com-
plete, water, gas, and oil producing rates are relatively stable,
and the driving indexes show no change. At point C some
of the wells which have been producing relatively large, but
constant, volumes of water are shut in, which results in an
increase in the water drive index. At the same time some of
the upstructure, high gas–oil-ratio wells have been shut in
and their allowables transferred to wells lower on the struc-
ture producing with normal gas–oil ratios. At point D gas is
being returned to the reservoir, and the gas cap drive index
is exhibiting a decided increase. The water drive index is
relatively constant, although it is decreasing somewhat, and
the depletion drive index is showing a marked decline. This
is indicative of a more efficient reservoir operation, and if the
depletion drive index can be reduced to zero, relatively good
recovery can be expected from the reservoir. Of course,
to achieve a zero depletion drive index would require the
complete maintenance of reservoir pressure, which is often
difficult to accomplish. It can be noted from Figure 4.15 that
the sum of the various drive indexes is always equal to 1.

Example 4.2 A combination drive reservoir contains
10 MMSTB of oil initially in place. The ratio of the original
gas cap volume to the original oil volume, i.e., m, is estimated
as 0.25. The initial reservoir pressure is 3000 psia at 150◦F.
The reservoir produced 1 MMSTB of oil, 1100 MMscf of gas
of 0.8 specific gravity, and 50 000 STB of water by the time
the reservoir pressure dropped to 2800 psi. The following
PVT data is available:

3000 psi 2800 psi

Bo, bbl/STB 1.58 1.48
Rs, scf/STB 1040 850
Bg, bbl/scf 0.00080 0.00092
Bt , bbl/STB 1.58 1.655
Bw, bbl/STB 1.000 1.000
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The following data is also available:
Swi = 0. 20, cw = 1. 5 × 10−6 psi−1, cf = 1 × 10−6 psi−1

Calculate:

(a) the cumulative water influx;
(b) the net water influx;
(c) the primary driving indices at 2800 psi.

Solution Because the reservoir contains a gas cap, the
rock and fluid expansion can be neglected, i.e., set cf and
cw = 0. However, for illustration purposes, the rock and fluid
expansion term will be included in the calculations.
(a) The cumulative water influx:
Step 1. Calculate the cumulative gas–oil ratio Rp:

Rp = Gp

Np
= 1100 × 106

1 × 106 = 1100 scf/STB

Step 2. Arrange Equation 4.3.17 to solve for We:

We =Np
[
Bt +

(
Rp −Rsi

)
Bg
]

−N
[

(Bt −Bti)+mBti

(
Bg

Bgi
−1
)

+Bti(1+m)
(

Swicw +cf

1−Swi

)
�p
]
+WpBwp

=106 [1.655+(1100−1040)0.00092
]−107

×
[
(1.655−1.58)+0.25(1.58)

(
0.00092
0.00080

−1
)

+1.58(1+0.25)
(

0.2(1.5×10−6)
1−0.2

)

×(3000−2800)
]
+50000=411281 bbl

Neglecting the rock and fluid expansion term, the
cumulative water influx is 417 700 bbl.

(b) The net water influx:
Net water influx = We − WpBw = 411 281 − 50 000

= 361 281 bbl
(c) The primary recovery indices:
Step 1. Calculate the parameter A by using Equation 4.3.19:

A = Np
[
Bt + (Rp − Rsi

)
Bg
]

= (1. 0 × 106)[1. 655 + (1100 − 1040)0. 00092]
= 1 710 000

Step 2. Calculate DDI, SDI, and WDI by applying Equations
4.3.21 through 4.3.23, respectively:

DDI = N (Bt − Bti)/A

= 10 × 106(1. 655 − 1. 58)
1 710 000

= 0. 4385

SDI=[NmBti
(
Bg −Bgi

)
/Bgi

]
/A

= 10×106(0.25)(1.58)(0.00092−0.0008)/0.0008
1710000

= 0.3465

WDI = (We − WpBw)/A

= 411 281 − 50 000
1 710 000

= 0. 2112

Since:

DDI + SDI + WDI + EDI = 1. 0

then:

EDI = 1 − 0. 4385 − 0. 3465 − 0. 2112 = 0. 0038

The above calculations show that 43.85% of the recovery
was obtained by depletion drive, 34.65% by gas cap drive,
21.12% by water drive, and only 0.38% by connate water and
rock expansion. The results suggest that the expansion drive
index term can be neglected in the presence of a gas cap or
when the reservoir pressure drops below the bubble point
pressure. However, in high-PV compressibility reservoirs
such as chalks and unconsolidated sands, the energy con-
tribution of the rock and water expansion cannot be ignored
even at high gas saturations.

A source of error is often introduced in the MBE calcula-
tions when determining the average reservoir pressure and
the associated problem of correctly weighting or averaging
the individual well pressures. An example of such a prob-
lem is when the producing formations are comprised of two
or more zones of different permeabilities. In this case, the
pressures are generally higher in the zone of low permeabil-
ity and because the measured pressures are nearer to those
in high-permeability zones, the measured static pressures
tend to be lower and the reservoir behaves as if it contained
less oil. Schilthuis explained this phenomenon by referring
to the oil in the more permeable zones as active oil and by
observing that the calculated active oil usually increases with
time because the oil and gas in low-permeability zones slowly
expand to offset the pressure decline. This is also true for
fields that are not fully developed, because the average pres-
sure can be that of the developed portion only, whereas the
pressure is higher in the undeveloped portions. Craft et al.
(1991) pointed out that the effect of pressure errors on the
calculated values of initial oil and water influx depends on
the size of the errors in relation to the reservoir pressure
decline. Notice that the pressure enters the MBE mainly
when determining the PVT differences in terms of:

(Bo – Boi)
(Bg – Bgi)
(Rsi – Rs)

Because water influx and gas cap expansion tend to offset
pressure decline, the pressure errors are more serious than
for the undersaturated reservoirs. In the case of very active
water drives or gas caps that are large compared to the oil
zone, the MBE usually produces considerable errors when
determining the initial oil-in-place because of the very small
pressure decline.

Dake (1994) pointed out that there are two “necessary”
conditions that must be satisfied for a meaningful application
of the MBE to a reservoir:

(1) There should be adequate data collection in terms of
production pressure, and PVT, in both frequency and
quality for proper use of the MBE.

(2) It must be possible to define an average reservoir pres-
sure trend as a function of time or production for the
field.

Establishing an average pressure decline trend can be pos-
sible even if there are large pressure differentials across
the field under normal conditions. Averaging individual
well pressure declines can possibly be used to determine a
uniform trend in the entire reservoir. The concept of aver-
age well pressure and its use in determining the reservoir
volumetric average pressure was introduced in Chapter 1 as
illustrated by Figure 1.24. This figure shows that if (p)j and
Vj represents the pressure and volume drained by the jth
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well, the volumetric average pressure of the entire reservoir
can be estimated from:

pr =
∑

j (pV )j∑
j Vj

in which:

Vj = the PV of the jth well drainage volume

(p)j = volumetric average pressure within the
jth drainage volume

In practice, the Vj are difficult to determine and, therefore, it
is common to use individual well flow rates qi in determining
the average reservoir pressure from individual well aver-
age drainage pressure. From the definition of the isothermal
compressibility coefficient:

c = 1
V

∂V
∂P

differentiating with time gives:

∂p
∂t

= 1
cV

∂V
∂t

or:
∂p
∂t

= 1
cV

(q)

This expression suggests that for a reasonably constant c at
the time of measurement:

V ∝ q
∂p/∂t

Since the flow rates are measured on a routine basis through-
out the lifetime of the field, the average reservoir pressure
can be alternatively expressed in terms of the individual
well average drainage pressure decline rates and fluid flow
rates by:

pr =
∑

j

[
(pq)j /(∂p/∂t)j

]
∑

j

[
qj /(∂p/∂t)j

]
However, since the MBE is usually applied at regular inter-
vals of 3–6 months, i.e., �t = 3–6 months, throughout
the lifetime of the field, the average field pressure can
be expressed in terms of the incremental net change in
underground fluid withdrawal, �(F), as:

pr =
∑

j pj�(F)j /�pj∑
j �(F)j /�pj

where the total underground fluid withdrawal at time t and
t + �t are given by:

Ft =
∫ t

0

[
QoBo +QwBw +(Qg −QoRs −QwRsw)Bg

]
dt

Ft+�t =
∫ t+�t

0

[
QoBo +QwBw +(Qg −QoRs −QwRsw)Bg

]
dt

with:

�(F) = Ft+�t − Ft

where:

Rs = gas solubility, scf/STB
Rsw = gas solubility in the water, scf/STB
Bg = gas formation volume factor, bbl/scf
Qo = oil flow rate, STB/day
Qw = water flow rate, STB/day
Qg = gas flow rate, scf/day

For a volumetric reservoir with total fluid production and ini-
tial reservoir pressure as the only available data, the average

pressure can be roughly approximated by using the following
expression:

pr = pi −
[

5. 371 × 10−6Ft

ct (Ahφ)

]

with the total fluid production Ft as defined above by:

Ft =
∫ t

0

[
QoBo + QwBw + (Qg − QoRs − QwRsw)Bg

]
dt

where:

A = well or reservoir drainage area, acres
h = thickness, ft
ct = total compressibility coefficient, psi−1

φ = porosity
pi = initial reservoir pressure, psi

The above expression can be employed in a incremental
manner, i.e., from time t to t + �t, by:

(pr)t+�t = (pr)t −
[

5. 371 × 10−6�F
ct (Ahφ)

]

with:

�(F) = Ft+�t − Ft

4.4 The Material Balance as an Equation of
a Straight Line

An insight into the general MBE, i.e., Equation 4.3.15, may
be gained by considering the physical significance of the
following groups of terms from which it is comprised;

● Np[Bo + (Rp − Rs)Bg] represents the reservoir volume of
cumulative oil and gas produced;

● [We −WpBw] refers to the net water influx that is retained
in the reservoir;

● [GinjBginj + WinjBw], the pressure maintenance term, rep-
resents cumulative fluid injection in the reservoir;

● [mBoi(Bg/Bgi − 1)] represents the net expansion of the
gas cap that occurs with the production of Np stock-tank
barrels of oil (as expressed in bbl/STB of original oil-in-
place).
There are essentially three unknowns in Equation
(4.3.15):

(1) the original oil-in-place N ,
(2) the cumulative water influx We, and
(3) the original size of the gas cap as compared to the oil

zone size m.

In developing a methodology for determining the
above three unknowns, Havlena and Odeh (1963, 1964)
expressed Equation 4.3.15 in the following form:

Np[Bo + (Rp − Rs)Bg] + WpBw = N [(Bo − Boi)

+ (Rsi − Rs)Bg] + mNBoi

(
Bg

Bgi
− 1
)

+ N (1 + m)Boi

×
(

cwSwi + cf

1 − Swi

)
�p + We + WinjBw + GinjBginj [4.4.1]

Havlena and Odeh further expressed Equation 4.4.1 in a
more condensed form as:

F = N
[
Eo + mEg + Ef , w

]+ (We + WinjBw + GinjBginj
)

Assuming, for the purpose of simplicity, that no pressure
maintenance by gas or water injection is being consid-
ered, the above relationship can be further simplified and
written as:

F = N
[
Eo + mEg + Ef , w

]+ We [4.4.2]
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in which the terms F , Eo, Eg, and Ef , w are defined by the
following relationships:

● F represents the underground withdrawal and is given
by:
F = Np

[
Bo + (Rp − Rs)Bg

]+ WpBw [4.4.3]
In terms of the two-phase formation volume factor Bt , the
underground withdrawal “F” can be written as:
F = Np

[
Bt + (Rp − Rsi)Bg

]+ WpBw [4.4.4]
● Eo describes the expansion of oil and its originally dis-

solved gas and is expressed in terms of the oil formation
volume factor as:
Eo = (Bo − Boi) + (Rsi − Rs)Bg [4.4.5]
Or, equivalently, in terms of Bt ;
Eo = Bt − Bti [4.4.6]

● Eg is the term describing the expansion of the gas cap gas
and is defined by the following expression:
Eg = Boi[(Bg/Bgi) − 1] [4.4.7]
In terms of the two-phase formation volume factor Bt ,
essentially Bti = Boi or:

Eg = Bti[(Bg/Bgi) − 1]
● Ef , w represents the expansion of the initial water and the

reduction in the PV and is given by:

Ef , w = (1 + m)Boi

[
cwSwi + cf

1 − Swi

]
�p [4.4.8]

Havlena and Odeh examined several cases of varying reser-
voir types with Equation 4.4.2 and pointed out that the
relationship can be rearranged in the form of a straight line.
For example, in the case of a reservoir which has no ini-
tial gas cap (i.e., m = 0) or water influx (i.e., We = 0), and
negligible formation and water compressibilities (i.e., cf and
cw = 0), Equation 4.4.2 reduces to:

F = NEo

This expression suggests that a plot of the parameter F as
a function of the oil expansion parameter Eo would yield a
straight line with slope N and intercept equal to 0.

The straight-line method requires the plotting of a variable
group versus another variable group, with the variable group
selection depending on the mechanism of production under
which the reservoir is producing. The most important aspect
of this method of solution is that it attaches significance to
the sequence of the plotted points, the direction in which
they plot, and to the shape of the resulting plot.

The significance of the straight-line approach is that the
sequence of plotting is important and if the plotted data
deviates from this straight line there is some reason for it.
This significant observation will provide the engineer with
valuable information that can be used in determining the
following unknowns:

● initial oil-in-place N;
● size of the gas cap m;
● water influx We;
● driving mechanism;
● average reservoir pressure.

The applications of the straight-line form of the MBE in solv-
ing reservoir engineering problems are presented next to
illustrate the usefulness of this particular form. Six cases of
applications are presented and include:

Case 1: Determination of N in volumetric undersaturated
reservoirs

Case 2: Determination of N in volumetric saturated reser-
voirs

Case 3: Determination of N and m in gas cap drive reservoirs
Case 4: Determination of N and We in water drive reservoirs
Case 5: Determination of N, m, and We in combination drive

reservoirs
Case 6: Determination of average reservoir pressure p

4.4.1 Case 1: Volumetric Undersaturated Oil Reservoirs
The linear form of the MBE as expressed by Equation 4.4.2
can be written as:
F = N

[
Eo + mEg + Ef , w

]+ We [4.4.9]
Assuming no water or gas injection, several terms in the
above relationship may disappear when imposing the condi-
tions associated with the assumed reservoir driving mech-
anism. For a volumetric and undersaturated reservoir, the
conditions associated with driving mechanism are:

We = 0 since the reservoir is volumetric
m = 0 since the reservoir is undersaturated

Rs = Rsi = Rp since all produced gas is dissolved
in the oil

Applying the above conditions on Equation 4.1.9 gives:
F = N (Eo + Ef , w) [4.4.10]
or:

N = F
Eo + Ef , w

[4.4.11]

with:
F = NpBo + WpBw [4.4.12]

Eo = Bo − Boi [4.4.13]

Ef , w = Boi

[
cwSw + cf

1 − Swi

]
�p [4.4.14]

�p = pi − pr

where:

N = initial oil-in-place, STB
pi = initial reservoir pressure
pr = volumetric average reservoir pressure

When a new field is discovered, one of the first tasks of the
reservoir engineer is to determine if the reservoir can be
classified as a volumetric reservoir, i.e., We = 0. The clas-
sical approach of addressing this problem is to assemble all
the necessary data (i.e., production, pressure, and PVT ) that
is required to evaluate the right-hand side of Equation 4.4.11.
The term F/(Eo + Ef , w) for each pressure and time obser-
vation is plotted versus cumulative production Np or time,
as shown in Figure 4.16. Dake (1994) suggested that such a
plot can assume two various shapes:

(1) If all the calculated points of F/(Eo + Ef , w) lie on a
horizontal straight line (see line A in Figure 4.16, it
implies that the reservoir can be classified as a volu-
metric reservoir. This defines a purely depletion drive
reservoir whose energy derives solely from the expan-
sion of the rock, connate water, and the oil. Furthermore,
the ordinate value of the plateau determines the initial
oil-in-place N.

(2) Alternately, if the calculated values of the term
F/(Eo + Ef , w) rise, as illustrated by the curves B and
C, it indicates that the reservoir has been energized by
water influx, abnormal pore compaction, or a combina-
tion of these two. Curve B in Figure 4.16 might be for a
strong water drive field in which the aquifer is displaying
an infinite-acting behavior, whereas curve C represents
an aquifer whose outer boundary had been felt and the
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Figure 4.16 Classification of the reservoir.

aquifer is depleting in unison with the reservoir itself.
The downward trend in points on curve C as time pro-
gresses denotes the diminishing degree of energizing by
the aquifer. Dake (1994) pointed out that in water drive
reservoirs, the shape of the curve, i.e., F/(Eo + Ef , w)
versus time, is highly rate dependent. For instance, if
the reservoir is producing at a higher rate than the water
influx rate, the calculated values of F/(Eo +Ef , w) will dip
downward, revealing a lack of energizing by the aquifer,
whereas if the rate is decreased the reverse happens and
the points are elevated.

Similarly Equation 4.4.10 could be used to verify the
characteristic of the reservoir driving mechanism and to
determine the initial oil-in-place. A plot of the underground
withdrawal F versus the expansion term (Eo + Ef , w) should
result in a straight line going through the origin with N being
the slope. It should be noted that the origin is a “must” point;
thus, one has a fixed point to guide the straight-line plot (as
shown in Figure 4.17).

This interpretation technique is useful in that, if the linear
relationship is expected for the reservoir and yet the actual
plot turns out to be non-linear, then this deviation can itself
be diagnostic in determining the actual drive mechanisms in
the reservoir.

A linear plot of the underground withdrawal F vs.
(Eo + Ef , w) indicates that the field is producing under vol-
umetric performance, i.e., no water influx, and strictly by
pressure depletion and fluid expansion. On the other hand,
a non-linear plot indicates that the reservoir should be
characterized as a water drive reservoir.

Example 4.3 The Virginia Hills Beaverhill Lake Field is
a volumetric undersaturated reservoir. Volumetric calcula-
tions indicate the reservoir contains 270.6 MMSTB of oil

Slope = N
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 "
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(Eo+ Ef,w)

Figure 4.17 Underground withdrawal versus Eo + Ef,w.

initially in place. The initial reservoir pressure is 3685 psi.
The following additional data is available:

Swi = 24%,
cw = 3. 62 × 10−6 psi−1,
cf = 4. 95 × 10−6 psi−1

Bw = 1. 0 bbl/STB,
pb = 1500 psi,

The field production and PVT data is summarized below:

Volumetric No. of Bo Np Wp
average producing (bbl/STB) (MSTB) (MSTB)
pressure wells

3685 1 1.3102 0 0
3680 2 1.3104 20.481 0
3676 2 1.3104 34.750 0
3667 3 1.3105 78.557 0
3664 4 1.3105 101.846 0
3640 19 1.3109 215.681 0
3605 25 1.3116 364.613 0
3567 36 1.3122 542.985 0.159
3515 48 1.3128 841.591 0.805
3448 59 1.3130 1273.53 2.579
3360 59 1.3150 1691.887 5.008
3275 61 1.3160 2127.077 6.500
3188 61 1.3170 2575.330 8.000

Calculate the initial oil-in-place by using the MBE and
compare with the volumetric estimate of N.

Solution

Step 1. Calculate the initial water and rock expansion term
Ef , w from Equation 4.4.14:

Ef ,w =Boi

[
cwSw +cf

1−Swi

]
�p

=1.3102

[
3.62×10−6

(
0.24

)+4.95×10−6

1−0.24

]
�p

=10.0×10−6(3685−pr)

Step 2. Construct the following table using Equations 4.4.12
and 4.4.13:

F = NpBo + WpBw

Eo = Bo − Boi

Ef , w = 10. 0 × 10−6(3685 − pr)

pr F Eo �p Ef , w Eo + Ef , w
(psi) (Mbbl) (bbl/STB)

3685 – – 0 0 –
3680 26.84 0.0002 5 50 × 10−6 0.00025
3676 45.54 0.0002 9 90 × 10−6 0.00029
3667 102.95 0.0003 18 180 × 10−6 0.00048
3664 133.47 0.0003 21 210 × 10−6 0.00051
3640 282.74 0.0007 45 450 × 10−6 0.00115
3605 478.23 0.0014 80 800 × 10−6 0.0022
3567 712.66 0.0020 118 1180 × 10−6 0.00318
3515 1105.65 0.0026 170 1700 × 10−6 0.0043
3448 1674.72 0.0028 237 2370 × 10−6 0.00517
3360 2229.84 0.0048 325 3250 × 10−6 0.00805
3275 2805.73 0.0058 410 4100 × 10−6 0.0099
3188 3399.71 0.0068 497 4970 × 10−6 0.0117
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Figure 4.18 F vs. Eo + Ef,w for Example 4.3.

Step 3. Plot the underground withdrawal term F against the
expansion term (Eo + Ef , w) on a Cartesian scale, as
shown in Figure 4.18.

Step 4. Draw the best straight through the points and deter-
mine the slope of the line and the volume of the active
initial oil-in-place as:

N = 257 MMSTB

It should be noted that the value of the initial oil-in-place as
determined from the MBE is referred to as the “effective” or
“active” initial oil-in-place. This value is usually smaller than
that of the volumetric estimate due to oil being trapped in
undrained fault compartments or low-permeability regions
of the reservoir.

4.4.2 Case 2: Volumetric saturated oil reservoirs
An oil reservoir that originally exists at its bubble point pres-
sure is referred to as a “saturated oil reservoir.” The main
driving mechanism in this type of reservoir results from the
liberation and expansion of the solution gas as the pressure
drops below the bubble point pressure. The only unknown in
a volumetric saturated oil reservoir is the initial oil-in-place N.
Normally, the water and rock expansion term Ef ,wis negligi-
ble in comparison to the expansion of solution gas; however,
it is recommended to include the term in the calculations.
Equation 4.4.9 can be simplified to give an identical form to
that of Equation 4.4.10. That is:
F = N (Eo + Ef , w) [4.4.15]

p Qo Qg Bo Rs Bg Np Rp
(psia) (STB/day) (MMscf/day) (bbl/STB) (scf/STB) (bbl/scf) (MMSTB) (scf/STB)

7150 – – 1.743 1450 – 0 1450
6600 44 230 64.110 1.760 1450 – 8.072 1450
5800 79 326 115.616 1.796 1450 – 22.549 1455
4950 75 726 110.192 1.830 1450 – 36.369 1455
4500 – – 1.850 1450 – 43.473 1447
4350 70 208 134.685 1.775 1323 0.000797 49.182 1576
4060 50 416 147.414 1.670 1143 0.000840 58.383 1788
3840 35 227 135.282 1.611 1037 0.000881 64.812 1992
3600 26 027 115.277 1.566 958 0.000916 69.562 2158
3480 27 452 151.167 1.523 882 0.000959 74.572 2383
3260 20 975 141.326 1.474 791 0.001015 78.400 2596
3100 15 753 125.107 1.440 734 0.001065 81.275 2785
2940 14 268 116.970 1.409 682 0.001121 83.879 2953
2800 13 819 111.792 1.382 637 0.001170 86.401 3103

However, the parameters F and Eo that constitute the
above expression are given in an expanded form to reflect
the reservoir condition as the pressure drops below the bub-
ble point. The underground withdrawal F and the expansion
term (Eo + Ef , w) are defined by:
F in terms of Bo F = Np[Bo + (Rp − Rs)Bg] + WpBw

or equivalently in
terms of Bt

F = Np[Bt + (Rp − Rsi)Bg] + WpBw

Eo in terms of Bo Eo = (Bo − Boi) + (Rsi − Rs)Bg

or equivalently in
terms of Bt

Eo = Bt − Bti

and:

Ef , w = Boi

[
cwSw + cf

1 − Swi

]
�p

Equation 4.4.15 indicates that a plot of the underground with-
drawal F, evaluated by using the actual reservoir production
data, as a function of the fluid expansion term (Eo + Ef , w)
should result in a straight line going through the origin with
a slope of N.

The above interpretation technique is useful in that, if a
simple linear relationship such as Equation 4.4.15 is expected
for a reservoir and yet the actual plot turns out to be
non-linear, then this deviation can itself be diagnostic in
determining the actual drive mechanisms in the reservoir.
For instance, Equation 4.4.15 may turn out to be non-
linear because there is an unsuspected water influx into the
reservoir, helping to maintain the pressure.

Example 4.4 a A volumetric undersaturated oil reservoir
has a bubble point pressure of 4500. The initial reservoir
pressure is 7150 psia and the volumetric calculations indi-
cate the reservoir contains 650 MMSTB of oil initially in
place. The field is a tight, naturally fractured, chalk reservoir
and was developed without pressure support by water injec-
tion. The initial reservoir pressure is 3685 psi. The following
additional data is available:
Swi = 43%,

cf = 3. 3 × 10−6psi−1,

Bw = 1. 0 bbl/STB,

cw = 3. 00 × 10−6 psi−1,

pb = 1500 psi

The field production and PVT data summarized below:

aL.P. Dake, The Practice of Reservoir Engineering, 1994, Elsevier.
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Calculate the initial oil-in-place by using the MBE and
compare with the volumetric estimate of N.

Solution

Step 1. For the undersaturated performance, the initial oil-
in-place is described by Equation 4.41 as:

N = F
Eo + Ef , w

where:

F = NpBo

Eo = Bo −Boi

Ef ,w = Boi

[
cwSw +cf

1−Swi

]
�p

= 1.743

[
3.00×10−6

(
0.43

)+3.30×10−6

1−0.43

]
�p

= 8.05×10−6(7150−pr)

Step 2. Calculate N using the undersaturated reservoir data:

F = NpBo

Eo = Bo − Boi = Bo − 1. 743

Ef , w = 8. 05 × 10−6(7150 − pr)

pr F Eo �p Ef , w N = F/
(psi) (MMbbl) (bbl/STB) (psi) bbl/STB (Eo + Ef , w)

(MMSTB)

7150 – – 0 0 –
6600 14.20672 0.0170 550 0.00772 574.7102
5800 40.49800 0.0530 1350 0.018949 562.8741
4950 66.55527 0.0870 2200 0.030879 564.6057
4500 80.42505 0.1070 2650 0.037195 557.752

The above calculations suggest that the initial oil-in-
place as calculated from the undersaturated reser-
voir performance data is around 558 MMSTB,
which is lower by about 14% of the volumetric
estimation of 650 MMSTB.

Step 3. Calculate N using the entire reservoir data:

F = Np
[
Bo + (Rp − Rs)Bg

]
Eo = (Bo − Boi) + (Rsi − Rs)Bg

pr F Eo �p Ef , w N = F/
(psi) (MMbbl) (bbl/STB) (psi) (bbl/STB) (Eo + Ef , w)

(MMSTB)

7150 – – 0 0 –
6600 14.20672 0.0170 550 0.00772 574.7102
5800 40.49800 0.0530 1350 0.018949 562.8741
4950 66.55527 0.0870 2200 0.030879 564.6057

4500 80.42505 0.1070 2650 0.037195 557.752
4350 97.21516 0.133219 2800 0.09301 563.5015
4060 129.1315 0.184880 3090 0.043371 565.7429
3840 158.9420 0.231853 3310 0.046459 571.0827
3600 185.3966 0.273672 3550 0.048986 574.5924
3480 220.9165 0.324712 3670 0.051512 587.1939
3260 259.1963 0.399885 3890 0.054600 570.3076
3100 294.5662 0.459540 4050 0.056846 570.4382
2940 331.7239 0.526928 4210 0.059092 566.0629
2800 368.6921 0.590210 4350 0.061057 566.1154

Average 570.0000

It should be pointed out that as the reservoir pressures
continues to decline below the bubble point and with increas-
ing volume of the liberated gas, it reaches the time when
the saturation of the liberated gas exceeds the critical gas
saturation and, as a result, the gas will start to be pro-
duced in disproportionate quantities compared to the oil.
At this stage of depletion, there is little that can be done to
avert this situation during the primary production phase. As
indicated earlier, the primary recovery from these types of
reservoirs seldom exceeds 30%. However, under very favor-
able conditions, the oil and gas might separate with the gas
moving structurally updip in the reservoir that might lead
to preservation of the natural energy of the reservoir with a
consequent improvement in overall oil recovery. Water injec-
tion is traditionally used by the oil industry to maintain the
pressure above the bubble point pressure or alternatively to
pressurize the reservoir to the bubble point pressure. In such
type of reservoirs, as the reservoir pressure drops below
the bubble point pressure, some volume of the liberated gas
will remain in the reservoir as a free gas. This volume, as
expressed in scf, is given by Equation 4.4.7 as:
[
volume of the free gas in scf

]=NRsi −(N −Np)Rs −NpRp

However, the total volume of the liberated gas at any deple-
tion pressure is given by:

[
total volume of the
liberated gas, in scf

]
= NRsi − (N − Np

)
Rs

Therefore, the fraction of the total solution gas that has been
retained in the reservoir as a free gas, αg, at any depletion
stage is then given by:

αg = NRsi − (N − Np)Rs − NpRp

NRsi − (N − Np)Rs

= 1 −
[

NpRp

NRsi − (N − Np)Rs

]

Alternatively, this can be expressed as a fraction of the total
initial gas-in-solution, by:

αgi = NRsi − (N − Np)Rs − NpRp

NRsi

= 1 −
[

(N − Np)Rs + NpRp

NRsi

]

The calculation of the changes in the fluid saturations
with declining reservoir pressure is an integral part of
using the MBE. The remaining volume of each phase can
be determined by calculating different phase saturation,
recalling:

Oil saturation So = oil volume
pore volume

Water saturation Sw = water volume
pore volume

Gas saturation Sg = gas volume
pore volume

and:

So + Sw + Sg = 1. 0

If we consider a volumetric saturated oil reservoir that con-
tains N stock-tank barrels of oil at the initial reservoir
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pressure pi , i.e., pb, the initial oil saturation at the bubble
point pressure is given by:

Soi = 1 − Swi

From the definition of oil saturation:
oil volume

pore volume
= NBoi

pore volume
= 1 − Swi

or:

pore volume = NBoi

1 − Swi

If the reservoir has produced Np stock-tank barrels of oil,
the remaining oil volume is given by:

Remaining oil volume = (N − Np)Bo

This indicates that for a volumetric-type oil reservoir, the
oil saturation at any depletion state below the bubble point
pressure can be represented by:

So = oil volume
pore volume

=
(
N − Np

)
Bo(

NBoi

1 − Swi

)

Rearranging:

So = (1 − Swi
)(

1 − Np

N

)
Bo

Boi

As the solution gas evolves from the oil with declining
reservoir pressure, the gas saturation (assuming constant
water saturation Swi) is simply given by:

Sg = 1 − Swi − So

or:

Sg = 1 − Swi −
[(

1 − Swi
) (

1 − Np

N

)
Bo

Boi

]

Simplifying:

Sg = (1 − Swi)
[

1 −
(

1 − Np

N

)
Bo

Boi

]

Another important function of the MBE is history matching
the production–pressure data of individual wells. Once the
reservoir pressure declines below the bubble point pressure,
it is essential to perform the following tasks:

● Generate, the pseudo-relative permeability ratio krg/kro
for the entire reservoir or for individual wells drainage
area.

● Assess the solution gas driving efficiency.
● Examine the field gas–oil ratio as compared to the labora-

tory solution gas solubility Rs to define the bubble point
pressure and critical gas saturation.

The instantaneous gas–oil ratio (GOR), as discussed in
detail in Chapter 5, is given by:

GOR = Qg

Qo
= Rs +

(
krg

kro

)(
µoBo

µgBg

)

This can be arranged to solve for the relative permeability
ratio krg/kro to give:(

krg

kro

)
= (GOR − Rs)

(
µgBg

µoBo

)

One of the most practical applications of the MBE is its
ability to generate the field relative permeability ratio as a
function of gas saturation that can be used to adjust the labo-
ratory core relative permeability data. The main advantage of
the field-or well-generated relative permeability ratio is that it
incorporates some of the complexities of reservoir heterogeneity
and degree of segregation of the oil and the evolved gas.

It should be noted that the laboratory relative perme-
ability data applies to an unsegregated reservoir, i.e., no
change in fluid saturation with height. The laboratory rel-
ative permeability is most suitable for applications with the
zero-dimensional tank model. For reservoirs with complete
gravity segregation, it is possible to generate a pseudo-
relative permeability ratio krg/kro. A complete segregation
means that the upper part of the reservoir contains gas and
immobile oil, i.e., residual oil Sor , while the lower part con-
tains oil and immobile gas that exists at it critical saturation
Sgc. Vertical communication implies that as the gas evolves
in the lower region, any gas with saturation above Sgc moves
rapidly upward and leaves that region, while in the upper
region any oil above Sor drains downward and moves into
the lower region. On the basis of these assumption, Poston
(1987) proposed the following two relationships:

krg

kro
= (Sg − Sgc)(krg)or

(So − Sor)(kro)gc

kro =
[

So − Sor(krg)or

1 − Sw − Sgc − Sor

]
(kro)gc

where:

(kro)gc = relative permeability to oil at critical gas
saturation

(kgo)or = relative permeability to gas at residual oil
saturation

If the reservoir is initially undersaturated, i.e., pi > pb, the
reservoir pressure will continue to decline with production
until it eventually reaches the bubble point pressure. It is
recommended that the material calculations should be per-
formed in two stages: first from pi to pb and second from pb
to different depletion pressures p. As the pressure declines
from pi to pb, the following changes will occur as a result:

● Based on the water compressibility cw, the connate water
will expand with a resulting increase in the connate water
saturation (providing that there is no water production).

● Based on the formation compressibility cf , a reduction
(compaction) in the entire reservoir pore volume.

Therefore, there are several volumetric calculations that
must be performed to reflect the reservoir condition at
the bubble point pressure. These calculations are based on
defining the following parameters:

● Initial oil-in-place at pi , Ni , with initial oil and water
saturations of S\

oi and S\
woi.

● Cumulative oil produced at the bubble point pressure Npb.
● Oil remaining at the bubble point pressure, i.e., initial oil

at the bubble point:

Nb = Ni − Npb

● Total pore volume at the bubble point pressure, (PV)b:

(PV)b = remaining oil volume + connate water volume

+ connate water expansion

− reduction in PV due to compaction

(PV)b = (Ni − Npb)Bob +
[

NiBoi

1 − S\
wi

]
S\

wi

+
[

NiBoi

1 − Swi

]
(pi − pb)(−cf + cwS\

wi)
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Simplifying:

(PV)b = (Ni − Npb)Bob +
[

NiBoi

1 − S\
wi

]

×
[
S\

wi + (pi − pb)(−cf + cwS\
wi)
]

● Initial oil and water saturations at the bubble point pressure,
i.e., Soi and Swi are:

Soi = (Ni −Npb)Bob

(PV)b

= (Ni −Npb)Bob

(Ni −Npb)Bob +
[

NiBoi

1−S\
wi

][
S\

wi +(pi −pb)(−cf +cwS\
wi)
]

Swi =
[

NiBoi

1−S\
wi

]
[S\

wi +(pi −pb)(−cf +cwS\
wi)]

(Ni −Npb)Bob +
[

NiBoi

1−S\
wi

][
S\

wi +(pi −pb)(−cf +cwS\
wi)
]

=1−Soi

● Oil saturation So at any pressure below pb is given by: ·

So = (Ni −Np)Bo

(PV)b

= (Ni −Np)Bo

(Ni −Npb)Bob +
[

NiBoi

1−S\
wi

][
S\

wi +(pi −pb)(−cf +cwS\
wi)
]

Gas saturation Sg at any pressure below pb, assuming no
water production, is given by:

Sg = 1 − So − Swi

where:

Ni = initial oil-in-place at pi , i.e., pi > pb, STB
Nb = initial oil-in-place at the bubble point

pressure, STB
Npb = cumulative oil produced at the bubble point

pressure, STB

S\
oi = oil saturation at pi , pi > pb

Soi = initial oil saturation at pb

S\
wi = water saturation at pi , pi > pb

Swi = initial water saturation at pb

It is very convenient also to qualitatively represent the fluid
production graphically by employing the concept of the bub-
ble map. The bubble map essentially illustrates the growing
size of the drainage area of a production well. The drainage
area of each well is represented by a circle with an oil bubble
radius rob of:

rob =
√√√√ 5. 615Np

πφh
(

1−Swi
Boi

− So
Bo

)

This expression is based on the assumption that the sat-
uration is evenly distributed throughout a homogeneous
drainage area, where:

rob = oil bubble radius, ft
Np = well current cumulative oil production, bbl
So = current oil saturation

Similarly, the growing bubble of the reservoir free gas can
be described graphically by calculating gas bubble radius
rgb as:

rgb =
√

5. 615
[
NRsi − (N − Np

)
Rs − NpRp

]
Bg

πφh(1 − So − Swi)

where:

rgb = gas bubble radius, ft
Np = well current cumulative oil production, bbl
Bg = current gas formation volume factor, bbl/scf
So = current oil saturation

Example 4.5 In addition to the data given in Example 4.4
for the chalk reservoir, the oil–gas viscosity ratios a func-
tion of pressure are included with the PVT data as shown
below:

p Qo Qg Bo Rs Bg µo/µg Np Rp

(psia) (STB/day) (MMscf/day) (bbl/STB) (scf/STB) (bbl/scf) (MMSTB) (scf/STB)

7150 – – 1.743 1450 – – 0 1450
6600 44 230 64.110 1.760 1450 – – 8.072 1450
5800 79 326 115.616 1.796 1450 – – 22.549 1455
4950 75 726 110.192 1.830 1450 – – 36.369 1455
4500 – – 1.850 1450 – 5.60 43.473 1447
4350 70 208 134.685 1.775 1323 0.000797 6.02 49.182 1576
4060 50 416 147.414 1.670 1143 0.000840 7.24 58.383 1788
3840 35 227 135.282 1.611 1037 0.000881 8.17 64.812 1992
3600 26 027 115.277 1.566 958 0.000916 9.35 69.562 2158
3480 27 452 151.167 1.523 882 0.000959 9.95 74.572 2383
3260 20 975 141.326 1.474 791 0.001015 11.1 78.400 2596
3100 15 753 125.107 1.440 734 0.001065 11.9 81.275 2785
2940 14 268 116.970 1.409 682 0.001121 12.8 83.879 2953
2800 13 819 111.792 1.382 637 0.001170 13.5 86.401 3103
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Using the given pressure–production history of the field,
estimate the following:

● Percentage of the liberated solution gas retained in the
reservoir as the pressure declines below the bubble point
pressure. Express the retained gas volume as a percent-
age of the total gas liberated αg and also of total initial
gas-in-solution αgi.

● Oil and gas saturations.
● Relative permeability ratio krg/kro.

Solution

Step 1. Tabulate the values of αg and αgi as calculated
from:

αg = 1 −
[

NpRp

NRsi − (N − Np)Rs

]

= 1 −
[

NpRp

570(1450) − (570 − Np)Rs

]

αgi = 1 −
[

(N − Np)Rs + NpRp

NRsi

]

= 1 −
[

(570 − Np)Rs + NpRp

570(1450)

]

That is:

p Rs Np Rp αg αgi
(psia) (scf/STB) (MMSTB) (scf/STB) (%) (%)

7150 1450 0 1450 0.00 0.00
6600 1450 8.072 1450 0.00 0.00
5800 1450 22.549 1455 0.00 0.00
4950 1450 36.369 1455 0.00 0.00
4500 1450 43.473 1447 0.00 0.00
4350 1323 49.182 1576 43.6 7.25
4060 1143 58.383 1788 56.8 16.6
3840 1037 64.812 1992 57.3 21.0
3600 958 69.562 2158 56.7 23.8
3480 882 74.572 2383 54.4 25.6
3260 791 78.400 2596 53.5 28.3
3100 734 81.275 2785 51.6 29.2
2940 682 83.879 2953 50.0 29.9
2800 637 86.401 3103 48.3 30.3

Step 2. Calculate the PV at the bubble point pressure
from:

(PV)b = (Ni − Npb)Bob +
[

NiBoi

1 − S\
wi

]

× [S\
wi + (pi − pb)(−cf + cwS\

wi)]

= (570 − 43. 473)1. 85 +
[

570(1. 743)
1 − 0. 43

]

× [0. 43 + (7150 − 4500)(−3. 3 × 10−6

+ 3. 0 × 10−6(0. 43))]

= 1. 71 × 109 bbl

Step 3. Calculate the initial oil and water saturations at the
bubble point pressure:

Soi = (Ni − Npb)Bob

(PV)b

= (570 − 43. 473)106(1. 85)
1. 71 × 109 = 0. 568

Swi = 1 − Soi = 0. 432

Step 4. Calculate the oil and gas saturations as a function of
pressure below pb:

So = (Ni − Np)Bo

(PV)b

= (570 − Np)106Bo

1. 71 × 109

Gas saturation Sg at any pressure below pb is
given by:

Sg = 1 − So − 0. 432

p Np So Sg
(psia) (MMSTB) (%) (%)

4500 43.473 56.8 0.00
4350 49.182 53.9 2.89
4060 58.383 49.8 6.98
3840 64.812 47.5 9.35
3600 69.562 45.7 11.1
3480 74.572 44.0 12.8
3260 78.400 42.3 14.6
3100 81.275 41.1 15.8
2940 83.879 40.0 16.9
2800 86.401 39.0 17.8

Step 5. Calculate the gas–oil ratio as function of pressure
p < pb:

GOR = Qg

Qo

p Qo Qg GOR = Qg/Qo
(psia) (STB/day) (MMscf/day) (scf/STB)

4500 – – 1450
4350 70 208 134.685 1918
4060 50 416 147.414 2923
3840 35 227 135.282 3840
3600 26 027 115.277 4429
3480 27 452 151.167 5506
3260 20 975 141.326 6737
3100 15 753 125.107 7942
2940 14 268 116.970 8198
2800 13 819 111.792 8090

Step 6. Calculate the relative permeability ratio krg/kro:

(
krg

kro

)
= (GOR − Rs)

(
µgBg

µoBo

)
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p Np So Sg Rs µo/µg Bo Bg GOR = Qg/Qo krg/kro

(psi) (MMSTB) (%) (%) (scf/STB) (bbl/STB) (bbl/scf) (scf/STB)

4500 43.473 56.8 0.00 1450 5.60 1.850 – 1450 –
4350 49.182 53.9 2.89 1323 6.02 1.775 0.000797 1918 0.0444
4060 58.383 49.8 6.98 1143 7.24 1.670 0.000840 2923 0.1237
3840 64.812 47.5 9.35 1037 8.17 1.611 0.000881 3840 0.1877
3600 69.562 45.7 11.1 958 9.35 1.566 0.000916 4429 0.21715
3480 74.572 44.0 12.8 882 9.95 1.523 0.000959 5506 0.29266
3260 78.400 42.3 14.6 791 11.1 1.474 0.001015 6737 0.36982
3100 81.275 41.1 15.8 734 11.9 1.440 0.001065 7942 0.44744
2940 83.879 40.0 16.9 682 12.8 1.409 0.001121 8198 0.46807
2800 86.401 39.0 17.8 637 13.5 1.382 0.001170 8090 0.46585

If the laboratory relative permeability data is available, the
following procedure is recommended for generating the field
relative permeability data:

(1) Use as much past reservoir production and pressure
history as possible to calculate relative permeability ratio
krg/kro vs. So, as shown in Example 4.5.

(2) Plot the permeability ratio krg/kro versus liquid satura-
tion SL , i.e., SL = So + Swc, on semilog paper.

(3) Plot the lab relative permeability data on the same
graph prepared in step 2. Extend the field-calculated
permeability data parallel to the lab data.

(4) Extrapolated field data from step 3 is considered the
relative permeability characteristics of the reservoir
and should be used in predicting the future reservoir
performance.

It should be pointed out that it is a characteristic of most solu-
tion gas drive reservoirs that only a fraction of the oil-in-place
is recoverable by primary depletion methods. However, the
liberated solution gas can move much more freely than the
oil through the reservoir. The displacement of the oil by
the expanding liberated gas is essentially the main driving
mechanism in these types of reservoirs. In general, it is pos-
sible to estimate the amount of gas that will be recovered
during the primary depletion method, which can provide us
with an estimate of an end point, i.e., maximum, on the oil
recovery performance curve. A log–log plot of the cumula-
tive gas (on the y axis) versus cumulative oil (on the x axis)
provides the recovery trend of the hydrocarbon recovery. The
generated curve can be extrapolated to the total gas avail-
able, e.g., (NRsi), and to read the upper limit on oil recovery
at abandonment.

Example 4.6 Using the data given in Example 4.5, esti-
mate the oil recovery factor and cumulative oil production
after producing 50% of the solution gas.

Solution

Step 1. Using in-place values from Example 4.5 and from
the definition of the recovery factor, construct the
following table:

Oil-in place N = 570 MMSTB

Gas-in-solution G = NRsi = 570 × 1450

= 826. 5 MMMscf

Cum. gas produced Gp = NpRp

Oil recovery factor RF = Np/N

Gas recovery factor RF = Gp/G

Monthsp Np Rp Gp = NpRp Oil Gas
(psia)(MMSTB)(scf/STB)(MMMscf)RF (%)RF (%)

0 7150 0 1450 0 0 0
6 6600 8.072 1450 11.70 1.416 1.411

12 5800 22.549 1455 32.80 4.956 3.956
18 4950 36.369 1455 52.92 6.385 6.380
21 4500 43.473 1447 62.91 7.627 7.585
24 4350 49.182 1576 77.51 8.528 9.346
30 4060 58.383 1788 104.39 10.242 12.587
36 3840 64.812 1992 129.11 11.371 15.567
42 3600 69.562 2158 150.11 12.204 18.100
48 3480 74.572 2383 177.71 13.083 21.427
54 3260 78.400 2596 203.53 13.754 24.540
60 3100 81.275 2785 226.35 14.259 27.292
66 2940 83.879 2953 247.69 14.716 29.866
72 2800 86.401 3103 268.10 15.158 32.327

Step 2. From the log–log plot of Np vs. Gp and the Cartesian
plot of oil recovery factor versus gas recover factor,
as shown in Figures 4.19 and 4.20:

Oil recovery factor = 17%

Cumulative oil Np = 0. 17 × 570 = 96. 9 MMSTB

Cumulative gas Gp = 0. 50 × 826. 5
= 413. 25 MMMscf

4.4.3 Case 3: Gas cap drive reservoirs
For a reservoir in which the expansion of the gas cap gas
is the predominant driving mechanism, the effect of water
and pore compressibilities as a contributing driving mech-
anism can be considered negligible as compared to that of
the high compressibility of the gas. However, Havlena and
Odeh (1963, 1964) acknowledged that whenever a gas cap is
present or its size is to be determined, an exceptional degree
of accuracy of pressure data is required. The specific prob-
lem with reservoir pressure is that the underlying oil zone
in a gas cap drive reservoir exists initially near its bubble
point pressure. Therefore, the flowing pressures are obvi-
ously below the bubble point pressure, which exacerbates
the difficulty in conventional pressure buildup interpretation
to determine average reservoir pressure.

Assuming that there is no natural water influx or it is neg-
ligible (i.e., We = 0), the Havlena and Odeh material balance
can be expressed as:

F = N [Eo + mEg] [4.4.16]
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Figure 4.19 Gp vs. Np, Example 4.6.
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Figure 4.20 Gas recovery factor versus oil recovery factor.

in which the variables F , Eo, and Eg are given by:

F = Np[Bo + (Rp − Rs)Bg] + WpBw

= Np[Bt + (Rp − Rsi)Bg] + WpBw

Eo = (Bo − Boi) + (Rsi − Rs)Bg

= Bt − Bti

Eg = Boi[(Bg/Bgi) − 1]

The methodology in which Equation 4.4.16 can be used
depends on the number of unknowns in the equation. There
are three possible unknowns in Equation 4.4.16. These are:

(1) N is unknown, m is known;
(2) m is unknown, N is known;
(3) N and m are unknown.

The practical use of Equation 4.4.16 in determining the three
possible unknowns is presented below.

Unknown N, known m Equation 4.4.16 indicates that a plot
of F versus (Eo +mEg) on a Cartesian scale would produce a

TLFeBOOK



PERFORMANCE OF OIL RESERVOIRS 4/317

F

F =N(Eo+Ef,w)

Eo+ mEg

Unknown "N", known "m"

Slope= N

Figure 4.21 F vs. Eo + mEg.

straight line through the origin with a slope of N , as shown in
Figure 4.21. In making the plot, the underground withdrawal
F can be calculated at various times as a function of the
production terms Np and Rp.

Conclusion N = slope

Unknown m, known N Equation 4.4.16 can be rearranged
as an equation of straight line, to give:(

F
N

− Eo

)
= mEg [4.4.17]

This relationship shows that a plot of the term (F/N − Eo)
vs. Eg would produce a straight line with a slope of m. One
advantage of this particular arrangement is that the straight
line must pass through the origin which, therefore, acts as
a control point. Figure 4.22 shows an illustration of such a
plot.

Conclusion m = slope

Also Equation 4.4.16 can be rearranged to solve for m, to
give:

m = F − NEo

NEg

This relationship shows that a plot of the term (F/N − Eo)
vs. Eg would produce a straight line with a slope of m. One
advantage of this particular arrangement is that the straight
line must pass through the origin

Eg

F
N

−Eo

Unknown "m", known "N "

Slope = m

Figure 4.22 (F/N − Eo) vs. Eg.

N

Eo
= N + mNF

Eg/Eo

F/Eo

"N " and "m" are Unknown 

Slope= Nm

Eo

Eg

Figure 4.23 F/Eo vs. Eg/Eo.

N and m are unknown If there is uncertainty in both the
values of N and m, Equation 4.4.16 can be re-expressed as:
F
Eo

= N + mN
(

Eg

Eo

)
[4.4.18]

A plot of F/Eo versus Eg/Eo should then be linear with inter-
cept N and slope mN . This plot is illustrated in Figure 4.23.

Conclusions N = intercept
mN = slope

m = slope/intercept = slope/N

Example 4.7 Reliable volumetric calculations on a well-
developed gas cap drive reserve show the flowing results:

N = 736 MMSTB, G = 320 Bscf
pi = 2808 psia, Boi = 1. 39 bbl/STB
Bgi = 0. 000919 bbl/STB, Rsi = 755 scf/STB

The production history in terms of parameter F and the
PVT data are given below:

p F Bt Bg
(psi) (MMbbl) (bbl/STB) (bbl/scf)

2803 7.8928 1.3904 0.0009209
2802 7.8911 1.3905 0.0009213
2801 7.8894 1.3906 0.0009217
2800 7.8877 1.3907 0.0009220
2799 7.8860 1.3907 0.0009224
2798 7.8843 1.3908 0.0009228

Estimate the gas–oil volume ratio m and compare with the
calculated value

Solution

Step 1. Calculate the actual m from the results of the volu-
metric calculation:

m = GBgi

NBoi
= (3200 × 109)(0. 000919)

(736 × 106)(1. 390)
≈ 2. 9

Step 2. Using the production data, calculate Eo, Eg, and m
Eo = Bt − Bti

Eg = Bti[(Bg/Bgi) − 1]

m = F − NEo

NEg
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p F Eo Eg m = (F − NEo)/NEg
(psi) (MMbbl) (bbl/STB) (bbl/scf)

2803 7.8928 0.000442 0.002874 3.58
2802 7.8911 0.000511 0.003479 2.93
2801 7.8894 0.000581 0.004084 2.48
2800 7.8877 0.000650 0.004538 2.22
2799 7.8860 0.000721 0.005143 1.94
2798 7.8843 0.000791 0.005748 1.73

The above tabulated results appear to confirm the volu-
metric m value of 2.9; however, the results also show the
sensitivity of the m value to the reported average reservoir
pressure.

Example 4.8 The production history and the PVT data of
a gas cap drive reservoir are given below:

Date p Np Gp Bt Bg
(psi) (MSTB) (Mscf) (bbl/STB) (bbl/scf)

5/1/89 4415 – – 1.6291 0.00077
1/1/91 3875 492.5 751.3 1.6839 0.00079
1/1/92 3315 1015.7 2409.6 1.7835 0.00087
1/1/93 2845 1322.5 3901.6 1.9110 0.00099

The initial gas solubility Rsi is 975 scf/STB. Estimate the
initial oil-and gas-in-place.

Solution

Step 1. Calculate the cumulative produced gas–oil ratio Rp

p Gp Np Rp = Gp/Np
(Mscf) (MSTB) (scf/STB)

4415 – – –
3875 751.3 492.5 1525
3315 2409.6 1015.7 2372
2845 3901.6 1322.5 2950

Step 2. Calculate F , Eo, and Eg from:

F = Np[Bt + (Rp − Rsi)Bg] + WpBw

Eo = Bt − Bti

Eg = Bti[(Bg/Bgi) − 1]

p F Eo Eg

3875 2. 04 × 106 0.0548 0.0529
3315 8. 77 × 106 0.1540 0.2220
2845 17. 05 × 106 0.2820 0.4720

Step 3. Calculate F/Eo and Eg/Eo:

p F/Eo Eg/Eo

3875 3. 72 × 107 0.96
3315 5. 69 × 107 0.44
2845 6. 00 × 107 0.67

Step 4. Plot F/Eo vs. Eg/Eo as shown in Figure 4.24, to
give:

Intercept = N = 9 MMSTB

Slope = Nm = 3. 1 × 107

0 0.2

1.00E+07

2.00E+07

3.00E+07F
/E

o

Eg /Eo

Intercept = N = 9 MMSTB
Slope = Nm = 3.1 × 107

4.00E+07

5.00E+07

6.00E+07

7.00E+07

0.00E+00

N = 9 MMSTB

Nm = 3.1×107

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

Figure 4.24 Calculation of m and N for Example 4.8.

Step 5. Calculate m:

m = 3. 1 × 107/(9 × 106) = 3. 44

Step 6. Calculate the initial gas cap gas volume G from the
definition of m:

m = GBgi

NBoi

or:

G = mNBoi

Bgi
=
(
3. 44

) (
9 × 106

) (
1. 6291

)
0. 00077

= 66 MMMscf

4.4.4 Case 4: Water drive reservoirs
In a water drive reservoir, identifying the type of the aquifer
and characterizing its properties are perhaps the most chal-
lenging tasks involved in conducting a reservoir engineering
study. Yet, without an accurate description of the aquifer,
future reservoir performance and management cannot be
properly evaluated.

The full MBE can be expressed again as:

F = N (Eo + mEg + Ef , w) + We

Dake (1978) pointed out that the term Ef , w can frequently
be neglected in water drive reservoirs. This is not only for the
usual reason that the water and pore compressibilities are
small, but also because a water influx helps to maintain
the reservoir pressure and, therefore, the �p appearing in
the Ef , w term is reduced, or:

F = N (Eo + mEg) + We [4.4.19]

If, in addition, the reservoir has an initial gas cap, then
Equation 4.4.18 can be further reduced to:

F = NEo + We [4.4.20]

In attempting to use the above two equations to match the
production and pressure history of a reservoir, the greatest
uncertainty is always the determination of the water influx
We. In fact, in order to calculate the water influx the engineer
is confronted with what is inherently the greatest uncer-
tainty in the whole subject of reservoir engineering. The
reason is that the calculation of We requires a mathematical
model which itself relies on knowledge of aquifer prop-
erties. These, however, are seldom measured since wells
are not deliberately drilled into the aquifer to obtain such
information.

For a water drive reservoir with no gas cap, Equation
4.4.20 can be rearranged and expressed as:

F
Eo

= N + We

Eo
[4.4.21]
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Several water influx models have been described in
Chapter 2, including:

● the pot aquifer model;
● the Schilthuis steady-state method;
● the van Everdingen and Hurst model.

The use of these models in connection with Equation 4.4.21
to simultaneously determine N and We is described below.

Pot aquifer model in the MBE
Assume that the water influx could be properly described by
using the simple pot aquifer model as described by Equation
2.3.3, as:
We = (cw + cf )Wi f ( pi − p) [4.4.22]

f =
(
encroachment angle

)◦
360◦ = θ

360◦

Wi =
[

π
(
r2

a − r2
e

)
hφ

5. 615

]

where:

ra = radius of the aquifer, ft
re = radius of the reservoir, ft
h = thickness of the aquifer, ft
φ = porosity of the aquifer
θ = encroachment angle

cw = aquifer water compressibility, psi−1

cf = aquifer rock compressibility, psi−1

Wi = initial volume of water in the aquifer, bbl

Since the ability to use Equation 4.4.22 relies on knowledge
of the aquifer properties, i.e., cw, cf , h, ra, and θ , these prop-
erties could be combined and treated as one unknown K in
Equation 4.4.22, or:
We = K�p [4.4.23]
where the water influx constant K represents the combined
pot aquifer properties as:

K = (cw + cf )Wi f
Combining Equation 4.4.23 with 4.4.21 gives:
F
Eo

= N + K
(

�p
Eo

)
[4.4.24]

Equation 4.4.24 indicates that a plot of the term F/Eo as a
function of �p/Eo would yield a straight line with an intercept
of N and slope of K , as illustrated in Figure 4.25.

Eo
= N + KF

∆p/Eo

F/Eo

N

Slope=k
Eo

∆p

Figure 4.25 F/Eo vs. �p/Eo.

If a gas gap with a known value of m exists, Equation 4.4.19
can be expressed in the following linear form:

F
Eo + mEg

= N + K
(

�p
Eo + mEg

)

This form indicates that a plot of the term F/(Eo + mEg)
as a function of �p/(Eo + mEg) would yield a straight line
with an intercept of N and slope of K .

The Steady-State Model in the MBE
The steady-state aquifer model as proposed by Schilthuis
(1936) is given by:

We = C
∫ t

0
(pi − p) dt [4.4.25]

where:

We = cumulative water influx, bbl
C = water influx constant, bbl/day/psi
t = time, days

pi = initial reservoir pressure, psi
p = pressure at the oil–water contact at time t, psi

Combining Equation 4.4.25 with 4.4.21 gives:

F
Eo

= N + C

(∫ t
0 (pi − p) dt

Eo

)
[4.4.26]

Plotting F/Eo vs.
∫ t

0 (pi − p) dt/Eo results in a straight line
with an intercept that represents the initial oil-in-place N and
a slope that describes the water influx constant C as shown
in Figure 4.26.

And for a known gas gap; Equation 4.4.26 can be expressed
in the following linear form:

F
Eo + mEg

= N + C

(∫ t
0 (pi − p) dt
Eo + mEg

)

Plotting F/(Eo + mEg) vs.
∫ t

0 (pi − p)dt/
(
Eo + mEg

)
results

in a straight line with an intercept that represents the ini-
tial oil-in-place N and a slope that describes the water influx
constant C.

The unsteady-state model in the MBE
The van Everdingen and Hurst unsteady-state model is
given by:
We = B��pWeD [4.4.27]
with:

B = 1. 119φctr2
e hf

F/Eo

N

Slope = C

i

i

d

d

Figure 4.26 Graphical determination of N and c.
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Van Everdingen and Hurst presented the dimensionless
water influx WeD as a function of the dimensionless time tD
and dimensionless radius rD that are given by:

tD = 6. 328 × 10−3 kt
φµwctr2

e

rD = ra

re

ct = cw + cf

where:

t = time, days
k = permeability of the aquifer, md
φ = porosity of the aquifer

µw = viscosity of water in the aquifer, cp
ra = radius of the aquifer, ft
re = radius of the reservoir, ft
cw = compressibility of the water, psi−1

Combining Equation 4.4.27 with 4.4.21 gives:

F
Eo

= N + B
(∑

�pWeD

Eo

)
[4.4.28]

The proper methodology of solving the above linear
relationship is summarized in the following steps.

Step 1. From the field past production and pressure his-
tory, calculate the underground withdrawal F and
oil expansion Eo.

Step 2. Assume an aquifer configuration, i.e., linear or radial.
Step 3. Assume the aquifer radius ra and calculate the

dimensionless radius rD.
Step 4. Plot F/Eo vs. (��pWeD)/Eo on a Cartesian scale. If

the assumed aquifer parameters are correct, the plot
will be a straight line with N being the intercept and
the water influx constant B being the slope. It should
be noted that four other different plots might result.
These are:

(1) Complete random scatter of the individual
points, which indicates that the calculation
and/or the basic data are in error.

(2) A systematically upward-curved line, which sug-
gests that the assumed aquifer radius (or dimen-
sionless radius) is too small.

(3) A systematically downward-curved the indicat-
ing that the selected aquifer radius (or dimen-
sionless radius) is too large.

(4) An S-shaped curve indicates that a better fit
could be obtained if a linear water influx is
assumed.

Figure 4.27 shows a schematic illustration of the Havlena
and Odeh methodology in determining the aquifer fitting
parameters.

It should be noted that in many large fields, an infinite
linear water drive satisfactorily describes the production–
pressure behavior. For a Unit pressure drop, the cumulative
water influx in an infinite linear case is simply proportional to√

t and does not require the estimation of the dimensionless
time tD. Thus, the Van Everdingen and Hurst dimensionless
water influx WeD in Equation 4.4.27 is replaced by the square
root of time, to give:

Ww = B
∑[

�pn

√
(t − tn)

]

Therefor, the linear form of the MBE can be expressed as:

F
Eo

= N + B
(∑

�pn
√

t − tn
Eo

)
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Figure 4.27 Havlena and Odeh straight-line plot (After:
Havlena and ODeh, 1963).

Example 4.9 The material balance parameters, the
underground withdrawal F, and the oil expansion Eo of a
saturated oil reservoir (i.e., m = 0) are given below:

p F Eo

3500 – –
3488 2.04 ×106 0.0548
3162 8.77 ×106 0.1540
2782 17.05 ×106 0.2820

Assuming that the rock and water compressibilities are
negligible, calculate the initial oil-in-place.

Solution

Step 1. The most important step in applying the MBE is
to verify that no water influx exists. Assuming that
the reservoir is volumetric, calculate the initial oil-
in-place N by using every individual production data
point in Equation 4.4.15, or:

N = F/Eo

F Eo N = F/Eo

2.04 ×106 0.0548 37 MMSTB
8.77 ×106 0.1540 57 MMSTB
17.05 ×106 0.2820 60 MMSTB

Step 2. The above calculations show that the calculated val-
ues of the initial oil-in-place are increasing, as shown
graphically in Figure 4.28, which indicates a water
encroachment, i.e., water drive reservoir.

Step 3. For simplicity, select the pot aquifer model to rep-
resent the water encroachment calculations in the
MBE as given by Equation 4.4.24, or:

F
Eo

= N + K
(

�p
Eo

)

Step 4. Calculate the terms F/Eo and �p/Eo of Equation
4.4.24:

p �p F Eo F/Eo �p/Eo

3500 0 – – – −
3488 12 2. 04 × 106 0.0548 37. 23 × 106 219.0
3162 338 8. 77 × 106 0.1540 56. 95 × 106 2194.8
2782 718 17. 05 × 106 0.2820 60. 46 × 106 2546
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Figure 4.28 Indication of water influx.
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Figure 4.29 F/Eo vs. �p/Eo.

Step 5. Plot F/Eo vs. �p/Eo, as shown in Figure 4.29 and
determine the intercept and the slope:

Intercept = N = 35 MMSTB

Slope = K = 9983

4.4.5 Case 5: Combination drive reservoirs
This relatively complicated case involves the determination
of the following three unknowns:

(1) initial oil-in-place N;
(2) size of the gas cap m;
(3) Water influx We.

The general MBE that includes the above three unknown is
given by Equation 4.4.9 as:

F = N (Eo + mEg) + We

where the variables constituting the above expression are
defined by:

F = Np[Bo + (Rp − Rs)Bg] + WpBw

= Np[Bt + (Rp − Rsi)Bg] + WpBw

Eo = (Bo − Boi) + (Rsi − Rs)Bg

= Bt − Bti

Eg = Boi[(Bg/Bgi) − 1]
Havlena and Odeh differentiated Equation 4.4.9 with respect
to pressure and rearranged the resulting equation to elimi-
nate m, to give:

FE\
g − F \Eg

EoE\
g − E\

oEg
= N + WeE\

g − W \
e Eg

EoE\
g − E\

oEg
[4.4.29]
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in which the reversed primes denote derivatives with respect
to pressure. That is:

E\
g = ∂Eg

∂p
=
(

Boi

Bgi

)
∂Bg

∂p
≈
(

Boi

Bgi

)
�Bg

�p

E\
o = ∂Eo

∂p
= ∂Bt

∂p
≈ �Bt

�p

F \ = ∂F
∂p

≈ �F
�p

W \
e = ∂We

∂p
≈ �We

�p
A plot of the left-hand side of Equation 4.4.29 versus the sec-
ond term on the right for a selected aquifer model should,
if the choice is correct, provide a straight line with unit
slope whose intercept on the ordinate gives the initial oil-
in-place N. After having correctly determined N and We,
Equation 4.4.9 can be solved directly for m, to give:

m = F − NEo − We

NEg

Note that all the above derivatives can be evaluated numer-
ically using one of the finite difference techniques; e.g.,
forward, backward, or central difference formula.

4.4.6 Case 6: Average reservoir pressure
To gain any understanding of the behavior of a reservoir
with free gas, e.g., solution gas drive or gas cap drive, it
is essential that every effort be made to determine reser-
voir pressures with accuracy. In the absence of reliable
pressure data, the MBE can be used to estimate average
reservoir pressure if accurate values of m and N are available
from volumetric calculations. The general MBE is given by
Equation 4.4.16 as:

F = N
[
Eo + mEg

]
Solving Equation 4.4.16 for the average pressure using

the production history of the field involves the following
graphical procedure:

Step 1. Select the time at which the average reservoir pres-
sure is to be determined and obtain the correspond-
ing production data, i.e., Np, Gp, and Rp.
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F = N [Eo+ mEg]

F = Np [Bo+ (Rp−Rs)Bg] + WpBw

RHS = N
 [E o

+mE g
]

F

RHS
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Figure 4.30 Solution of the material balance for the pressure.

Step 2. Assume several average reservoir pressure values
and determine the left-hand side F of Equation 4.4.16
at each assumed pressure. That is:

F = Np[Bo + (Rp − Rs)Bg] + WpBw

Step 3. Using the same assumed average reservoir pressure
values of step 2, calculate the right-hand side (RHS)
of Equation 4.4.16:

RHS = N [Eo + mEg]
where:

Eo = (Bo − Boi) + (Rsi − Rs)Bg

Eg = Boi[(Bg/Bgi) − 1]
Step 4. Plot the left- and right-hand sides of the MBE, as

calculated in steps 2 and 3, on Cartesian paper
as a function of assumed average pressure. The
point of intersection gives the average reservoir
pressure that corresponds to the selected time of
step 1. An illustration of the graph is shown in
Figure 4.30.

Step 5: Repeat steps 1 through 4 to estimate reservoir
pressure at each selected depletion time.

4.5 Tracy’s Form of the MBE

Neglecting the formation and water compressibilities, the
general MBE as expressed by Equation 4.3.13 can be
reduced to the following:

N = NpBo + (Gp − NpRs
)

Bg − (We − WpBw
)

(
Bo − Boi

)+ (Rsi − Rs
)

Bg + mBoi

[
Bg

Bgi
− 1
] [4.5.1]

Tracy (1955) suggested that the above relationship can be
rearranged into a more usable form as:

N = Np�o + Gp�g + (WpBw − We)�w [4.5.2]
Where �o, �g, and �w are considered PVT-related proper-
ties that are functions of pressure and defined by:

�o = Bo − RsBg

Den
[4.5.3]
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Figure 4.31 Tracy’s PVT functions.

�g = Bg

Den
[4.5.4]

�w = 1
Den

[4.5.5]

with:

Den = (Bo − Boi
)+ (Rsi − Rs

)
Bg + mBoi

[
Bg

Bgi
− 1
]

[4.5.6]

where:

�o = oil PVT function
�g = gas PVT function
�w = water PVT function

Figure 4.31 shows a graphical presentation of the behavior
of Tracy’s PVT functions with changing pressure.

Note that �o is negative at low pressures and all �

functions are approaching infinity at bubble point pressure
because the value of the denominator “Den” in Equations
4.5.3 through 4.5.5 approaches zero. Tracy’s form is valid
only for initial pressures equal to the bubble point pressure,
and cannot be used at pressures above the bubble point.
Furthermore, shapes of the � function curves illustrate that
small errors in pressure and/or production can cause large
errors in calculated oil-in-place at pressures near the bubble
point. However, Steffensen (1987) pointed out that Tracy’s
equation uses the oil formation volume factor at the bubble
point pressure Bob for the initial Boi which causes all the
PVT functions � to become infinity at the bubble point pres-
sure. Steffensen suggested that Tracy’s equation could be
extended for applications above the bubble point pressure,
i.e., for undersaturated oil reservoirs, by simply using the
value of Bo at the initial reservoir pressure. He concluded
that Tracy’s methodology could predict reservoir perfor-
mance for the entire pressure range from any initial pressure
down to abandonment.

It should be pointed out that because the rock and water
compressibility are relatively unimportant below the bub-
blepoint pressure; they were not included in Tracy’s mate-
rial balance formulation. They can be included indirectly,
however, by the use of pseudovalues of the oil forma-
tion volume factor at pressures below the initial pressure.

These pseudovalues, B∗
o , given by:

B∗
o = Bo + Boi

(
Swcw + cf

1 − Sw

)
(pi − p)

These pesudovalues include the additional pressure support
of water and rock compressibilities in the material balance
computations.

ggas <
dp
dz

< goil

with:

ggas = ρg

144

goil = ρo

144

where:

goil = oil gradient, psi/ft
ρo = oil density; lb/ft3

ggas = gas gradient, psi/ft
ρg = gas density; lb/ft3

dp/dz = reservoir pressure gradient, psi/ft

The following example is given by Tracy (1955) to illus-
trate his proposed approach.

Example 4.10 The production history of a saturated oil
reservoir is as follows:

p Np Gp
(psia) (MSTB) (MMscf)

1690 0 0
1600 398 38.6
1500 1570 155.8
1100 4470 803

The calculated values of the PVT functions are given below:

p �o �g

1600 36.60 0.4000
1500 14.30 0.1790
1100 2.10 0.0508

Calculate the oil-in-place N .

Solution The calculations can be conveniently performed
in following tabulated form using:

N = Np�o + Gp�g + 0

p Np Gp (Np�o) (Gp�g) N
(psia) (MSTB) (MMscf) (STB)

1600 398 38.6 14. 52 × 106 15. 42 × 106 29. 74
×106

1500 155.8 155.8 22. 45 × 106 27. 85 × 106 50.30
×106

1100 803.0 803.0 9. 39 × 106 40. 79 × 106 50.18
×106

The above results show that the original oil in place in this
reservoir is approximately 50 MMSTB of oil. The calculation
at 1600 psia is a good example of the sensitivity of such a
calculation near the bubble point pressure. Since the last
two values of the original oil-in-place agree so well, the first
calculation is probably wrong.
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Problems

1. You have the following data on an oil reservoir:

Oil Aquifer

Geometry circular semicircular
Encroachment angle – 180◦
Radius, ft 4000 80 000
Flow regime semisteady state unsteady state
Porosity – 0.20
Thickness, ft – 30
Permeability, md 200 50
Viscosity, cp 1.2 0.36
Original pressure 3800 3800
Current pressure 3600 –
Original volume factor 1.300 1.04
Current volume factor 1.303 1.04
Bubble point pressure 3000 –

The field has been on production for 1120 days, and has
produced 800 000 STB of oil and 60 000 STB of water.
Water and formation compressibilities are estimated to
be 3 × 10−6 and 3 × 10−6 psi−1, respectively.
Calculate the original oil-in-place.

2. The following rock and fluid properties data is available
on the Nameless Field:

Reservoir area = 1000 acres, porosity = 10%
thickness = 20 ft, T = 140◦F
swi = 20%, pi = 4000 psi
pb = 4000 psi

The gas compressibility factor and relative permeability
ratio are given by the following expressions:

Z = 0. 8 − 0. 00002(p − 4000)

krg

kro
= 0. 00127 exp (17. 269Sg)

The production history of the field is given below:

4000 psi 3500 psi 3000 psi

µo, cp 1.3 1.25 1.2
µg, cp – 0.0125 0.0120
Bo, bbl/STB 1.4 1.35 1.30
Rs, scf/STB – – 450
GOR, scf/STB 600 – 1573

Subsurface information indicates that there is no aquifer
and there has been no water production.
Calculate:

(a) the remaining oil-in-place at 3000 psi;
(b) the cumulative gas produced at 3000 psi.

3. The following PVT and production history data is available
on an oil reservoir in West Texas.

Original oil-in-place = 10 MMSTB

Initial water saturation = 22%

Initial reservoir pressure = 2496 psia

Bubble point pressure = 2496 psi

Pressure Bo Rs Bg µo µg GOR
(psi) (bbl/ (scf/ (bbl/scf) (cp) (cp) (scf/

STB) STB) STB)

2496 1.325 650 0.000796 0.906 0.016 650
1498 1.250 486 0.001335 1.373 0.015 1360
1302 1.233 450 0.001616 1.437 0.014 2080

The cumulative gas–oil ratio at 1302 psi is recorded at 953
scf/STB. Calculate:

(a) the oil saturation at 1302 psia;
(b) the volume of the free gas in the reservoir at 1302

psia;
(c) the relative permeability ratio (kg/ko) at 1302 psia.

4. The Nameless field is an undersaturated oil reservoir. The
crude oil system and rock type indicate-that the reser-
voir is highly compressible. The available reservoir and
production data is given below:

Swi = 0. 25, φ = 20%,
area = 1000 acres, h = 70 ft,
T = 150◦F, Bubble point pressure = 3500 psia

Original conditions Current conditions

Pressure, psi 5000 4500
Bo, bbl/STB 1.905 1.920
Rs, scf/STB 700 700
Np, MSTB 0 610.9

Calculate the cumulative oil production at 3900 psi. The
PVT data shows that the oil formation volume factor is
equal to 1.938 bbl/STB at 3900 psia.

5. The following datab is available on a gas cap drive
reservoir:

Pressure Np Rp Bo Rs Bg
(psi) (MMSTB) (scf/ (RB/ (scf/ (RB/scf)

STB) STB) STB)

3330 1.2511 510 0.00087
3150 3.295 1050 1.2353 477 0.00092
3000 5.903 1060 1.2222 450 0.00096
2850 8.852 1160 1.2122 425 0.00101
2700 11.503 1235 1.2022 401 0.00107
2550 14.513 1265 1.1922 375 0.00113
2400 17.730 1300 1.1822 352 0.00120

Calculate the initial oil and free gas volumes.
6. If 1 million STB of oil have been produced from the Cal-

gary Reservoir at a cumulative produced GOR of 2700
scf/STB, causing the reservoir pressure to drop from the
initial reservoir pressure of 400 psia to 2400 psia, what is
the initial stock-tank oil-in-place?

7. The following data is taken from an oil field that had no
original gas cap and no water drive:

Oil pore volume of reservoir = 75 MM ft3

Solubility of gas in crude = 0.42 scf/STB/psi
Initial bottom-hole pressure = 3500 psia
Bottom-hole temperature = 140◦F
Bubble point pressure of the reservoir = 3000 psia
Formation volume factor at 3500 psia = 1.333 bbl/STB

bFundamental of Reservoir Engineering, Elsevier Publishing Co.,
Amsterdam, 1978.
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Compressibility factor of the gas at 1000 psia and
140◦F = 0. 95
Oil produced when pressure is 2000 psia=1.0 MMSTB
Net cumulative produced GOR = 2800 scf/STB

(a) Calculate the initial STB of oil in the reservoir.
(b) Calculate the initial scf of gas in the reservoir.
(c) Calculate the initial dissolved GOR of the reservoir.
(d) Calculate the scf of gas remaining in the reservoir at

2000 psia.
(e) Calculate the scf of free gas in the reservoir at 2000

psia.
(f) Calculate the gas volume factor of the escaped gas at

2000 psia at standard conditions of 14.7 psia and 60◦F.
(g) Calculate the reservoir volume of the free gas at 2000

psia.
(h) Calculate the total reservoir GOR at 2000 psia.
(i) Calculate the dissolved GOR at 2000 psia.
(j) Calculate the liquid volume factor of the oil at 2000

psia.
(k) Calculate the total, or two-phase, oil volume factor of

the oil and its initial complement of dissolved gas at
2000 psia.

8. Production data, along with reservoir and fluid data,
for an undersaturated reservoir follows. There was no
measureable water produced, and it can be assumed that
there was no free gas flow in the reservoir. Determine the
following:

(a) The saturations of oil, gas, and water at a reservoir
pressure of 2258.

(b) Has water encroachment occurred and, if so, what is
the volume?

Gas gravity = 0.78
Reservoir temperature = 160◦F
Initial water saturation = 25%
Original oil-in-place = 180 MMSTB
Bubble point pressure = 2819 psia

The following expressions for Bo and Rso as functions of
pressure were determined from laboratory data:

Bo = 1. 00 + 0. 00015p, bbl/STB

Rso = 50 + 0. 42p, scf/STB

Pressure Cumulative oil Cumulative gas Instantaneous
(psia) produced produced GOR

(MMSTB) (MMscf) (scf/STB)

2819 0 0 1000
2742 4.38 4.380 1280
2639 10.16 10.360 1480
2506 20.09 21.295 2000
2403 27.02 30.260 2500
2258 34.29 41.150 3300

9. The Wildcat Reservoir was discovered in 1970. The reser-
voir had an initial pressure of 3000 psia and laboratory
data indicated a bubble point pressure of 2500 psia. The
connate water saturation was 22%. Calculate the fractional
recovery, Np/N , from initial conditions down to a pres-
sure of 2300 psia. State any assumptions which you make
relative to the calculations.

Porosity = 0.165

Formation compressibility = 2. 5 × 10−6 psia−1

Reservoir temperature = 150◦F

Pressure Bo Rso Z Bg Viscosity
(psia) (bbl/STB) (scf/STB) (bbl/scf) ratio

µo/µg

3000 1.315 650 0.745 0.000726 53.91
2500 1.325 650 0.680 0.000796 56.60
2300 1.311 618 0.663 0.000843 61.46
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Most reservoir engineering calculations involve the use of
the material balance equation(MBE). Some of the most use-
ful applications of the MBE require the concurrent use of
fluid flow equations, e.g., Darcy’s equation. Combining the
two concepts would enable the engineer to predict the reser-
voir future production performance as a function of time.
Without the fluid flow concepts, the MBE simply provides
performance as a function of the average reservoir pressure.
Prediction of the reservoir future performance is ordinarily
performed in the following three phases:

Phase 1: The first phase involves the use of the MBE in a pre-
dictive mode to estimate cumulative hydrocarbon production
and fractional oil recovery as a function of declining reservoir
pressure and increasing gas–oil ratio (GOR). These results
are incomplete, however, because they give no indication of
the time that it will take to recover oil at any depletion stage.
In addition, this stage of calculations is performed without
considering:

● the actual number of wells;
● the location of wells;
● the production rate of individual wells;
● the time required to deplete the reservoir.

Phase 2: To determine recovery profile as a function of
time, it is necessary to generate individual well performance
profile with declining reservoir pressure. This phase docu-
ments different techniques that are designed to model the
production performance of vertical and horizontal wells.
Phase 3: The third stage of prediction is the time–production
phase. In these calculations, the reservoir and well perfor-
mance data is correlated with time. It is necessary in this
phase to account for the number of wells and the productivity
of individual well.

5.1 Phase 1. Reservoir Performance Prediction
Methods

The MBE in its various mathematical forms as presented in
Chapter 4 is designed to provide estimates of the initial oil-
in-place N, size of the gas cap m, and water influx We. To use
the MBE to predict the reservoir future performance, two
additional relations are required:

(1) the equation of producing (instantaneous) GOR;
(2) the equation for relating saturations to cumulative oil

production.

These auxiliary mathematical expressions are presented
below.

5.1.1 Instantaneous GOR
The produced GOR at any particular time is the ratio of
the standard cubic feet of total gas being produced at any
time to the stock-tank barrels of oil being produced at that
same instant—hence, the name instantaneous GOR. Equa-
tion (1.2.42) in Chapter 1 describes the GOR mathematically
by the following expression:

GOR = Rs +
(

krg

kro

)(
µoBo

µgBg

)
[5.1.1]

where:

GOR = instantaneous gas–oil ratio, scf/STB
Rs = gas solubility, scf/STB
krg = relative permeability to gas
kro = relative permeability to oil
Bo = oil formation volume factor, bbl/STB
Bg = gas formation volume factor, bbl/scf
µo = oil viscosity, cp
µg = gas viscosity, cp
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Figure 5.1 Characteristics of solution gas drive
reservoirs.
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Figure 5.2 History of GOR and Rs for a solution gas
drive reservoir.

The instantaneous GOR equation is of fundamental impor-
tance in reservoir analysis. The importance of Equation
5.1.1 can appropriately be discussed in conjunction with
Figures 5.1 and 5.2. Those illustrations show the history of
the GOR of a hypothetical depletion drive reservoir that is
typically characterized by the following points:

Point 1. When the reservoir pressure p is above the bubble
point pressure pb, there is no free gas in the formation, i.e.,
krg = 0, and therefore:

GOR = Rsi = Rsb [5.1.2]

The GOR remains constant at Rsi until the pressure
reaches the bubble point pressure at point 2.
Point 2. As the reservoir pressure declines below pb, the gas
begins to evolve from solution and its saturation increases.
However, this free gas cannot flow until the gas saturation
Sg reaches the critical gas saturation Sgc at point 3. From
point 2 to point 3, the instantaneous GOR is described by a
decreasing gas solubility, as:

GOR = Rs [5.1.3]

Point 3. At this point, the free gas begins to flow with the
oil and the values of GOR progressively increase with the
declining reservoir pressure to point 4. During this pressure
decline period, the GOR is described by Equation 5.1.1, or:

GOR = Rs +
(

krg

kro

)(
µoBo

µgBg

)
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Point 4. At this point, the maximum GOR is reached due to
the fact that the supply of gas has reached a maximum and
marks the beginning of the blow-down period to point 5.
Point 5. This point indicates that all the producible free gas
has been produced and the GOR is essentially equal to the
gas solubility and continues to decline following the Rs curve.

There are three types of GORs, all expressed in scf/STB,
which must be clearly distinguished from each other.
These are:

● instantaneous GOR (defined by Equation 5.5.1);
● solution GOR, i.e., gas solubility Rs;
● cumulative GOR Rp.

The solution GOR is a PVT property of the crude oil system.
It is commonly referred to as “gas solubility” and denoted
by Rs. It measures the tendency of the gas to dissolve in
or evolve from the oil with changing pressures. It should be
pointed out that as long as the evolved gas remains immobile,
i.e., gas saturation Sg is less than the critical gas saturation,
the instantaneous GOR is equal to the gas solubility. That is:

GOR = Rs

The cumulative GOR Rp, as defined previously in the MBE,
should be clearly distinguished from the producing (instan-
taneous) GOR. The cumulative GOR is defined as:

Rp = cumulative(total) gas produced
cumulative oil produced

or:

Rp = Gp

Np
[5.1.4]

where:

Rp = cumulative GOR, scf/STB
Gp = cumulative gas produced, scf
Np = cumulative oil produced, STB

The cumulative gas produced Gp is related to the instanta-
neous GOR and cumulative oil production by the expression:

Gp =
∫ Np

0
(GOR)dNp [5.1.5]

Equation 5.1.5 simply indicates that the cumulative gas
production at any time is essentially the area under the curve
of the GOR vs. Np relationship, as shown in Figure 5.3.

Np

Gp

Np2Np1

GOR2

GOR1

GOR

Figure 5.3 Relationship between GOR and Gp.

The incremental cumulative gas produced, �Gp, between
Np1 and Np2 is then given by:

�Gp =
∫ Np2

Np1

(GOR)dNp [5.1.6]

This integral can be approximated by using the trapezoidal
rule, to give:

�Gp =
[(

GOR
)

1 + (GOR
)

2

2

] (
Np2 − Np1

)

or:
�Gp = (GOR)avg�Np

Equation 5.1.5 can then be approximated as:

Gp =
∑

0

(GOR)avg�Np [5.1.7]

Example 5.1 The following production data is available
on a depletion drive reservoir:

p GOR Np
(psi) (scf/STB) (MMSTB)

1340 0
2600 1340 1.380
2400 1340 2.260

1340 3.445
1800 1936 7.240
1500 3584 12.029
1200 6230 15.321

The initial reservoir pressure is 2925 psia with a bub-
ble point pressure of 2100 psia. Calculate cumulative gas
produced Gp and cumulative GOR at each pressure.

Solution

Step 1. Construct the following table by applying Equations
5.1.4 and 5.1.7:

Rp = Gp

Np

�Gp =
[(

GOR
)

1 + (GOR
)

2

2

] (
Np2 − Np1

) = (GOR)avg�Np

Gp =
∑

0

(
GOR

)
avg�Np

p GOR (GOR)avg Np �Np �Gp Gp Rp
(psi)(scf/STB)(scf/STB)(MMSTB)(MMSTB)(MMscf)(MMscf)(scf/STB)

2925 1340 1340 0 0 0 0 −
2600 1340 1340 1.380 1.380 1849 1849 1340
2400 1340 1340 2.260 0.880 1179 3028 1340
2100 1340 1340 3.445 1.185 1588 4616 1340
1800 1936 1638 7.240 3.795 6216 10 832 1496
1500 3584 2760 12.029 4.789 13 618 24 450 2033
1200 6230 4907 15.321 3.292 16 154 40 604 2650

It should be pointed out that the crude oil PVT prop-
erties used in the MBE are appropriate for moderate-low
volatility “black oil” systems which, when produced at
the surface, is separated into oil and solution gas. These
properties; as defined mathematically below are designed
to relate surface volumes to reservoir volumes and vice
versa.

Rs =
volume of solution gas dissolved
in the oil at reservoir condition

volume of the oil at stock − tank conditions
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Bo = volume of oil at reservoir condition
volume of the oil at stock − tank conditions

Bg = volume of the free gas at reservoir condition
volume of free gas at stock − tank conditions

Whitson and Brule (2000) point out that the above three
properties constitute the classical (black oil) PVT data
required for various type of applications of the MBE. How-
ever; in formulating the material balance equation; the
following assumptions were made when using the black oil
PVT data:

(1) Reservoir gas does not yield liquid when brought to the
surface

(2) Reservoir oil consists of two surface “components”;
stock-tank oil and total surface separator gas

(3) Properties of stock-tank oil in terms of its API gravity
and surface gas do not change with depletion pressure.

(4) Surface gas released from the reservoir oil has the same
properties as the reservoir gas

This situation is more complex when dealing with volatile
oils. This type of crude oil systems are characterized by sig-
nificant hydrocarbon liquid recovery from their produced
reservoir gases. As the reservoir pressure drops below the
bubblepoint pressure; the evolved solution gas liberated in
the reservoir contains enough heavy components to yield
appreciable condensate dropout at the separators that is
combined with the stock-tank oil. This is in contrast to black
oils for which little error is introduced by the assumption
that there is negligible hydrocarbon liquid recovery from
produced gas. Also, volatile oils evolve gas and develop free-
gas saturation in the reservoir more rapidly than normal
black oils as pressure declined below the bubblepoint. This
causes relatively high GOR’s at the wellhead. Thus, perfor-
mance predictions differ from those discussed for black oils
mainly because of the need to account for liquid recovery
from the produced gas. Conventional material balances with
standard laboratory PVT (black-oil) data underestimate oil
recovery. The error increases for increasing oil volatility.

Consequently, depletion performance of volatile oil reser-
voirs below bubblepoint is strongly influenced by the rapid
shrinkage of oil and by the large amounts of gas evolved.
This results in relatively high gas saturation, high producing
GOR’s, and low to moderate production of reservoir oil. The
produced gas can yield a substantial volume of hydrocarbon
liquids in the processing equipment. This liquid recovery at
the surface can equal or exceed the volume of stock-tank oil
produced from the reservoir liquid phase. Depletion-drive
recoveries are often between 15 and 30% of the original oil
in place.

For volatile oil reservoir primary-performance prediction
methods, the key requirements are correct handling of the
oil shrinkage, gas evolution, gas and oil flow in the reservoir,
and liquids recovery at the surface. If

Qo = Black oil flow rate, STB/day
Q\

o = Total flow rate including condensate, STB/day
Rs = Gas solubility, scf/STB

GOR = Total measured gas-oil ratio, scf/STB
rs = Condensate yield, STB/scf

Then:

Qo = Q\
o − (Q\

oGOR − QoRs)rs

Solving for Qo, gives:

Qo = Q\
o

[
1 − (rsGOR)

1 − (rsRs)

]

The above expression can be used to adjust the cumulative
“black oil” production, Np, to account for the condensate

production. The black oil cumulative production is then
calculated from:

Np =
∫ t

0
Qo dt ≈

t∑
0

(�Qo�t)

The cumulative total gas production “Gp” and the adjusted
cumulative black oil production “Np” is used in Equation 5.1.4
to calculate the cumulative gas-oil ratio; i.e.,:

Rp = Gp

Np

Whitson, C, and Brule, M: Phase Behavior, SPE
Monograph Volume 20, Society of Petroleum Engineers,
Richardson, Texas, 2000.

5.1.2 The Reservoir Saturation Equations
and Their Adjustments

The saturation of a fluid (gas, oil, or water) in the reservoir
is defined as the volume of the fluid divided by the pore
volume, or:

So = oil volume
pore volume

[5.1.8]

Sw = water volume
pore volume

[5.1.9]

Sg = gas volume
pore volume

[5.1.10]

So + Sw + Sg = 1. 0 [5.1.11]

Consider a volumetric oil reservoir with no gas cap that
contains N stock-tank barrels of oil at the initial reservoir
pressure pi . Assuming no water influx gives:

Soi = 1 − Swi

where the subscript i indicates the initial reservoir condi-
tion. From the definition of oil saturation:

1 − Swi = NBoi

pore volume
or:

Pore volume = NBoi

1 − Swi
[5.1.12]

If the reservoir has produced Np stock-tank barrels of oil,
the remaining oil volume is given by:

Remaining oil volume = (N − Np)Bo [5.1.13]

Substituting Equations 5.1.13 and 5.1.12 into 5.1.8 gives:

So = remaining oil volume
pore volume

=
(
N − Np

)
Bo(

NBoi

1 − Swi

) [5.1.14]

or:

So = (1 − Swi
) (

1 − Np

N

)
Bo

Boi
[5.1.15]

and therefore:

Sg = 1 − So − Swi [5.1.16]

Example 5.2 A volumetric solution gas drive reservoir
has an initial water saturation of 20%. The initial oil formation
volume factor is reported at 1.5 bbl/STB. When 10% of the
initial oil was produced, the value of Bo decreased to 1.38.
Calculate the oil saturation and gas saturation.
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Solution From Equations 5.1.15 and 5.1.16:

So = (1 − Swi
) (

1 − Np

N

)
Bo

Boi

= (1 − 0. 2
) (

1 − 0. 1
) (1. 38

1. 50

)
= 0. 662

Sg = 1 − So − Swi

= 1 − 0. 662 − 0. 20 = 0. 138

It should be pointed out that the values of the relative per-
meability ratio krg/kro as a function of oil saturation can be
generated by using the actual field production as expressed
in terms of Np, GOR, and PVT data. The recommended
methodology involves the following steps:

Step 1. Given the actual field cumulative oil production Np
and the PVT data as a function of pressure, calculate
the oil and gas saturations from Equations 5.1.15 and
5.1.16:

So = (1 − Swi
) (

1 − Np

N

)
Bo

Boi

Sg = 1 − So − Swi

Step 2. Using the actual field instantaneous GORs, solve
Equation 5.1.1 for the relative permeability ratio, as:

krg

kro
= (GOR − Rs

) (µgBg

µoBo

)

Step 3. The relative permeability ratio is traditionally
expressed graphically by plotting krg/kro vs. So on
semilog paper. This is obviously not the case in
a gravity drainage reservoir and will result in the
calculation of abnormally low oil saturation.

Notice that Equation 5.1.14 suggests that all the remaining
oil saturation at any depletion stage is distributed uniformly
throughout the reservoir. In dealing with gravity drainage
reservoirs, water drive reservoirs, or gas cap drive reser-
voirs, adjustments must be made to the oil saturation as
calculated by Equation 5.1.14 to account for:

● migration of the evolved gas upstructure;
● trapped oil in the water-invaded region;
● trapped oil in the gas cap expansion zone;
● loss of oil saturation in the gas cap shrinkage zone.

Oil saturation adjustment in gravity drainage reservoirs
In these types of reservoirs, the gravity effects result in much
lower producing GORs than would be expected from reser-
voirs producing without the benefit of gravity drainage. This
is due to the upstructure migration of the gas and conse-
quent higher oil saturation in the vicinity of the completion
intervals of the production wells which should be used when
calculating the oil relative permeability kro. The following
steps summarize the recommended procedure for adjusting
Equation 5.1.14 to reflect the migration of gas to the top of
the structure:

Step 1. Calculate the volume of the evolved gas that will
migrate to the top of the formation to form the
secondary gas cap from the following relationship:

(gas)migrated = [NRsi − (N − Np)Rs − NpRp]Bg

−
[

NBoi

1 − Swi
− (PV)SGC

]
Sgc

where:

(PV)SGC = pore volume of the secondary gas
cap, bbl

Sgc = critical gas saturation
Bg = current gas formation volume factor,

bbl/scf

Step 2. Recalculate the volume of the evolved gas that will
form the secondary gas cap from following relation-
ship:

(gas)migrated = [1 − Swi − Sorg](PV)SGC

where:

(PV)SGC = pore volume of the secondary gas
cap, bbl

Sorg = residual oil saturation to gas
displacement

Swi = connate or initial water saturation

Step 3. Equating the two derived relationships and solving
for secondary gas cap pore volume gives:

(PV)SGC =
[NRsi − (N − Np)Rs − NpRp]Bg −

[
NBoi

1 − Swi

]
Sgc

(1 − Swi − Sorg − Sgc)

Step 4. Adjust Equation 5.1.14 to account for the migration
of the evolved gas to the secondary gas cap, to give:

So =
(
N − Np

)
Bo − (PV)SGCSorg(

NBoi

1 − Swi

)
− (PV)SGC

[5.1.17]

It should be noted that the oil recovery by gravity drainage
involves two fundamental mechanisms:

(1) the formation of the secondary gas cap as presented by
Equation 5.1.17

(2) the gravity drainage rate

For an efficient gravity drive mechanism, the gas must flow
upstructure while the oil flows downstructure, i.e., both
phases are moving in opposite directions; this is called the
“counterflow” of oil and gas. Since both fluids are flowing,
gas–oil relative permeability characteristics of the formation
are very important. Since the gas saturation is not uniform
throughout the oil column, the field calculated, krg/kro, that
is based on the material balance calculations, must be used.
For the counterflow to occur, the actual reservoir pressure
gradient must be between the static gradient of the oil and
gas. That is:

ρgas <

(
dp
dz

)
< ρoil

where:

ρoil = oil gradient, psi/ft
ρgas = gas gradient, psi/ft

dp/dz = reservoir pressure gradient, psi/ft

Terwilliger et al. (1951) pointed out that oil recovery by
gravity segregation is rate sensitive and that a rather sharp
decrease in recovery would occur at production rates above
the maximum rate of gravity drainage and, hence, produc-
tion should not exceed this particular maximum rate. The
maximum rate of gravity drainage is defined as the “rate at
which complete counterflow exists” and mathematically by
the following expression:

qo = 7. 83 × 10−6kkroA(ρo − ρg) sin(α)
µo

where:

qo = oil production rate, bbl/day
ρo = oil density, lb/ft3

TLFeBOOK



5/332 PREDICTING OIL RESERVOIR PERFORMANCE

Soi, Swi

Water Influx Sorg Water Influx

Current WOC

Original WOC

Figure 5.4 Oil saturation adjustment for water influx.

ρg = gas density, lb/ft3

A = cross-sectional area open to flow, ft2

k = absolute permeability, md
α = dip angle

This calculated value of qo represents the maximum oil rate
that should not be exceeded without causing the gas to flow
downward.

Oil saturation adjustment due to water influx
The proposed oil saturation adjustment methodology is
illustrated in Figure 5.4 and described by the following steps:

Step 1. Calculate the PV in the water-invaded region, as:
We − WpBw = (PV)water(1 − Swi − Sorw)

Solving for the PV of the water-invaded zone,
(PV)water , gives:
(
PV
)

water = We − WpBw

1 − Swi − Sorw
[5.1.18]

where:

(PV)water = pore volume in water-invaded
zone, bbl

Sorw = residual oil saturated in the
imbibition water–oil system

Step 2. Calculate the oil volume in the water-invaded
zone, or:
Volume of oil = (PV)waterSorw [5.1.19]

Step 3. Adjust Equation 5.1.14 to account for the trapped oil
by using Equations 5.1.18 and 5.1.19:

So =
(
N − Np

)
Bo −

[
We − WpBw

1 − Swi − Sorw

]
Sorw

(
NBoi

1 − Swi

)
−
[

We − WpBw

1 − Swi − Sorw

] [5.1.20]

Oil saturation adjustment due to gas cap expansion
The oil saturation adjustment procedure is illustrated in
Figure 5.5 and summarized below:

Step 1. Assuming no gas is produced from the gas cap,
calculate the net expansion of the gas cap, from:

Expansion of the gas cap = mNBoi

(
Bg

Bgi
− 1
)

[5.1.21]
Step 2. Calculate the PV of the gas-invaded zone, (PV)gas, by

solving the following simple material balance:

mNBoi

(
Bg

Bgi
− 1
)

= (PV)gas(1 − Swi − Sorg)

or:

(
PV
)

gas =
mNBoi

(
Bg

Bgi
− 1
)

1 − Swi − Sorg
[5.1.22]

Gas Cap

Sgi, Swi

Sg, Swi

Swi, Sorg

Gas–Cap Expansion

Original GOC

Current GOC

Figure 5.5 Oil saturation adjustment for gas cap
expansion.

where:

(PV)gas = pore volume of the gas-invaded zone
Sorg = residual oil saturation in gas–oil

system

Step 3. Calculate the volume of oil in the gas-invaded zone.
Oil volume = (PV)gasSorg [5.1.23]

Step 4. Adjust Equation 5.1.14 to account for the trapped oil
in the gas expansion zone by using Equations 5.1.22
and 5.1.23, to give:

So =

(
N − Np

)
Bo −

[
mNBoi

(
Bg
Bgi

− 1
)

1 − Swi − Sorg

]
Sorg

(
NBoi

1 − Swi

)
−
[

mNBoi

1 − Swi − Sorg

](
Bg

Bgi
− 1
)

[5.1.24]

Oil saturation adjustment for combination drive
For a combination drive reservoir, i.e., water influx and gas
cap, the oil saturation equation as given by Equation 5.1.14
can be adjusted to account for both driving mechanisms, as:

So =

(
N −Np

)
Bo −

[
mNBoi

(
Bg
Bgi

−1
)

Sorg

1−Swi −Sorg
+
(
We −BwWp

)
Sorw

1−Swi −Sorw

]

NBoi

1−Swi
−
[

mNBoi

(
Bg
Bgi

−1
)

1−Swi −Sorg
+ We −WpBw

1−Swi −Sorw

]

[5.1.25]

Oil saturation adjustment for shrinking gas cap
The control of the gas cap size is very often a reliable guide
to the efficiency of reservoir operations. A shrinking gas
cap will cause the loss of a substantial amount of oil, which
might otherwise be recovered. Normally, there is little or no
oil saturation in the gas cap, and if the oil migrates into the
original gas zone there will necessarily be some residual oil
saturation remaining in this portion of the gas cap at aban-
donment. As pointed out by Cole (1961), the magnitude of
this loss may be quite large and depends on:

● the area of the gas–oil contact;
● the rate of gas cap shrinkage;
● the relative permeability characteristics;
● the vertical permeability.

A shrinking gas cap can be controlled by either shutting in
wells which are producing large quantities of gas cap gas
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or returning some of the produced gas back to the gas cap
portion of the reservoir. In many cases, the shrinkage cannot
be completely eliminated by shutting in wells, as there is a
practical limit to the number of wells that can be shut in. The
amount of oil lost by the shrinking gas cap can be very well
the engineer’s most important economic justification for the
installation of gas return facilities.

The difference between the original volume of the gas cap
and the volume occupied by the gas cap at any subsequent
time is a measure of the volume of oil that has migrated
into the gas cap. If the size of the original gas cap is mNBoi,
then the expansion of the original free gas resulting from
reducing the pressure from pi to p is:
Expansion of the original gas cap = mNBoi[(Bg/Bgi) − 1)]

where:

mNBoi = original gas cap volume, bbl
Bg = gas formation volume factor, bbl/scf

If the gas cap is shrinking, then the volume of the produced
gas must be larger than the gas cap expansion. All of the oil
that moves into the gas cap will not be lost, as this oil will
also be subject to the various driving mechanisms. Assuming
no original oil saturation in the gas zone, the oil that will
be lost is essentially the residual oil saturation remaining
at abandonment. If the cumulative gas production from the
gas cap is Gpc scf, the volume of the gas cap shrinkage as
expressed in barrels is equal to:

Gas cap shrinkage = GpcBg − mNBoi[(Bg/Bgi) − 1)
From the volumetric equation:
GpcBg − mNBoi

[
(Bg/Bgi) − 1

] = 7758Ahφ(1 − Swi − Sgr)
where:

A = average cross-sectional area of the gas–oil contact,
acres

h = average change in depth of the gas–oil contact, ft
Sgr = residual gas saturation in the shrinking zone

The volume of oil lost as a result of oil migration to the gas
cap can also be calculated from the volumetric equation as
follows:

Oil lost = 7758AhφSorg/Boa

N = Np[Bo + (Rp − Rs)Bg] − (We − WpBw) − GinjBginj − WinjBwi

(Bo − Boi) + (Rsi − Rs)Bg + mBoi

[
Bg

Bgi
− 1
]

+ Boi(1 + m)
[

Swicw + cf

1 − Swi

]
�p

where:

Sorg = residual oil saturation in the gas cap shrinking
zone

Boa = oil formation volume factor at abandonment

Combining the above relationships and eliminating the term
7758Ahφ, gives the following expression for estimating the
volume of oil in barrels lost in the gas cap:

Oil lost =
[GpcBg − mNBoi

(
Bg

Bgi
− 1
)

]Sorg

(1 − Swi − Sgr)Boa

where:
Gpc = cumulative gas production for the gas cap, scf
Bg = gas formation volume factor, bbl/scf

All the methodologies that have been developed to pre-
dict the future reservoir performance are essentially based
on employing and combining the above relationships that
include:

● the MBE;

● the saturation equations;
● the instantaneous GOR;
● the equation relating the cumulative GOR to the instanta-

neous GOR.

Using the above information, it is possible to predict the
field primary recovery performance with declining reser-
voir pressure. There are three methodologies that are widely
used in the petroleum industry to perform a reservoir study.
These are:

(1) the Tracy method;
(2) the Muskat method;
(3) the Tarner method.

All three methods yield essentially the same results when
small intervals of pressure or time are used. The methods
can be used to predict the performance of a reservoir under
any driving mechanism, including:

● solution gas drive;
● gas cap drive;
● water drive;
● combination drive.

The practical use of all the techniques is illustrated in pre-
dicting the primary recovery performance of a volumetric
solution gas drive reservoir. Using the appropriate saturation
equation, e.g., Equation 5.1.20 for a water drive reservoir,
any of the available reservoir prediction techniques could be
applied to other reservoirs operating under different driving
mechanisms.

The following two cases of the solution gas drive reservoir
are considered.

(1) undersaturated oil reservoirs;
(2) saturated oil reservoirs.

5.1.3 Undersaturated oil reservoirs
When the reservoir pressure is above the bubble point pres-
sure of the crude oil system, the reservoir is considered as
undersaturated. The general material balance is expressed
in Chapter 4 by Equation 4.3.15:

For a volumetric undersaturated reservoir with no fluid
injection, the following conditions are observed:

● m = 0;
● We = 0;
● Rs = Rsi = Rp.

Imposing the above conditions on the MBE reduces the
equation to the following simplified form:

N = NpBo

(Bo − Boi) + Boi

[
Swicw + cf

1 − Swi

]
�p

[5.1.26]

with:

�p = pi − p

where:

pi = initial reservoir pressure
p = current reservoir pressure

Hawkins (1955) introduced the oil compressibility co
into the MBE to further simplify the equation. The oil
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Figure 5.6 Pressure voidage relationship.

compressed is defined as:

co = 1
Boi

∂Bo

∂p
≈ 1

Boi

Bo − Boi

�p
Rearranging:

Bo − Boi = coBoi�p
Combining the above expression with Equation 5.1.26

gives:

N = NpBo

coBoi�p + Boi

[
Swicw + cf

1 − Swi

]
�p

[5.1.27]

The denominator of the above equation can be
regrouped as:

N = NpBo

Boi

[
co + Swicw

1 − Swi
+ cf

1 − Swi

]
�p

[5.1.28]

Since there are only two fluids in the reservoir, i.e., oil and
water, then:

Soi = 1 − Swi

Rearranging Equation 5.1.28 to include initial oil saturation
gives:

N = NpBo

Boi

[
Soico + Swicw + cf

1 − Swi

]
�p

The term in the square brackets is called the effective
compressibility and defined by Hawkins (1955) as:

ce = Soico + Swicw + cf

1 − Swi
[5.1.29]

Therefore, the MBE above the bubble point pressure
becomes:

N = NpBo

Boice�p
[5.1.30]

Equation 5.1.30 can be expressed as the equation of a
straight line by:

p = pi −
[

1
NBoice

]
NpBo [5.1.31]

Figure 5.6 indicates that the reservoir pressure will
decrease linearly with cumulative reservoir voidage NpBo.

Rearranging Equation 5.1.31 and solving for the cumula-
tive oil production Np gives:

Np = Nce

(
Bo

Boi

)
�p [5.1.32]

The calculation of future reservoir production, therefore,
does not require a trial-and-error procedure, but can be
obtained directly from the above expression.

Example 5.3 The following data is available on a volumet-
ric undersaturated oil reservoir.

pi = 4000 psi,

pb = 3000 psi,

N = 85 MMSTB

cf = 5 × 10−6 psi−1,

co = 15 × 10−6 psi−1,

cw = 3 × 10−6 psi−1

Swi = 30%,

Boi = 1. 40 bbl/STB

Estimate cumulative oil production when the reservoir
pressure drops to 3500 psi. The oil formation volume factor
at 3500 psi is 1.414 bbl/STB.

Solution

Step 1. Determine the effective compressibility from Equa-
tion 5.1.29:

ce = Soico + Swicw + cf

1 − Swi

= (0. 7)(15 × 10−6) + (0. 3)(3 × 10−6) + 5 × 10−6

1 − 0. 3

= 23. 43 × 10−6 psi−1

Step 2. Estimate Np from Equation 5.1.32:

Np = Nce

(
Bo

Boi

)
�p

= (85 × 106) (23. 43 × 10−6) ( 1. 411
1. 400

) (
4000 − 3500

)

= 985. 18 MSTB

5.1.4 Saturated oil reservoirs
If the reservoir originally exists at its bubble point pressure,
the reservoir is referred to as a saturated oil reservoir. This is
considered as the second type of solution gas drive reservoir.
As the reservoir pressure declines below the bubble point,
the gas begins to evolve from solution. The general MBE
may be simplified by assuming that the expansion of the
gas is much greater than the expansion of rock and initial
water and, therefore, can be neglected. For a volumetric and
saturated oil reservoir with no fluid injection, the MBE can
be expressed by:

N = NpBo + (Gp − NpRs
)

Bg(
Bo − Boi

)+ (Rsi − Rs
)

Bg
[5.1.33]

This MBE contains two unknowns. These are:

(1) cumulative oil production Np;
(2) cumulative gas production Gp.

The following reservoir and PVT data must be available in
order to predict the primary recovery performance of a
depletion drive reservoir in terms of Np and Gp.
Initial oil-in-place N: Generally the volumetric estimate of
oil-in-place is used in calculating the performance. How-
ever, where there is sufficient solution gas drive history, this
estimate may be checked by calculating a material balance
estimate.
Hydrocarbon PVT data: Since differential gas liberation is
assumed to best represent the conditions in the reservoir,
differential laboratory PVT data should be used in reservoir
material balance. The flash PVT data is then used to convert
from reservoir conditions to stock-tank conditions.

If laboratory data is not available, reasonable estimates
may sometimes be obtained from published correlations. If
differential data is not available, the flash data may be used
instead; however, this may result in large errors for high-
solubility crude oils.
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Initial fluid saturations: Initial fluid saturations obtained
from a laboratory analysis of core data are preferred; how-
ever, if these are not available, estimates in some cases may
be obtained from a well log analysis or may be obtained from
other reservoirs in the same or similar formations.
Relative permeability data: Generally, laboratory deter-
mined kg/ko and kro data is averaged to obtain a single
representative set for the reservoir. If laboratory data is not
available, estimates in some cases may be obtained from
other reservoirs in the same or similar formations.

Where there is sufficient solution gas drive history for the
reservoir, calculate krg/kro values versus saturation from:

So = (1 − Swi
) (

1 − Np

N

)
Bo

Boi

krg

kro
= (GOR − Rs

) (µgBg

µoBo

)

The above results should be compared with the aver-
aged laboratory relative permeability data. This may indi-
cate a needed adjustment in the early data and possibly an
adjustment in the overall data.

All the techniques that are used to predict the future
performance of a reservoir are based on combining the
appropriate MBE with the instantaneous GOR using the
proper saturation equation. The calculations are repeated at
a series of assumed reservoir pressure drops. These calcula-
tions are usually based on one stock-tank barrel of oil-in-place
at the bubble point pressure, i.e., N = 1. This avoids dealing
with large numbers in the calculation procedure and per-
mits calculations to be made on the basis of the fractional
recovery of initial oil-in-place.

As mentioned above, there are several widely used tech-
niques that were specifically developed to predict the perfor-
mance of solution gas drive reservoirs, including:

● the Tracy method;
● the Muskat technique;
● the Tarner method.

These methodologies are presented below.

Tracy method
Tracy (1955) suggested that the general MBE can be rear-
ranged and expressed in terms of three functions of PVT
variables. Tracy’s arrangement is given in Chapter 4 by
Equation 4.5.2 and is repeated here for convenience:
N = Np�o + Gp�g + (WpBw − We)�w [5.1.34]
where�o, �g, and�w are considered PVT-related properties
that are functions of pressure and defined by:

�o = Bo − RsBg

Den

�g = Bg

Den

�w = 1
Den

with:

Den = (Bo − Boi
)+ (Rsi − Rs

)
Bg + mBoi

[
Bg

Bgi
− 1
]

[5.1.35]
For a solution gas drive reservoir, Equations 5.1.34 and

5.1.35 are reduced to the following expressions, respectively:
N = Np�o + Gp�g [5.1.36]
and:
Den = (Bo − Boi) + (Rsi − Rs)Bg [5.1.37]
Tracy’s calculations are performed in a series of pressure
drops that proceed from known reservoir conditions at

the previous reservoir pressure p* to the new, assumed,
lower pressure p. The calculated results at the new reser-
voir pressure become “known” at the next assumed lower
pressure.

In progressing from the conditions at any pressure p∗ to
the lower reservoir pressure p, consider that the incremental
oil and gas production as �Np and �Gp, or:
Np = N ∗

p + �Np [5.1.38]

Gp = G∗
p + �Gp [5.1.39]

where:

N ∗
p , G∗

p = “known” cumulative oil and gas production at
previous pressure level p∗

Np, Gp = “unknown” cumulative oil and gas at new
pressure level p

Replacing Np and Gp in Equation 5.1.36 with those of 5.1.38
and 5.1.39 gives
N = (N ∗

p + �Np)�o + (G∗
p + �Gp)�g [5.1.40]

Defining the average instantaneous GOR between the two
pressures p∗ and p by:
(
GOR

)
avg = GOR∗ + GOR

2
[5.1.41]

the incremental cumulative gas production �Gp can be
approximated by Equation 5.1.6 as:
�Gp = (GOR)avg�Np [5.1.42]
Replacing �Gp in Equation 5.1.40 with that of 5.1.41 gives:
N = [N ∗

p + �Np]�o + [G∗
p + �Np(GOR)avg]�g [5.1.43]

If Equation 5.1.43 is expressed for N = 1, the cumulative
oil production Np and cumulative gas production Gp become
fractions of initial oil-in place. Rearranging Equation 5.1.43
gives:

�Np = 1 − (N ∗
p �o + G∗

p�g
)

�o + (GOR
)

avg �g
[5.1.44]

Equation 5.1.44 shows that there are essentially two
unknowns. These are:

(1) the incremental cumulative oil production �Np;
(2) the average gas–oil ratio (GOR)avg.

The methodology involved in solving Equation 5.1.44 is
basically an iterative technique with the objective of converg-
ing to the future GOR. In the calculations as described below,
three GORs are included at any assumed depletion reservoir
pressure. These are:

(1) the current (known) gas–oil ratio GOR∗ at current
(known) reservoir pressure p∗;

(2) the estimated gas–oil ratio (GOR)est at a selected new
reservoir pressure p;

(3) the calculated gas–oil ratio (GOR)cal at the same selected
new reservoir pressure p.

The specific steps of solving Equation 5.1.44 are given
below:

Step 1. Select a new average reservoir pressure p below the
previous reservoir pressure p∗.

Step 2. Calculate the values of the PVT functions �o and
�g at the selected new reservoir pressure p.

Step 3. Estimate the GOR designated as (GOR)est at the
selected new reservoir pressure p.

Step 4. Calculate the average instantaneous GOR:

(GOR)avg = GOR∗ + (GOR)est

2
where GOR∗ is a “known” GOR at previous pres-
sure level p∗.
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Step 5. Calculate the incremental cumulative oil produc-
tion �Np from Equation 5.1.44, as:

�Np = 1 − (N ∗
p �o + G∗

p�g
)

�o + (GOR
)

avg �g

Step 6. Calculate cumulative oil production Np:

Np = N ∗
p + �Np

Step 7. Calculate the oil and gas saturations at selected
average reservoir pressure by using Equations
5.1.15 and 5.1.16, as:

So = (1 − Swi
) (

1 − Np

N

)
Bo

Boi

Since the calculations are based on N = 1, then:

So = (1 − Swi
) (

1 − Np
) Bo

Boi

with gas saturation of:

Sg = 1 − So − Swi

Step 8. Obtain the ratio krg/kro at SL , i.e., at (So +Swi), from
the available laboratory or field relative permeabil-
ity data.

Step 9. Using the relative permeability ratio krg/kro, calcu-
late the instantaneous GOR from Equation 5.1.1 and
designate it as (GOR)cal:

(GOR)cal = Rs + krg

kro

(
µoBo

µgBg

)

Step 10. Compare the estimated (GOR)est in step 3 with the
calculated (GOR)cal in step 9. If the values are within
the acceptable tolerance of:

0. 999 ≤ (GOR)cal

(GOR)est
≤ 1. 001

then proceed to the next step. If they are not within
the tolerance, set the estimated (GOR)est equal to
the calculated (GOR)cal and repeat the calculations
from step 4. Steps 4 through 10 are repeated until
convergence is achieved.

Step 11. Calculate the cumulative gas production

Gp = G∗
p + �Np

(
GOR

)
avg

Step 12. Since results of the calculations are based on 1 STB
of oil initially in place, a final check on the accuracy
of the prediction should be made on the MBE, or:

0. 999 ≤ (Np�o + Gp�g) ≤ 1. 001

Step 13. Repeat from Step 1 with a new pressure and setting:

p∗ = p

GOR∗ = GOR

G∗
p = Gp

N ∗
p = Np

As the calculation progresses, a plot of GOR versus pres-
sure should be maintained and extrapolated as an aid in
estimating GOR at each new pressure.
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Figure 5.7 Relative permeability data for Example 5.4
(After Economides, M., et al., Petroleum Production
Systems, Prentice Hall Petroleum Engineers Series,
1994).

Example 5.4 The following PVT data characterizes a
solution gas drive reservoir. The relative permeability data
is shown is Figure 5.7.

p Bo Bg Rs
(psi) (bbl/STB) (bbl/scf) (scf/STB)

4350 1.43 6.9 × 10 840
4150 1.420 7.1 × 10 820
3950 1.395 7.4 ×10−4 770
3750 1.380 7.8 ×10−4 730
3550 1.360 8.1 ×10−4 680
3350 1.345 8.5 ×10−4 640

The following additional data is available:

N = 15 MMSTB,

pi = 4350 psia,

pb = 4350 psia,

Swi = 30%,

N = 15 MMSTB,

p∗ = 4350

GOR∗ = 840 scf/STB,

G∗
p = 0,

N ∗
p = 0

Predict the cumulative oil and gas production to 3350 psi.

Solution A sample of Tracy’s calculation procedure is
performed at 4150 psi.

Step 1. Calculate Tracy’s PVT functions at 4150 psia. First
calculate the term “Den” from Equation 5.1.37:

Den = (Bo − Boi) + (Rsi − Rs)Bg

= (1. 42 − 1. 43) + (840 − 820)(7. 1 × 104)

= 0. 0042
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Then calculate �o and �g at 4150 psi:

�o = (Bo − RsBg)/Den
= [1. 42 − (820)(7. 1 × 10−4)]/0. 0042 = 199

�g = Bg/Den
= 7. 1 × 10−4/0. 0042 = 0. 17

Similarly, these PVT variables are calculated for all
other pressures, to give:

p �o �g

4350 − −
4150 199 0.17
3950 49 0.044
3750 22.6 0.022
3550 13.6 0.014
3350 9.42 0.010

p �Np Np (GOR)avg �Gp Gp Np = 15 × 106N Gp = 15 × 106N
(scf/STB) (STB) (scf)

4350 − − − − − −
4150 0.00292 0.00292 845 2.48 2.48 0. 0438 × 106 −
3950 0.00841 0.0110 880 7.23 9.71 0.165 ×106 37. 2 × 106

3750 0.0120 0.0230 1000 12 21.71 0. 180 × 106 145. 65 × 106

3550 0.0126 0.0356 1280 16.1 37.81 0. 534 × 106 325. 65 × 106

3350 0.011 0.0460 1650 18.2 56.01 0. 699 × 106 567. 15 × 106

Step 2. Estimate (assume) a value for the GOR at 4150 psi:

(GOR)est = 850 scf/STB.

Step 3. Calculate the average GOR:

(GOR)avg = GOR∗ + (GOR)est

2

= 840 + 850
2

= 845 scf/STB

Step 4. Calculate the incremental cumulative oil production
�Np:

�Np = 1 − (N ∗
p �o + G∗

p�g
)

�o + (GOR
)

avg �g

= 1 − 0
199 + (845

) (
0. 17

) = 0. 00292 STB

Step 5. Calculate the cumulative oil production Np at
4150 psi:

Np = N ∗
p + �Np

= 0 + 0. 00292 = 0. 00292

Step 6. Calculate oil and gas saturations:

So = (1 − Swi
) (

1 − Np

N

)
Bo

Boi

= (1 − 0. 3)(1 − 0. 00292)
(

1. 42
1. 43

)
= 0. 693

Sg = 1 − Swi − So = 1 − 0. 3 − 0. 693 = 0. 007

Step 7. Determine the relative permeability ratio krg/kro
from Figure 5.7, to give:

krg/kro = 8 × 10−5

Step 8. Using µo = 1.7 cp and µg = 0.023 cp, calculate the
instantaneous GOR:

(GOR)cal = Rs + krg

kro

(
µoBo

µgBg

)

= 820 + (1. 7 × 104)
(
1. 7
) (

1. 42
)

(
0. 023

) (
7. 1 × 10−4

)

= 845 scf/STB

which agrees with the assumed value of 850.
Step 9. Calculate cumulative gas production:

Gp = 0 + (0. 00292)(850) = 2. 48

Complete results of the method are shown
below:

Muskat method
Muskat (1945) expressed the MBE for a depletion drive
reservoir in the following differential form:

dSo

dp
=

SoBg

Bo

dRs

dp
+ So

Bo

krg

kro

µo

µg

dBo

dp
− (1 − So − Swi)

Bg

dBg

dp

1 + µo

µg

krg

kro

[5.1.45]

with:

�So = S∗
o − So

�p = p∗ − p

where:

S∗
o , p∗ = oil saturation and average reservoir pressure at

the beginning of the pressure step (known
values)

So, p = oil saturation and average reservoir pressure at
the end of the time step

Rs = gas solubility at pressure p, scf/STB
Bg = gas formation volume factor, bbl/scf
Swi = initial water saturation

Craft et al. (1991) suggested that the calculations can
be greatly facilitated by computing and preparing in
advance in graphical form the following pressure-dependent
groups:

X ( p) = Bg

Bo

dRs

dp
[5.1.46]

Y ( p) = 1
Bo

µo

µg

dBo

dp
[5.1.47]

Z ( p) = 1
Bg

dBg

dp
[5.1.48]
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Introducing the above pressure-dependent terms into Equa-
tion 5.1.45 gives:
(

�So

�p

)
= SoX ( p) + So

krg
kro

Y ( p) − (1 − So − Swi)Z ( p)

1 + µo

µg

krg

kro

[5.1.49]

Given:

● initial oil-in-place N;
● current (known) pressure p∗;
● current cumulative oil production N ∗

p ;
● current cumulative gas production G∗

p;
● current GOR∗;
● current oil saturation S∗

o ;
● initial water saturation Swi.

Equation 5.1.49 can be solved to predict cumulative pro-
duction and fluid saturation at a given pressure drop �p, i.e.,
(p∗ − p), by employing the following steps:

Step 1. Prepare a plot of krg/kro versus gas saturation.
Step 2. Plot Rs, Bo, and Bg versus pressure and numeri-

cally determine the slope of the PVT properties (i.e.,
dBo/dp, dRs/dp, and d(Bg)/dp) at several pres-
sures. Tabulate the generated values as a function
of pressure.

Step 3. Calculate the pressure-dependent terms X( p),
Y( p), and Z( p) at each of the selected pressures
in Step 2. That is:

X ( p) = Bg

Bo

dRs

dp

Y ( p) = 1
Bo

µo

µg

dBo

dp

Z ( p) = 1
Bg

dBg

dp
Step 4. Plot the pressure-dependent terms X(p), Y(p), and

Z(p) as a function of pressure, as illustrated in
Figure 5.8.

Step 5. Assume that the reservoir pressure has declined
from initial (known) average reservoir pressure of
p* to a selected reservoir pressure p. Graphically
determine the values of X(p), Y(p), and Z(p) that
correspond to the pressure p.

Step 6. Solve Equation 5.1.49 for (�So/�p) by using the
current oil saturation S∗

o at the beginning of the
pressure drop interval p∗:

(
�So

�p

)
= S∗

oX (p∗) + S∗
o

krg
kro

Y (p∗) − (1 − S∗
o − Swi)Z (p∗)

1 + µo

µg

krg

kro

Pressure

Z(p)

Y(p)

X(p)Z
(p

),
 Y

(p
),

 X
(p

)

Figure 5.8 Pressure-dependent terms vs. p.

Step 7. Determine the oil saturation So at the assumed
(selected) average reservoir pressure p, from:

So = S∗
o − (p∗ − p)

(
�So

�p

)
[5.1.50]

Step 8. Using the calculated oil saturation So from step 7,
the updated value of the relative permeability ratio
krg/kro at So, and the PVT terms at the assumed
pressure p, recalculate (�So/�p) by applying
Equation 5.1.49:

(
�So

�p

)
= So X (p) + So

krg
kro

Y (p) − (1 − So − Swi
)

Z (p)

1 + µo

µg

krg

kro

Step 9. Calculate the average value for (�So/�p) from the
two values obtained in steps 6 and 8, or:
(

�So

�p

)
avg

= 1
2

[(
�So

�p

)
step 6

+
(

�So

�p

)
step 8

]

Step 10. Using (�So/�p)avg, solve for the oil saturation So
from:

So = S∗
o − (p∗ − p

) (�So

�p

)
avg

[5.1.51]

Step 11. Calculate gas saturation Sg and the GOR from:

Sg = 1 − Swi − So

GOR = Rs + krg

kro

(
µoBo

µgBg

)

Step 12. Using the saturation equation, i.e., Equation 5.1.15,
solve for the cumulative oil production:

Np = N
[

1 −
(

Boi

Bo

)(
So

1 − Swi

)]
[5.1.52]

with an incremental cumulative oil production of:

�Np = Np − N ∗
p

Step 13. Calculate the incremental cumulative gas produc-
tion by using Equations 5.1.40 and 5.1.41:

(
GOR

)
avg = GOR∗ + GOR

2

�Gp = (GOR)avg�Np

with a total cumulative gas production of:

Gp =
∑

�Gp

Step 14. Repeat steps 5 through 13 for all pressure drops of
interest and setting:

p∗ = p

N ∗
o = Np

G∗
p = Gp

GOR∗ = GOR

S∗
o = So

Example 5.5a A volumetric depletion drive reservoir
exists at its bubble point pressure of 2500 psi. Detailed fluid

aCraft, B.C., Hawkins, M., and Terry, R. Applied Petroleum Reservoir
Engineering, Prentice Hall, 1991, 2nd edition.
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property data is listed by Craft and his co-authors and given
here for only two pressures:

Fluid property p∗ = 2500 psi p = 2300 psi

Bo, bbl/STB 1.498 1.463
Rs, scf/STB 721 669
Bg, bbl/scf 0.001048 0.001155
µo, cp 0.488 0.539
µg, cp 0.0170 0.0166
X (p) 0.00018 0.00021
Y (p) 0.00328 0.00380
Z (p) 0.00045 0.00050

The following additional information is available:

N = 56 MMSTB, Swi = 20%,

Soi = 80%

Sg krg/kro

0.10 0.010
0.20 0.065
0.30 0.200
0.50 2.000
0.55 3.000
0.57 5.000

Calculate the cumulative oil production for a pressure drop
of 200 psi, i.e., at 2300 psi.

Solution

Step 1. Using the oil saturation at the beginning of the
pressure interval, i.e., S∗

o = 0. 8, calculate krg/kro,
to give:

krg/kro = 0. 0 (no free gas initially in place)

Step 2. Evaluate (�So/�p) by applying Equation 5.1.49:

(
�So

�p

)
= S∗

oX (p∗)+S∗
o

krg
kro

Y (p∗)−(1−S∗
o −Swi

)
Z (p∗)

1+ µo
µg

krg

kro

=
(
0.8
)(

0.00018
)+0−(1−0.8−0.2)(0.00045)

1+0
=0.000146

Step 3. Estimate the oil saturation at p = 2300 psi from
Equation 5.1.51:

So = S∗
o − (p∗ − p

) (�So

�p

)
avg

= 0. 8 − 200(0. 000146) = 0. 7709

Step 4. Recalculate (�So/�p) by using So = 0. 7709,
relative permeability ratio krg/kro at So, and the
pressure-dependent PVT terms at 2300 psi:

(
�So

�p

)
= SoX (p) + So

krg
kro

Y (p) − (1 − So − Swi
)

Z (p)

1 + µo

µg

krg

kro

= 0. 7709
(
0. 00021

)+ 0. 7709
(
0. 00001

)
0. 0038

− (1 − 0. 2 − 0. 7709
)

0. 0005

/
1 +

(
0. 539

0. 0166

) (
0. 00001

)

= 0. 000173

Step 5. Calculate the average (�So/�p):(
�So

�p

)
avg

= 0. 000146 + 0. 000173
2

= 0. 000159

Step 6. Calculate the oil saturation at 2300 psi by applying
Equation 5.1.51:

So = S∗
o − (p∗ − p

) (�So

�p

)
avg

= 0. 8 − (2500 − 2300)(0. 000159) = 0. 7682
Step 7. Calculate the gas saturation:

Sg = 1 − 0. 2 − 0. 7682 = 0. 0318
Step 8. Calculate cumulative oil production at 2300 psi by

using Equation 5.1.52:

Np = N
[

1 −
(

Boi

Bo

)(
So

1 − Swi

)]

= 56 × 106
[

1 −
(

1. 498
1. 463

)(
0. 7682
1 − 0. 2

)]

= 939 500 STB
Step 9. Calculate krg/kro at 2300 psi, to give krg/kro =

0. 00001.
Step 10. Calculate the instantaneous GOR at 2300 psi:

GOR = Rs + krg

kro

(
µoBo

µgBg

)

= 669 + 0. 00001
(
0. 539

) (
1. 463

)
(
0. 0166

) (
0. 001155

)

= 670 scf/STB
Step 11. Calculate the incremental cumulative gas

production:
(
GOR

)
avg = GOR∗ + GOR

2
= 669 + 670

2

= 669. 5 scf/STB

�Gp = (GOR)avg�Np

= 669. 5(939500 − 0) = 629 MMscf

It should be stressed that this method is based on the
assumption of uniform oil saturation in the whole reservoir
and that the solution will therefore break down when there is
appreciable gas segregation in the formation. It is therefore
applicable only when permeabilities are relatively low.

Tarner method
Tarner (1944) suggested an iterative technique for pre-
dicting cumulative oil production Np and cumulative gas
production Gp as a function of reservoir pressure. The
method is based on solving the MBE and the instantaneous
GOR equation simultaneously for a given reservoir pressure
drop from a known pressure p∗ to an assumed (new) pres-
sure p. It is accordingly assumed that the cumulative oil and
gas production has increased from known values of N ∗

p and
G∗

p at reservoir pressure p∗ to future values of Np and Gp

at the assumed pressure p. To simplify the description of
the proposed iterative procedure, the stepwise calculation is
illustrated for a volumetric saturated oil reservoir; however,
the method can be used to predict the volumetric behavior of
reservoirs under different driving mechanisms.

Step 1. Select (assume) a future reservoir pressure p below
the initial (current) reservoir pressure p∗ and obtain
the necessary PVT data. Assume that the cumulative
oil production has increased from N ∗

p to Np. Note that

TLFeBOOK



5/340 PREDICTING OIL RESERVOIR PERFORMANCE

N ∗
p and G∗

p are set equal to 0 at the initial reservoir
pressure.

Step 2. Estimate or guess the cumulative oil production Np
at the selected (assumed) reservoir pressure p of
step 1.

Step 3. Calculate the cumulative gas production Gp by rear-
ranging the MBE, i.e., Equation 5.1.33, to give:

Gp = N
[(

Rsi − Rs
)− Boi − Bo

Bg

]
− Np

[
Bo

Bg
− Rs

]

[5.1.53]
Equivalently, the above relationship can be expressed
in terms of the two-phase (total) formation volume
factor Bt as:

Gp = N
(
Bt − Bti

)− Np(Bt − RsiBg)
Bg

[5.1.54]

where:

Boi = initial oil formation volume factor, bbl/STB
Rsi = initial gas solubility, scf/STB
Bo = oil formation volume factor at the assumed

reservoir pressure p, bbl/STB
Bg = gas formation volume factor at the assumed

reservoir pressure p, bbl/scf
Bo = oil formation volume factor at the assumed

reservoir pressure p, bbl/STB
Bt = two-phase formation volume factor at the

assumed reservoir pressure p, bbl/STB
N = initial oil-in-place, STB

Step 4. Calculate the oil and gas saturations at the assumed
cumulative oil production Np and the selected reser-
voir pressure p by applying Equations 5.1.15 and
5.1.16 respectively, or:

So = (1 − Swi)
[

1 − Np

N

](
Bo

Boi

)

Sg = 1 − So − Swi

and:
SL = So + Swi

where:

SL = total liquid saturation
Boi = initial oil formation volume factor at pi ,

bbl/STB
Bo = oil formation volume factor at p, bbl/STB
Sg = gas saturation at the assumed reservoir

pressure p
So = oil saturation at assumed reservoir

pressure p

Step 5. Using the available relative permeability data, deter-
mine the relative permeability ratio krg/kro that cor-
responds to the calculated total liquid saturation SL
of step 4 and compute the instantaneous GOR at p
from Equation 5.1.1:

GOR = Rs +
(

krg

kro

)[
µoBo

µgBg

]
[5.1.55]

It should be noted that all the PVT data in the
expression must be evaluated at the assumed reservoir
pressure p.

Step 6. Calculate again the cumulative gas production Gp at
p by applying Equation 5.1.7:

Gp = G∗
p +

[
GOR∗ + GOR

2

]
[Np − N ∗

p ] [5.1.56]

in which GOR∗ represents the instantaneous GOR
at p∗. Note that if p∗ represents the initial reservoir
pressure, then set GOR∗ = Rsi.

Step 7. The calculations as performed in step 3 and step 6
give two estimates for cumulative gas produced Gp
at the assumed (future) pressure p:

(1) Gp as calculated from the MBE;
(2) Gp as calculated from the GOR equation.

These two values of Gp are calculated from two inde-
pendent methods and, therefore, if the cumulative
gas production Gp as calculated from step 3 agrees
with the value of step 6, the assumed value of Np
is correct and a new pressure may be selected and
steps 1 through 6 are repeated. Otherwise, assume
another value of Np and repeat steps 2 through 6.

Step 8. In order to simplify this iterative process, three val-
ues of Np can be assumed, which yield three different
solutions of cumulative gas production for each of
the equations (i.e., MBE and GOR equation). When
the computed values of Gp are plotted versus the
assumed values of Np, the resulting two curves (one
representing results of step 3 and the one represent-
ing step 5) will intersect. This intersection indicates
that the cumulative oil and gas production that will
satisfy both equations.

It should be pointed out that it may be more convenient to
assume values of Np as a fraction of the initial oil-in-place N .
For instance, Np could be assumed as 0. 01N , rather than as
10000 STB. In this method, a true value of N is not required.
Results of the calculations would be, therefore, in terms of
STB of oil produced per STB of oil initially in place and scf
of gas produced per STB of oil initially in place.

To illustrate the application of the Tarner method, Cole
(1969) presented the following example.

Example 5.6 A saturated oil reservoir has a bubble point
pressure of 2100 psi at 175◦F. The initial reservoir pressure
is 2400 psi. The following data summarizes the rock and fluid
properties of the field:

Original oil-in-place = 10 MMSTB

Connate water saturation = 15%

Porosity = 12%

cw = 3. 2 × 10−6 psi−1

cf = 3. 1 × 10−6 psi−1

Basic PVT data is as follows:

p Bo Bt Rs Bg µo/µg
(psi) (bbl/STB) (bbl/STB) (scf/STB) (bbl/scf)

2400 1.464 1.464 1340 – –
2100 1.480 1.480 1340 0.001283 34.1
1800 1.468 1.559 1280 0.001518 38.3
1500 1.440 1.792 1150 0.001853 42.4

Relative permeability ratio:

SL (%) krg/kro

96 0.018
91 0.063
75 0.850
65 3.350
55 10.200

Predict the cumulative oil and gas production at 2100,
1800, and 1500 psi.
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Solution The required calculations will be performed
under the following two different driving mechanisms:

(1) When the reservoir pressure declines from the initial
reservoir pressure of 2500 to the bubble point pressure
of 2100 psi, the reservoir is considered undersatu-
rated and, therefore, the MBE can be used directly in
cumulative production without restoring the iterative
technique.

(2) For reservoir pressures below the bubble point pres-
sure, the reservoir is treated as a saturated oil reservoir
and the Tarner method may be applied.

Oil recovery prediction from initial pressure to the bubble
point pressure:
Step 1. The MBE for an undersaturated reservoir is given

by Equation 4.4.10:
F = N (Eo + Ef ,w)

where:
F = NpBo + WpBw

Eo = Bo − Boi

Ef ,w = Boi

[
cwSw + cf

1 − Swi

]
�p

�p = pi − pr

Since there is no water production, Equation 4.4.10
can be solved for cumulative oil production, to give:

Np = N [Eo + Ef ,w]
Bo

[5.1.57]

Step 2. Calculate the two expansion factors Eo and Ef ,w for
the pressure declines from the initial reservoir pres-
sure of 2400 psi to the bubble point pressure of
2100 psi:

Eo = Bo − Boi

= 1. 480 − 1. 464 = 0. 016

Ef ,w = Boi

[
cwSw + cf

1 − Swi

]
�p

= 1. 464
[

(3. 2 × 10−6)(0. 15) + (3. 1 × 10−6)
1 − 0. 15

]

× (2400 − 2100) = 0. 0018
Step 3. Calculate the cumulative oil and gas production

when the reservoir pressure declines from 2400 to
2100 psi by applying Equation 5.1.57, to give:

Np = N [Eo + Ef ,w]
Bo

= 10 × 106[0. 016 + 0. 0018]
1. 480

= 120 270 STB

At or above the bubble point pressure, the produc-
ing GOR is equal to the gas solubility at the bubble
point and, therefore, the cumulative gas production
is given by:

Gp = NpRsi

= (120 270)(1340) = 161 MMscf
Step 4. Determine the remaining oil-in-place at 2100 psi:

Remaining oil in place = 10 000 000 − 120 270

= 9. 880 MMSTB
The remaining oil-in-place is considered as the initial
oil-in-place during the reservoir performance below

the saturation pressure. That is:

N = 9. 880 MMSTB

Np = N ∗
p = 0. 0 STB

Gp = G∗
p = 0. 0 scf

Rsi = 1340 scf/STB

Boi = 1. 489 bbl/STB

Bti = 1. 489 bbl/STB

Bgi = 0. 001283 bbl/scf

Oil recovery prediction below the bubble point pressure:
Oil recovery prediction at 1800 psi with the following PVT
properties:

Bo = 1. 468 bbl/STB

Bt = 1. 559 bbl/STB

Bg = 0. 001518 bbl/scf

Rs = 1280 scf/STB

Step 1. Assume that 1% of the bubble point oil will be pro-
duced when the reservoir pressure drops 1800 psi.
That is:

Np = 0. 01N
Calculate the corresponding cumulative gas Gp by
apply Equation 5.1.54:

Gp = N
(
Bt − Bti

)− Np(Bt − RsiBg)
Bg

= N (1. 559 − 1. 480) − (0. 01N )[1. 559 − (1340)(0. 001518)]
0. 001518

= 55. 17N

Step 2. Calculate the oil saturation, to give:

So = (1 − Swi)
(

1 − Np

N

)
Bo

Boi

= (1 − 0. 15)
(

1 − 0. 01N
N

)
1. 468
1. 480

= 0. 835

Step 3. Determine the relative permeability ratio krg/kro
from the tabulated data at total liquid saturation of
SL to give:

SL = So + Swi = 0. 835 + 0. 15 = 0. 985

krg/kro = 0. 0100
Step 4. Calculate the instantaneous GOR at 1800 psi by

applying Equation 5.1.55 to give:

GOR = Rs +
(

krg

kro

)[
µoBo

µgBg

]

= 1280 + 0. 0100(38. 3)
(

1. 468
0. 001518

)

= 1650 scf/STB
Step 5. Solve again for the cumulative gas production by

using the average GOR and applying Equation 5.1.56
to yield:

Gp = G∗
p +

[
GOR∗ + GOR

2

]
[Np − N ∗

p ]

= 0 + 1340 + 1650
2

(0. 01N − 0) = 14. 95N
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Step 6. Since the cumulative gas production, as calculated
by the two independent methods (step 1 and step 5),
do not agree, the calculations must be repeated by
assuming a different value for Np and plotting results
of the calculation. Repeated calculations converge at:
Np = 0. 0393N STB/STB of bubble point oil and

Gp = 64. 34N scf/STB of bubble point oil
or:

Np = 0. 0393(9. 88 × 106) = 388 284 STB

Gp = 64. 34(9. 88 × 106) = 635. 679 MMscf

It should be pointed out that the cumulative production above
the bubble point pressure must be included when reporting the
total cumulative oil and gas production. The cumulative oil
and gas production as the pressure declines from the initial
pressure to the bubble point pressure is:

Np = 120 270 STB

Gp = 161 MMscf
Therefore, the actual cumulative recovery at 1800 psi is:

Np = 120 270 + 388 284 = 508 554 STB

Gp = 161 + 635. 679 = 799. 679 MMscf
The final results as summarized below show the cumulative
gas and oil production as the pressure declines from the
bubble point pressure:

Pressure Np Actual Np Gp Actual Gp
(STB) (MMscf)

1800 0.0393N 508 554 64.34N 799.679
1500 0.0889N 998 602 136.6N 1510.608

It is apparent from the three predictive oil recovery meth-
ods; i.e., Tracy’s, Muskat’s, and Tarner’s, that the relative
permeability ratio krg/kro is the most important single factor
governing the oil recovery. In cases where no detailed data
are available concerning the physical characteristics of the
reservoir rock in terms of krg/kro relationship, Wahl et al.
(1958) presented an empirical expression for predicting the
relative permeability ratio in sandstones:

krg

kro
= ζ (0. 0435 + 0. 4556ζ )

with:

ζ = 1 − Sgc − Swi − So

So − 0. 25
where:

Sgc = critical gas saturation
Swi = initial water saturation
So = oil saturation

Torcaso and Wyllie (1958) presented a similar correlation
for sandstones in the following form:

krg

kro
= (1 − S∗)2[1 − (S∗)2]

(S∗)4

with:

S∗ = So

1 − Swi

5.2 Phase 2. Oil Well Performance

All the reservoir performance prediction techniques show
the relationship of cumulative oil production Np, cumulative
gas production Gp, and instantaneous GOR as a function of

the declining average reservoir pressure but do not relate
the production to time. However, reservoir performance
can be related to time by the use of relationships that
are designed to predict the flow rate performance of the
reservoirs individual wells. Such flow rate relationships are
traditionally expressed in terms of:

● the well productivity index;
● the well inflow performance relationship (IPR).

These relationships are presented below for vertical and
horizontal wells.

5.2.1 Vertical oil well performance
Productivity index and IPR
A commonly used measure of the ability of the well to pro-
duce is the productivity index. Defined by the symbol J, the
productivity index is the ratio of the total liquid flow rate to
the pressure drawdown. For a water-free oil production, the
productivity index is given by:

J = Qo

pr − pwf
= Qo

�p
[5.2.1]

where:

Qo = oil flow rate, STB/day
J = productivity index, STB/day/psi

pr = volumetric average drainage area pressure
(static pressure)

pwf = bottom-hole flowing pressure
�p = drawdown, psi

The productivity index is generally measured during a pro-
duction test on the well. The well is shut in until the static
reservoir pressure is reached. The well is then allowed to
produce at a constant flow rate of Q and a stabilized bottom-
hole flow pressure of pwf . Since a stabilized pressure at the
surface does not necessarily indicate a stabilized pwf , the
bottom-hole flowing pressure should be recorded continu-
ously from the time the well is to flow. The productivity index
is then calculated from Equation 5.1.1.

It is important to note that the productivity index is a valid
measure of the well productivity potential only if the well is
flowing at pseudosteady-state conditions. Therefore, in order
to accurately measure the productivity index of a well, it is
essential that the well is allowed to flow at a constant flow rate
for a sufficient amount of time to reach the pseudosteady
state as illustrated in Figure 5.9. The figure indicates that
during the transient flow period, the calculated values of
the productivity index will vary depending upon the time
at which the measurements of pwf are made.

Productivity Index

P
ro

du
ct

iv
ity

 In
de

x
P

re
ss

ur
e

Time

Transient Flow

pr

Pseudosteady-state

pr −

pwf

pwf

Figure 5.9 Productivity index during flow regimes.
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The productivity index can be numerically calculated by
recognizing that J must be defined in terms of semisteady-
state flow conditions. Recalling Equation 1.2.137:

Qo = 0. 00708koh
(
pr − pwf

)
µoBo

[
ln
(
re/rw

)− 0. 75 + s
] [5.2.2]

The above equation is combined with Equation 5.2.1 to give:

J = 0. 00708koh
µoBo

[
ln
(
re/rw

)− 0. 75 + s
] [5.2.3]

where:

J = productivity index, STB/day/psi
ko = effective permeability of the oil, md
s = skin factor
h = thickness, ft

The oil relative permeability concept can be conveniently
introduced into Equation 5.2.3, to give:

J = 0. 00708hk[
ln
(
re/rw

)− 0. 75 + s
]
(

kro

µoBo

)
[5.2.4]

Since most of the well’s life is spent in a flow regime that
is approximating the pseudosteady state, the productivity
index is a valuable methodology for predicting the future
performance of wells. Further, by monitoring the productiv-
ity index during the life of a well, it is possible to determine if
the well has become damaged due to completion, workover,
production, injection operations, or mechanical problems. If
a measured J has an unexpected decline, one of the indicated
problems should be investigated. A comparison of produc-
tivity indexes of different wells in the same reservoir should
also indicate that some of the wells might have experienced
unusual difficulties or damage during completion. Since the
productivity indexes may vary from well to well because of
the variation in thickness of the reservoir, it is helpful to nor-
malize the indexes by dividing each by the thickness of the
well. This is defined as the specific productivity index Js , or:

Js = J
h

= Qo

h
(
pr − pwf

) [5.2.5]

Assuming that the well’s productivity index is constant,
Equation 5.2.1 can be rewritten as:

Qo = J
(
pr − pwf

) = J�p [5.2.6]

where:

�p = drawdown, psi
J = productivity index

Equation 5.2.6 indicates that the relationship between Qo and
�p is a straight line passing through the origin with a slope
of J as shown in Figure 5.10.

Pressure

F
lo

w
 R

at
e

J

Figure 5.10 Qo vs. �p relationship.
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Figure 5.11 IPR.

Alternatively, Equation 5.2.1 can be written as:

pwf = pr −
(

1
J

)
Qo [5.2.7]

This expression shows that the plot of pwf vs. Qo is a
straight line with a slope of −1/J as shown schematically in
Figure 5.11. This graphical representation of the relationship
that exists between the oil flow rate and bottom-hole flowing
pressure is called the “inflow performance relationship” and
referred to as IPR.

Several important features of the straight-line IPR can be
seen in Figure 5.11:

● When pwf equals the average reservoir pressure, the flow
rate is zero due to the absence of any pressure drawdown.

● Maximum rate of flow occurs when pwf is zero. This max-
imum rate is called “absolute open flow” and referred to
as AOF. Although in practice this may not be a condition
at which the well can produce, it is a useful definition
that has widespread applications in the petroleum indus-
try (e.g., comparing flow potential of different wells in the
field). The AOF is then calculated by:

AOF = Jpr

● The slope of the straight line equals the reciprocal of the
productivity index.

Example 5.7 A productivity test was conducted on a well.
The test results indicate that the well is capable of producing
at a stabilized flow rate of 110 STB/day and a bottom-hole
flowing pressure of 900 psi. After shutting the well for 24
hours, the bottom-hole pressure reached a static value of
1300 psi.

Calculate:

(a) the productivity index;
(b) the AOF;
(c) the oil flow rate at a bottom-hole flowing pressure of 600

psi;
(d) the wellbore flowing pressure required to produce

250 STB/day.

Solution

(a) Calculate J from Equation 5.2.1:

J = Qo

pr − pwf
= Qo

�p

= 110
1300 − 900

= 0. 275 STB/psi
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Figure 5.12 IPR below pb.

(b) Determine the AOF from:

AOF = J (pr − 0)

= 0. 275(1300 − 0) = 375. 5 STB/day

(c) Solve for the oil flow rate by applying Equation 5.2.1:

Qo = J (pr − pwf )

= 0. 275(1300 − 600) = 192. 5 STB/day

(d) Solve for pwf by using Equation 5.2.7:

pwf = pr −
(

1
J

)
Qo

= 1300 −
(

1
0. 275

)
250 = 390. 9 psi

The previous discussion, as illustrated by the example,
suggested that the inflow into a well is directly proportional
to the pressure drawdown and the constant of proportional-
ity is the productivity index. Muskat and Evinger (1942) and
Vogel (1968) observed that when the pressure drops below
the bubble point pressure, the IPR deviates from that of
the simple straight-line relationship as shown in Figure 5.12.
Recalling Equation 5.2.4:

J = 0. 00708hk
ln
(
re/rw

)− 0. 75 + s

(
kro

µoBo

)

Treating the term in the brackets as a constant c, the above
equation can be written in the following form:

J = c
(

kro

µoBo

)
[5.2.8]

with the coefficient c as defined by:

c = 0. 00708kh
ln
(
re/rw

)− 0. 75 + s

Equation 5.2.8 reveals that the variables affecting the pro-
ductivity index are essentially those that are pressure
dependent, namely:

● oil viscosity µo;
● oil formation volume factor Bo;
● relative permeability to oil kro.

Figure 5.13 schematically illustrates the behavior of these
variables as a function of pressure. Figure 5.14 shows the
overall effect of changing the pressure on the term kro/µoBo.
Above the bubble point pressure pb, the relative oil perme-
ability kro equals unity (kro = 1) and the term (kro/µoBo) is
almost constant. As the pressure declines below pb, the gas
is released from solution which can cause a large decrease

kro = 1

Bo

pb

µo

Pressure

Figure 5.13 Effect of pressure on Bo, µo and kro.

Pressure

pb

Figure 5.14 kro/µoBo as a function of pressure.
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pr4

pr3
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Figure 5.15 Effect of reservoir pressure on IPR.

in both kro and kro/µoBo. Figure 5.15 shows qualitatively the
effect of reservoir depletion on the IPR.

There are several empirical methods that are designed to
predict the non-linear behavior of the IPR for solution gas
drive reservoirs. Most of these methods require at least one
stabilized flow test in which Qo and pwf are measured. All the
methods include the following two computational steps:

(1) Using the stabilized flow test data, construct the IPR
curve at the current average reservoir pressure pr .

(2) Predict future IPRs as a function of average reservoir
pressures.
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The following empirical methods are designed to generate
the current and future inflow performance relationships:

● the Vogel method;
● the Wiggins method;
● the Standing method;
● the Fetkovich method;
● the Klins and Clark method.

Vogel method
Vogel (1968) used a computer model to generate IPRs for
several hypothetical saturated oil reservoirs that are produc-
ing under a wide range of conditions. Vogel normalized the
calculated IPRs and expressed the relationships in a dimen-
sionless form. He normalized the IPRs by introducing the
following dimensionless parameters:

Dimensionless pressure = pwf

pr

Dimensionless flow rate = Qo(
Qo
)

max

where (Qo)max is the flow rate at zero wellbore pressure, i.e.,
the AOF.

Vogel plotted the dimensionless IPR curves for all the
reservoir cases and arrived at the following relationship
between the above dimensionless parameters:

Qo(
Qo
)

max

= 1 − 0. 2
(

pwf

pr

)
− 0. 8

(
pwf

pr

)2

[5.2.9]

where:

Qo = oil rate at pwf
(Qo)max = maximum oil flow rate at zero wellbore

pressure, i.e., the AOF
pr = current average reservoir pressure, psig

pwf = wellbore pressure, psig

Note that pwf and pr must be expressed in psig.
The Vogel method can be extended to account for

water production by replacing the dimensionless rate with
QL /(QL )max where QL = Qo + Qw. This has proved to be
valid for wells producing at water cuts as high as 97%. The
method requires the following data:

● current average reservoir pressure pr ;
● bubble point pressure pb;
● stabilized flow test data that includes Qo at pwf .

Vogel’s methodology can be used to predict the IPR curve
for the following two types of reservoirs:

(1) saturated oil reservoirs: pr ≤ pb;
(2) undersaturated oil reservoirs: pr > pb.

The vertical well IPR in saturated oil reservoirs
When the reservoir pressure equals the bubble point pres-
sure, the oil reservoir is referred to as a saturated oil
reservoir. The computational procedure of applying the
Vogel method in a saturated oil reservoir to generate the
IPR curve for a well with a stabilized flow data point, i.e., a
recorded Qo value at pwf , is summarized below:

Step 1. Using the stabilized flow data, i.e., Qo and pwf ,
calculate (Qo)max from Equation 5.2.9, or:

(Qo)max = Qo

1 − 0. 2
(
pwf /pr

)− 0. 8
(
pwf /pr

)2
Step 2. Construct the IPR curve by assuming various val-

ues for pwf and calculating the corresponding Qo by

applying Equation 5.2.9:

Qo(
Qo
)

max

= 1 − 0. 2
(

pwf

pr

)
− 0. 8

(
pwf

pr

)2

or:

Qo = (Qo
)

max

[
1 − 0. 2

(
pwf

p̄r

)
− 0. 8

(
pwf

p̄r

)2
]

Example 5.8 A well is producing from a saturated reser-
voir with an average reservoir pressure of 2500 psig. Stabi-
lized production test data indicates that the stabilized rate
and wellbore pressure are 350 STB/day and 2000 psig,
respectively. Calculate:

(a) Calculate the oil flow rate at pwf = 1850 psig.
(b) Calculate the oil flow rate assuming constant J .
(c) Construct the IPR by using the Vogel method and the

constant productivity index approach.

Solution

(a)

Step 1. Calculate (Qo)max:

(Qo)max = Qo

1 − 0. 2
(
pwf /pr

)− 0. 8
(
pwf /pr

)2

= 350

1 − 0. 2
(

2000
2500

)
− 0. 8

(
2000
2500

)2

= 1067. 1 STB/day

Step 2. Calculate Qo at pwf = 1850 psig by using Vogel’s
equation:

Qo =(Qo
)

max

[
1−0.2

(
pwf

pr

)
−0.8

(
pwf

pr

)2
]

=1067.1

[
1−0.2

(
1850
2500

)
−0.8

(
1850
2500

)2
]

=441.7 STB/day

(b)

Step 1. Apply Equation 5.2.2 to determine J :

J = Qo

pr − pwf

= 350
2500 − 2000

= 0. 7 STB/day/psi

Step 2. Calculate Qo:

Qo = J (pr − pwf ) = 0. 7(2500 − 1850)

= 455 STB/day

(c) Assume several values for pwf and calculate the corre-
sponding Qo:

pwf Vogel Qo = J ( pr − pwf )

2500 0 0
2200 218.2 210
1500 631.7 700
1000 845.1 1050
500 990.3 1400

0 1067.1 1750

TLFeBOOK



5/346 PREDICTING OIL RESERVOIR PERFORMANCE

pb

Case 2: pwf < pb

Case 1: pwf ≥ pb 
pwf

pwf

Qo Qg

Figure 5.16 Stabilized flow test data.

The vertical well IPR in undersaturated oil reservoirs
Beggs (1991) pointed out that in applying the Vogel method
for undersaturated reservoirs, there are two possible out-
comes of the recorded stabilized flow test data that must be
considered, as shown schematically in Figure 5.16:

(1) The recorded stabilized bottom-hole flowing pressure is
greater than or equal to the bubble point pressure, i.e.,
pwf ≥ pb.

(2) The recorded stabilized bottom-hole flowing pressure is
less than the bubble point pressure pwf < pb.

Case 1 pwf ≥ pb Beggs outlined the following procedure
for determining the IPR when the stabilized bottom-hole
pressure is greater than or equal to the bubble point pressure
(Figure 5.16):

Step 1. Using the stabilized test data point (Qo and pwf )
calculate the productivity index J :

J = Qo

pr − pwf

Step 2. Calculate the oil flow rate at the bubble point pres-
sure:

Qob = J
(
pr − pb

)
[5.2.10]

where Qob is the oil flow rate at pb.
Step 3. Generate the IPR values below the bubble point pres-

sure by assuming different values of pwf < pb and
calculating the correspond oil flow rates by applying
the following relationship:

Qo = Qob + Jpb

1. 8

[
1 − 0. 2

(
pwf

pb

)
− 0. 8

(
pwf

pb

)2
]

[5.2.11]

The maximum oil flow rate (Qo max or AOF) occurs
when the bottom-hole flowing pressure is zero, i.e.,
pwf = 0, which can be determined from the above
expression as:

Qo max = Qob + Jpb

1. 8
It should be pointed out that when pwf ≥ pb, the IPR
is linear and is described by:

Qo = J (pr − pwf )

Example 5.9 An oil well is producing from an undersat-
urated reservoir that is characterized by a bubble point
pressure of 2130 psig. The current average reservoir pres-
sure is 3000 psig. Available flow test data shows that the
well produced 250 STB/day at a stabilized pwf of 2500 psig.
Construct the IPR data.

Solution The problem indicates that the flow test data
was recorded above the bubble point pressure, pwf ≥ pb,
and therefore the “Case 1” procedure for undersaturated
reservoirs as outlined previously must be used:

Step 1. Calculate J using the flow test data:

J = Qo

pr − pwf

= 250
3000 − 2500

= 0. 5 STB/day/psi

Step 2. Calculate the oil flow rate at the bubble point pres-
sure by applying Equation 5.2.10:

Qob = J
(
pr − pb

)

= 0. 5(3000 − 2130) = 435 STB/day

Step 3. Generate the IPR data by applying the constant J
approach for all pressures above pb and Equation
5.2.11 for all pressures below pb:

Qo = Qob + Jpb

1. 8

[
1 − 0. 2

(
pwf

pb

)
− 0. 8

(
pwf

pb

)2
]

= 435 + (0. 5)(2130)
1. 8

×
[

1 − 0. 2
(

pwf

2130

)
− 0. 8

(
pwf

2130

)2
]

pwf Qo

pi = 3000 0
2800 100
2600 200
pb = 2130 435
1500 709
1000 867
500 973
0 1027

Case 2 pwf < pb When the recorded pwf from the stabilized
flow test is below the bubble point pressure, as shown in
Figure 5.16, the following procedure for generating the IPR
data is proposed:

Step 1. Using the stabilized well flow test data and com-
bining Equation 5.2.10 with 5.2.11, solve for the
productivity index J to give:

J = Qo

(
pr − pb

)+ pb

1. 8

[
1 − 0. 2

(
pwf

pb

)
− 0. 8

(
pwf

pb

)2
]

[5.2.12]

Step 2. Calculate Qob by using Equation 5.2.10, or:

Qob = J
(
pr − pb

)
Step 3. Generate the IPR for pwf ≥ pb by assuming several

values for pwf above the bubble point pressure and
calculating the corresponding Qo from:

Qo = Jpr − pwf )

Step 4. Use Equation 5.2.11 to calculate Qo at various values
of pwf below pb, or:

Qo = Qob + Jpb

1. 8

[
1 − 0. 2

(
pwf

pb

)
− 0. 8

(
pwf

pb

)2
]
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Example 5.10 The well described in Example 5.8 was
retested and the following results obtained:

pwf = 1700 psig, Qo = 630. 7 STB/day

Generate the IPR data using the new test data.

Solution Notice that the stabilized pwf is less than pb.

Step 1. Solve for J by applying Equation 5.2.12:

J = Qo

(
pr − pb

)+ pb

1. 8

[
1 − 0. 2

(
pwf

pb

)
− 0. 8

(
pwf

pb

)2
]

= 630. 7
(
3000 − 2130

)+ 2130
1. 8

[
1 −

(
1700
2130

)
−
(

1700
2130

)2
]

= 0. 5 STB/day/psi

Step 2. Determine Qob:

Qob = J
(
pr − pb

)

= 0. 5(3000 − 2130) = 435 STB/day

Step 3. Generate the IPR data by applying Equation 5.2.6
when pwf > pb and Equation 5.2.11 when pwf < pb:

Qo = J
(
pr − pwf

) = J�p

= Qob + Jpb

1. 8

[
1 − 0. 2

(
pwf

pb

)
− 0. 8

(
pwf

pb

)2
]

pwf Equation Qo

3000 5.2.6 0
2800 5.2.6 100
2600 5.2.6 200
2130 5.2.6 435
1500 5.2.11 709
1000 5.2.11 867

500 5.2.11 973
0 5.2.11 1027

Quite often it is necessary to predict the well’s inflow perfor-
mance for future times as the reservoir pressure declines.
Future well performance calculations require the develop-
ment of a relationship that can be used to predict future
maximum oil flow rates.

There are several methods that are designed to address
the problem of how the IPR might shift as the reservoir pres-
sure declines. Some of these prediction methods require the
application of the MBE to generate future oil saturation data
as a function of reservoir pressure. In the absence of such
data, there are two simple approximation methods that can
be used in conjunction with the Vogel method to predict
future IPRs.

First approximation method This method provides a rough
approximation of the future maximum oil flow rate (Qo max)f
at the specified future average reservoir pressure (pr)f .
This future maximum flow rate (Qo max)f can be used in
Vogel’s equation to predict the future inflow performance

relationships at (pr)f . The following steps summarize the
method:

Step 1. Calculate (Qo max)f at (pr)f from:

(Qo max)f = (Qo max)p

[
(pr)f

(pr)p

][
0. 2 + 0. 8

(pr)f

(pr)p

]

[5.2.13]

where the subscripts f and p represent future and
present conditions, respectively.

Step 2. Using the new calculated value of (Qo max)f and (pr)f ,
generate the IPR by using Equation 5.2.9.

Second approximation method A simple approximation
for estimating future (Qo max)f at (pr)f was proposed by
Fetkovich (1973). The relationship has the following mathe-
matical form:

(
Qo max

)
f = (Qo max

)
p

[ (
pr
)

f(
pr
)

p

]3.0

where the subscripts f and p represent future and present
conditions, respectively. The above equation is intended only
to provide a rough estimation of future (Qo max).

Example 5.11 Using the data given in Example 5.8, pre-
dict the IPR when the average reservoir pressure declines
form 2500 psig to 2200 psig.

Solution Example 5.8 shows the following information:

● present average reservoir pressure
(
pr
)

p = 2500 psig;
● present maximum oil rate (Qo max)p = 1067. 1 STB/day.

Step 1. Solve for (Qo max)f by applying Equation 5.2.13:

(Qo max )f = (Qo max )p

[
( pr)f

( pr)p

][
0. 2 + 0. 8

( pr)f

( pr)p

]

= (1067. 1)
(

2200
2500

)[
0. 2 + 0. 8

2200
2500

]

= 849 STB/day

Step 2. Generate the IPR data by applying Equation 5.2.9:

Qo = (Qo
)

max

[
1 − 0. 2

(
pwf

pr

)
− 0. 8

(
pwf

pr

)2
]

= 849[1 − 0. 2(pwf /2200) − 0. 8(pwf /2200)2]

pwf Qo

2200 0
1800 255
1500 418

500 776
0 849

It should be pointed out that the main disadvantage of
Vogel’s methodology lies with its sensitivity to the match
point, i.e., the stabilized flow test data point, used to generate
the IPR curve for the well.

For a production well completed in a multilayered sys-
tem, it is possible to allocate individual layer production by
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applying the following relationships:

(Qo)i = QoT

[1 − (Si fwT )] (ko)i(h)i

(µo)Li∑n Layers
i=1 [1 − (Si fwT )] (ko)i(h)i

(µo)i

(Qw)i = QwT

[(Si fwT )] (kw)i(h)i

(µw)i∑n Layers
i=1 [(Si fwT )] (kw)i(h)i

(µw)i

with:

Si = (Sw)i∑n Layers
i=1 (Sw)i

where:

(Qo)i = allocated oil rate for layer i
(Qw)i = allocated water rate for layer i

fwT = total well water cut
(ko)i = effective oil permeability for layer i
(kw)i = effective water permeability for layer i

n Layers = number of layers

Wiggins method
Wiggins (1993) used four sets of relative permeability and
fluid property data as the basic input for a computer model to
develop equations to predict inflow performance. The gen-
erated relationships are limited by the assumption that the
reservoir initially exists at its bubble point pressure. Wig-
gins proposed generalized correlations that are suitable for
predicting the IPR during three-phase flow. His proposed
expressions are similar to that of Vogel and are expressed as:

Qo = (Qo
)

max

[
1 − 0. 52

(
pwf

pr

)
− 0. 48

(
pwf

pr

)2
]

[5.2.14]

Qw = (Qw
)

max

[
1 − 0. 72

(
pwf

pr

)
− 0. 28

(
pwf

pr

)2
]

[5.2.15]

where:

Qw = water flow rate, STB/day
(Qw)max = maximum water production rate at

pwf = 0, STB/day

As in the Vogel method, data from a stabilized flow test on
the well must be available in order to determine (Qo)max and
(Qw)max.

Wiggins extended the application of the above rela-
tionships to predict future performance by providing
expressions for estimating future maximum flow rates. He
expressed future maximum rates as a function of:

● current (present) average pressure
(
pr
)

p;
● future average pressure

(
pr
)

f ;
● current maximum oil flow rate (Qo max)p;
● current maximum water flow rate (Qw max)p.

Wiggins proposed the following relationships:

(
Qo max

)
f = (Qo max

)
p


0. 15

(
pr
)

f(
pr
)

p

+ 0. 84

( (
pr
)

f(
pr
)

p

)2


[5.2.16]

(
Qw max

)
f = (Qw max

)
p


0. 59

(
pr
)

f(
pr
)

p

+ 0. 36

( (
pr
)

f(
pr
)

p

)2



[5.2.17]

Example 5.12 The information given in Examples 5.8
and 5.11 is repeated here for convenience.

● current average pressure = 2500 psig;
● stabilized oil flow rate = 350 STB/day;
● stabilized wellbore pressure = 2000 psig.

Generate the current IPR data and predict future IPR when
the reservoir pressure declines from 2500 to 2000 psig by
using the Wiggins method.

Solution

Step 1. Using the stabilized flow test data, calculate the cur-
rent maximum oil flow rate by applying Equation
5.2.14:

Qo = (Qo
)

max

[
1 − 0. 52

(
pwf

pr

)
− 0. 48

(
pwf

pr

)2
]

Solve for the present (Qo)max, to give:
(
Qo max

)
p = 350

1 − 0. 52
(

2000
2500

)
− 0. 48

(
2000
2500

)2

= 1264 STB/day

Step 2. Generate the current IPR data by using the Wiggins
method and compare the results with those of Vogel.
Results of the two methods are shown graphically in
Figure 5.17.

pwf Wiggins Vogel

2500 0 0
2200 216 218
1500 651 632
1000 904 845

500 1108 990
0 1264 1067

Step 3. Calculate future maximum oil flow rate by using
Equation 5.2.16:

(
Qo max

)
f =
(
Qo max

)
p


0.15

(
pr
)

f(
pr
)

p

+0.84

( (
pr
)

f(
pr
)

p

)2



=1264

[
0.15

(
2200
2500

)
+0.84

(
2200
2500

)2
]

=989 STB/day

0
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Figure 5.17 IPR curves.
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Step 4. Generate future IPR data by using Equation 5.2.14:

Qo = (Qo
)

max

[
1 − 0. 52

(
pwf

pr

)
− 0. 48

(
pwf

pr

)2
]

= 989[1 − 0. 52(pwf /2200) − 0. 48(pwf /2200)2]

pwf Qo

2200 0
1800 250
1500 418

500 848
0 989

Standing method
Standing (1970) essentially extended the application of the
Vogel method to predict the future IPR of a well as a func-
tion of reservoir pressure. He noted that Vogel’s equation
(Equation 5.2.9) can be rearranged as:

Qo(
Qo
)

max

=
(

1 − pwf

pr

)[
1 + 0. 8

(
pwf

pr

)]
[5.2.18]

Standing introduced the productivity index J as defined by
Equation 5.1.1 into Equation 5.2.18, to yield:

J =
(
Qo
)

max

pr

[
1 + 0. 8

(
pwf

pr

)]
[5.2.19]

Standing then defined a “zero drawdown” productivity index
as:

J ∗
P = 1. 8

[(
Qo
)

max

pr

]
[5.2.20]

where J ∗
P is the current zero-drawdown productivity index.

J ∗
P is related to the productivity index J by:

J
J ∗

P
= 1

1. 8

[
1 + 0. 8

(
pwf

pr

)]
[5.2.21]

Equation 5.2.21 permits the calculation of J ∗
P from a measured

value of J . That is:

J ∗
P = 1. 8J

1 + 0. 8
(

pwf

pr

)

To arrive at the final expression for predicting the desired
IPR expression, Standing combines Equation 5.2.20 with
5.2.18 to eliminate (Qo)max, to give:

Qo =
[

J ∗
f

(
pr
)

f

1. 8

]
1 − 0. 2

pwf(
pr
)

f

− 0. 8

[
pwf(
pr
)

f

]2

 [5.2.22]

where the subscript f refers to the future condition.
Standing suggested that J ∗

f can be estimated from the
present value of J ∗

P by the following expression.

J ∗
f = J ∗

P

(
kro

µoBo

)
f

/(
kro

µoBo

)
p

[5.2.23]

where the subscript p refers to the present condition.
If the relative permeability data is not available, J ∗

f can be
roughly estimated from:

J ∗
f = J ∗

P

[ (
pr
)

f(
pr
)

p

]2

[5.2.24]

Standing’s methodology for predicting a future IPR is sum-
marized in the following steps:

Step 1. Using the current time condition and the available
flow test data, calculate (Qo)max from Equation 5.2.18:

(
Qo
)

max = Qo(
1 − pwf

pr

)[
1 + 0. 8

(
pwf

pr

)]

Step 2. Calculate J ∗ at the present condition, i.e., J ∗
P , by

using Equation 5.2.20. Note that other combinations
of Equations 5.2.18 through 5.2.21 can be used to
estimate J ∗

P :

J ∗
P = 1. 8

[(
Qo
)

max

pr

]

or from:

J ∗
P = 1. 8J

1 + 0. 8
(
pwf /pr

)
Step 3. Using fluid property, saturation, and relative per-

meability data, calculate both (kro/µoBo)p and
(kro/µoBo)f .

Step 4. Calculate J ∗
f by using Equation 5.2.23. Use Equa-

tion 5.2.24 if the oil relative permeability data is not
available:

J ∗
f = J ∗

P

(
kro

µoBo

)
f

/(
kro

µoBo

)
p

or:

J ∗
f = J ∗

P

[ (
pr
)

f(
pr
)

p

]2

Step 5. Generate the future IPR by applying Equation 5.2.22:

Qo =
[

J ∗
f

(
pr
)

f

1. 8

]
1 − 0. 2

pwf(
pr
)

f

− 0. 8

[
pwf(
pr
)

f

]2



Example 5.13 A well is producing from a saturated oil
reservoir that exists at its saturation pressure of 4000 psig.
The well is flowing at a stabilized rate of 600 STB/day and
a pwf of 3200 psig. Material balance calculations provide the
following current and future predictions for oil saturation
and PVT properties.

Present Future

pr 4000 3000
µo (cp) 2.40 2.20
Bo (bbl/STB) 1.20 1.15
kro 1.00 0.66

Generate the future IPR for the well at 3000 psig by using
the Standing method.

Solution

Step 1. Calculate the current (Qo)max from Equation 5.2.18:
(
Qo
)

max = Qo(
1 − pwf /pr

) [
1 + 0. 8

(
pwf /pr

)]

= 600(
1 − 3200

4000

)[
1 + 0. 8

(
3200
4000

)]

= 1829 STB/day

TLFeBOOK



5/350 PREDICTING OIL RESERVOIR PERFORMANCE

Step 2. Calculate J ∗
P by using Equation 5.2.21:

J ∗
P = 1. 8

[(
Qo
)

max

pr

]

= 1. 8
[

1829
4000

]
= 0. 823

Step 3. Calculate the following pressure function:(
kro

µoBo

)
p

= 1(
2. 4
) (

1. 20
) = 0. 3472

(
kro

µoBo

)
f
= 0. 66(

2. 2
) (

1. 15
) = 0. 2609

Step 4. Calculate J ∗
f by applying Equation 5.2.23:

J ∗
f = J ∗

P

(
kro

µoBo

)
f

/(
kro

µoBo

)
p

= 0. 823
(

0. 2609
0. 3472

)
= 0. 618

Step 5. Generate the IPR by using Equation 5.2.22:

Qo =
[

J ∗
f

(
pr
)

f

1. 8

]
1 − 0. 2

pwf(
pr
)

f

− 0. 8

[
pwf(
pr
)

f

]2



=
[

(0. 618)(3000)
1. 8

]{
1 − 0. 2

pwf

3000
− 0. 8

[
pwf

3000

]2
}

pwf Qo (STB/day)

3000 0
2000 527
1500 721
1000 870

500 973
0 1030

It should be noted that one of the main disadvantages of
Standing’s methodology is that it requires reliable perme-
ability information; in addition, it also requires material bal-
ance calculations to predict oil saturations at future average
reservoir pressures.

Fetkovich method
Muskat and Evinger (1942) attempted to account for the
observed non-linear flow behavior (i.e., IPR) of wells
by calculating a theoretical productivity index from the
pseudosteady-state flow equation. They expressed Darcy’s
equation as:

Qo = 0. 00708kh[
ln
(
re/rw

)− 0. 75 + s
]
∫ pr

pwf

f (p)dp [5.2.25]

where the pressure function f(p) is defined by:

f (p) = kro

µoBo
[5.2.26]

where:

kro = oil relative permeability
k = absolute permeability, md

Bo = oil formation volume factor
µo = oil viscosity, cp

Region 2: Saturated Region Region 1: Unsaturated Region

0
0 Pressure pb    

Figure 5.18 Pressure function concept.

Fetkovich (1973) suggested that the pressure function f(p)
can basically fall into one of the following two regions:

Region 1: Undersaturated region: The pressure function f(p)
falls into this region if p > pb. Since oil relative
permeability in this region equals unity (i.e., kro =
1), then:

f (p) =
(

1
µoBo

)
p

[5.2.27]

Fetkovich observed that the variation in f(p) is
only slight and the pressure function is consid-
ered constant as shown in Figure 5.18.

Region 2: Saturated region: In the saturated region where
p < pb, Fetkovich showed that kro/µoBo changes
linearly with pressure and that the straight line
passes through the origin. This linear plot is
shown schematically in Figure 5.18 and can be
expressed mathematically as:

f (p) = 0 + (slope)p

or:

f(p) = 0 +
(

1/(µoBo)
pb

)
pb

p

Simplifying:

f(p) =
(

1
µoBo

)
pb

(
p
pb

)
[5.2.28]

where µo and Bo are evaluated at the bubble point pressure.
In the application of the straight-line pressure function, there
are three cases that must be considered:

(1) pr and pwf > pb;
(2) pr and pwf < pb;
(3) pr > pb and pwf < pb.

These three cases are presented below.
Case 1: pr and pwf are both greater than pb This is the
case of a well producing from an undersaturated oil reservoir
where both pwf and pr are greater than the bubble point pres-
sure. The pressure function f(p) in this case is described by
Equation 5.2.27. Substituting Equation 5.2.27 into Equation
5.2.25 gives:

Qo = 0. 00708kh
ln
(
re/rw

)− 0. 75 + s

∫ pr

pwf

(
1

µoBo

)
dp

Since
(

1
µoBo

)
is constant, then:

Qo = 0. 00708kh
µoBo

[
ln
(
re/rw

)− 0. 75 + s
] (pr − pwf

)
[5.2.29]

and from the definition of the productivity index:

Qo = J (pr − pwf ) [5.2.30]
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The productivity index is defined in terms of the reservoir
parameters as:

J = 0. 00708kh
µoBo

[
ln
(
re/rw

)− 0. 75 + s
] [5.2.31]

where Bo and µo are evaluated at (pr + pwf )/2.

Example 5.14 A well is producing from an undersat-
urated oil reservoir that exists at an average reservoir
pressure of 3000 psi. The bubble point pressure is recorded
as 1500 psi at 150◦F. The following additional data is
available:

stabilized flow rate = 280 STB/day,

stabilized wellbore pressure = 2200 psi

h = 20 ft, rw = 0. 3 ft,

re = 660 ft, s = −0. 5

k = 65 md, µo at 2600 psi = 2.4 cp,

Bo at 2600 psi = 1.4 bbl/STB

Calculate the productivity index by using both the reser-
voir properties (i.e., Equation 5.2.31) and flow test data (i.e.,
Equation 5.2.1):

Solution From Equation 5.2.30:

J = 0. 00708kh
µoBo

[
ln
(
re/rw

)− 0. 75 + s
]

= 0. 00708(65)(20)

(2. 4)
(
1. 4
) [

ln
(

660
0. 3

)
− 0. 75 − 0. 5

]

= 0. 42 STB/day/psi

From production data:

J = Qo

pr − pwf
= Qo

�p

= 280
3000 − 2200

= 0. 35 STB/day/psi

Results show a reasonable match between the two
approaches. However, it should be noted that several uncer-
tainties exist in the values of the parameters used in Equation
5.2.31 to determine the productivity index. For example,
changes in the skin factor k or drainage area would change
the calculated value of J .
Case 2: pr and pwf < pb When the reservoir pressure pr
and bottom-hole flowing pressure pwf are both below the
bubble point pressure pb, the pressure function f(p) is rep-
resented by the straight-line relationship of Equation 5.2.28.
Combining Equation 5.2.28 with 5.2.25 gives:

Qo =
[

0. 00708kh
ln
(
re/rw

)− 0. 75 + s

]∫ pr

pwf

1(
µoBo

)
pb

(
p
pb

)
dp

Since the term
[(

1/µoBo
)

pb

(
1/pb

)]
is constant, then:

Qo =
[

0. 00708kh
ln
(
re/rw

)− 0. 75 + s

]
1(

µoBo
)

pb

(
1
pb

)∫ pr

pwf

pdp

Integrating:

Qo = 0. 00708kh(
µoBo

)
pb

[
ln
(
re/rw

)− 0. 75 + s
]
(

1
2pb

)(
p

2
r − p2

wf

)

[5.2.32]

Introducing the productivity index, as defined by Equation
5.2.31, into the above equation gives:

Qo = J
(

1
2pb

)(
p

2
r − p2

wf

)
[5.2.33]

The term (J/2pb) is commonly referred to as the perfor-
mance coefficient C, or:

Qo = C
(

p
2
r − p2

wf

)
[5.2.34]

To account for the possibility of non-Darcy flow (turbulent
flow) in oil wells, Fetkovich introduced the exponent n in
Equation 5.2.34 to yield:

Qo = C(p
2
r − p2

wf )
n [5.2.35]

The value of n ranges from 1.0 for complete laminar flow to
0.5 for highly turbulent flow.

There are two unknowns in Equation 5.2.35, the perfor-
mance coefficient C and the exponent n. At least two tests
are required to evaluate these two parameters, assuming pr
is known.

By taking the log of both sides of Equation 5.2.35 and
solving for log(p

2
r − p2

wf ), the expression can be written as:

log
(

p
2
r − p2

wf

)
= 1

n
log Qo − 1

n
log C

A plot of p
2
r − p2

wf vs. qo on a log–log scale will result in a
straight line having a slope of 1/n and an intercept of C at
p

2
r −p2

wf = 1. The value of C can also be calculated using any
point on the linear plot once n has been determined, to give:

C = Qo(
p

2
r − p2

wf

)n

Once the values of C and n are determined from test data,
Equation 5.2.35 can be used to generate a complete IPR.

To construct the future IPR when the average reservoir
pressure declines to (pr)f , Fetkovich assumed that the per-
formance coefficient C is a linear function of the average
reservoir pressure and, therefore, the value of C can be
adjusted as:

(C)f = (C)p
(pr)f

(pr)p
[5.2.36]

where the subscripts f and p represent the future and present
conditions.

Fetkovich assumed that the value of the exponent n would
not change as the reservoir pressure declines. Beggs (1991)
presented an excellent and comprehensive discussion of the
different methodologies used in constructing the IPR curves
for oil and gas wells.

The following example was used by Beggs (1991) to illus-
trate the Fetkovich method for generating the current and
future IPR.

Example 5.15 A four-point stabilized flow test was con-
ducted on a well producing from a saturated reservoir that
exists at an average pressure of 3600 psi.

Qo (STB/day) pwf (psi)

263 3170
383 2890
497 2440
640 2150

(a) Construct a complete IPR by using the Fetkovich
method.

(b) Construct the IPR when the reservoir pressure declines
to 2000 psi.
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Figure 5.19 Flow–after-flow data for Example 5.15 (After Beggs, D., Production Optimization Using Nodal Analysis,
permission to publish by the OGCI, copyright OGCI, 1991).

Solution

(a)

Step 1. Construct the following table:

Qo (STB/day) pwf (psi) (p
2
r − p2

wf ) × 10−6, (psi2)

263 3170 2.911
383 2897 4.567
497 2440 7.006
640 2150 8.338

Step 2. Plot (p
2
r − p2

wf ) vs. Qo on log–log paper as shown in
Figure 5.19 and determine the exponent n, or:

n = log(750) − log(105)
log(107) − log

(
106
) = 0. 854

Step 3. Solve for the performance coefficient C by selecting
any point on the straight line, e.g., (745, 10 × 106),

and solving for C from Equation 5.2.35:

Qo = C(p
2
r − p2

wf )
n

745 = C(10 × 106)0.854

C = 0. 00079

Step 4. Generate the IPR by assuming various values for pwf
and calculating the corresponding flow rate from
Equation 5.2.35:

Qo = 0. 00079(36002 − p2
wf )

0.854

pwf Qo (STB/day)

3600 0
3000 340
2500 503
2000 684
1500 796
1000 875

500 922
0 937
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Figure 5.20 IPR using Fetkovich method.

The IPR curve is shown in Figure 5.20. Notice that the
AOF, i.e., (Qo)max, is 937 STB/day.

(b)

Step 1. Calculate future C by applying Equation 5.2.36:

(C)f = (C)p
(pr)f

(pr)p

= 0. 00079
(

2000
3600

)
= 0. 000439

Step 2. Construct the new IPR curve at 2000 psi by using the
new calculated C and applying the inflow equation:

Qo = 0. 000439(20002 − p2
wf )

0.854

pwf Qo (STB/day)

2000 0
1500 94
1000 150

500 181
0 191

Both the present time and future IPRs are plotted
in Figure 5.21.

Klins and Clark (1993) developed empirical correlations
that correlate the changes in Fetkovich’s performance coef-
ficient C and the flow exponent n with the decline in the
reservoir pressure. The authors observed that the exponent
n changes considerably with reservoir pressure. Klins and
Clark concluded that the “future” values of (n)f and C at
pressure

(
pr
)

f are related to the values of n and C at the bub-
ble point pressure. Denoting Cb and nb as the values of the
performance coefficient and the flow exponent at the bubble
point pressure pb, Klins and Clark introduced the following
dimensionless parameters:

● dimensionless performance coefficient = C/Cb;
● dimensionless flow exponent = n/nb;
● dimensionless average reservoir pressure = pr/pb.

The authors correlated C/Cb and n/nb to the dimensionless
pressure by the following two expressions:
(

n
nb

)
= 1 + 0. 0577

(
1 − pr

pb

)
− 0. 2459

(
1 − pr

pb

)2

+ 0. 503

(
1 − pr

pb

)3

[5.2.37]

and:
(

C
Cb

)
= 1 − 3. 5718

(
1 − pr

pb

)
+ 4. 7981

(
1 − pr

pb

)2

− 2. 3066

(
1 − pr

pb

)3

[5.2.38]

where:

Cb = performance coefficient at the bubble point pressure
nb = flow exponent at the bubble point pressure

The procedure or applying the above relationships in adjust-
ing the coefficients C and n with changing average reservoir
pressure is detailed below:

Step 1. Using the available flow test data in conjunction with
Fetkovich’s equation, i.e., Equation 5.2.35, calculate
the present (current) values of n and C at the present
average pressure pr .

Step 2. Using the current values of pr , calculate the dimen-
sionless values of n/nb and C/Cb by applying Equa-
tions 5.2.37 and 5.2.38, respectively.

Step 3. Solve for the constants nb and Cb from:

nb = n
n/nb

[5.2.39]

and:

Cb = C(
C/Cb

) [5.2.40]
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Figure 5.21 Future IPR at 2000 psi.

It should be pointed out that if the present reservoir
pressure equals the bubble point pressure, the val-
ues of n and C as calculated in step 1 are essentially
nb and Cb.

Step 4. Assume future average reservoir pressure
(
pr
)

f and
solve for the corresponding future dimensionless
parameters nf /nb and Cf /Cb by applying Equations
5.2.37 and 5.2.38, respectively.

Step 5. Solve for future values of nf and Cf from:

nf = nb(n/nb)

Cf = Cb(Cf /Cb)

Step 6. Use nf and Cf in Fetkovich’s equation to generate
the well’s future IPR at the desired (future) average
reservoir pressure

(
pr
)

f . It should be noted that the
maximum oil flow rate (Qo)max at

(
pr
)

f is given by:

(Qo)max = Cf [(pr)2]nf [5.2.41]

Example 5.16 Using the data given in Example 5.15, gen-
erate the future IPR data when the reservoir pressure drops
to 3200 psi.

Solution

Step 1. Since the reservoir exists at its bubble point pres-
sure, pb = 3600 psi, then:

nb = 0. 854 and Cb = 0. 00079

Step 2. Calculate the future dimensionless parameters at
3200 psi by applying Equations 5.2.37 and 5.2.38:
(

n
nb

)
= 1 + 0. 0577

(
1 − 3200

3600

)
− 0. 2459

×
(

1 − 3200
3600

)2

+ 0. 5030
(

1 − 3200
3600

)3

= 1. 0041

(
C
Cb

)
= 1 − 3. 5718

(
1 − 3200

3600

)
+ 4. 7981

(
1 − 3200

3600

)2

− 2. 3066
(

1 − 3200
3600

)3

= 0. 6592
Step 3. Solve for nf and Cf :

nf = nb(1. 0041) = (0. 854)(1. 0041) = 0. 8575

Cf = Cb(0. 6592) = (0. 00079)(0. 6592) = 0. 00052
Therefore, the flow rate is then expressed as:

Qo = C(p
2
r − p2

wf )
n = 0. 00052(32002 − p2

wf )
0.8575

The maximum oil flow rate, i.e., AOF, occurs at
pwf = 0, or
(Qo)max = 0. 00052(32002 − 02)0.8575 = 534 STB/day

Step 4. Construct the following table by assuming several
values for pwf :

Qo = 0. 00052
[
32002 − (pwf )2]0.8575 = 534 STB/day

pwf Qo

3200 0
2000 349
1500 431
5000 523

0 534

Figure 5.22 compares current and future IPRs as calculated
in Examples 5.10 and 5.11.
Case: pr > pb and pwf < pb Figure 5.23 shows a schematic
illustration of case 3 in which it is assumed that pwf < pb and
pr > pb. The integral in Equation 5.2.25 can be expanded
and written as:

Qo = 0. 00708kh
ln
(
re/rw

)− 0. 75 + s

[∫ pb

pwf

f(p)dp +
∫ pr

pb

f(p)dp

]
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Figure 5.22 IPR.

Area 2 Area 1

prpb

Pressure

pwf

kro

µo Bo

Figure 5.23 (kro/µoBo) vs. pressure for case 3.

Substituting Equations 5.2.27 and 5.2.28 into the above
expression gives:

Qo = 0. 00708kh
ln
(
re/rw

)− 0. 75 + s

×
[∫ pb

pwf

(
1

µoβo

)(
p
pb

)
dp +

∫ pr

pb

(
1

µoβo

)
dp

]

where µo and Bo are evaluated at the bubble point pressure
pb. Rearranging the above expression gives:

Qo = 0. 00708kh
µoBo

[
ln
(
re/rw

)− 0. 75 + s
]
[

1
pb

∫ pb

pwf

pdp +
∫ pr

pb

dp

]

Integrating and introducing the productivity index J into the
above relationship gives:

Qo = J
[

1
2pb

(
p2

b − p2
wf

)+ (pr − pb
)]

or:

Qo = J
(
pr − pb

)+ J
2pb

(
p2

b − p2
wf

)
[5.2.42]

Example 5.17 The following reservoir and flow test data
is available on an oil well:

pressure data: pr = 4000 psi, pb = 3200 psi

flow test data: pwf = 3600 psi, Qo = 280 STB/day

Generate the IPR data of the well.

Solution

Step 1. Since pwf < pb, calculate the productivity index from
Equation 5.2.1:

J = Qo

pr − pwf
= Qo

�p

= 280
4000 − 3600

= 0. 7 STB/day/psi

Step 2. Generate the IPR data by applying Equation 5.2.30
when the assumed pwf > pb and using Equation
5.2.42 when pwf < pb. That is:

Qo = J (pr − pwf )

= 0. 7(4000 − pwf )

and:

Qo = J
(
pr − pb

)+ J
2pb

(
p2

b − p2
wf

)

= 0. 7
(
4000 − 3200

)+ 0. 7
2(3200)

[(3200)2 − p2
wf ]
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Figure 5.24 IPR using the Fetkovich method.

pwf Equation Qo

4000 5.2.30 0
3800 5.2.30 140
3600 5.2.30 280
3200 5.2.30 560
3000 5.2.42 696
2600 5.2.42 941
2200 5.2.42 1151
2000 5.2.42 1243
1000 5.2.42 1571

500 5.2.42 1653
0 5.2.42 1680

Results of the calculations are shown graphically in
Figure 5.24.

It should be pointed out the Fetkovich method has the
advantage over Standing’s methodology in that it does not
require the tedious material balance calculations to predict
oil saturations at future average reservoir pressures.

Klins and Clark method
Klins and Clark (1993) proposed an inflow expression sim-
ilar in form to that of Vogel’s and can be used to estimate
future IPR data. To improve the predictive capability of
Vogel’s equation, the authors introduced a new exponent d
to Vogel’s expression. The authors proposed the following
relationships:

Qo(
Qo
)

max

= 1 − 0. 295
(

pwf

pr

)
− 0. 705

(
pwf

pr

)d

[5.2.43]

where:

d =
[

0. 28 + 0. 72

(
pr

pb

)] (
1. 24 + 0. 001pb

)
[5.2.44]

The computational steps of the Klins and Clark method are
summarized below:

Step 1. Knowing the bubble point pressure and the current
reservoir pressure, calculate the exponent d from
Equation 5.2.44.

Step 2. From the available stabilized flow data, i.e., Qo at pwf ,
solve Equation 5.2.43 for (Qo)max. That is:
(
Qo
)

max = Qo

1 − 0. 295
(

pwf

pr

)
− 0. 705

(
pwf

pr

)d

Step 3. Construct the current IPR by assuming several
values of pwf in Equation 5.2.43 and solving for Qo.

5.2.2 Horizontal oil well performance
Since 1980, horizontal wells began capturing an ever-
increasing share of hydrocarbon production. Horizontal
wells offer the following advantages over vertical wells:

● The large volume of the reservoir can be drained by each
horizontal well.

● Higher productions from thin pay zones.
● Horizontal wells minimize water and gas zoning prob-

lems.
● In high-permeability reservoirs, where near-wellbore gas

velocities are high in vertical wells, horizontal wells can be
used to reduce near-wellbore velocities and turbulence.

● In secondary and enhanced oil recovery applications,
long horizontal injection wells provide higher injectivity
rates.

● The length of the horizontal well can provide contact with
multiple fractures and greatly improve productivity.

The actual production mechanism and reservoir flow
regimes around the horizontal well are considered more
complicated than those for the vertical well, especially if the
horizontal section of the well is of a considerable length.
Some combination of both linear and radial flow actually
exists, and the well may behave in a manner similar to that
of a well that has been extensively fractured. Sherrad et al.
(1987) reported that the shape of measured IPRs for hor-
izontal wells is similar to those predicted by the Vogel or
Fetkovich methods. The authors pointed out that the pro-
ductivity gain from drilling horizontal wells 1500 feet long is
two to four times that of a vertical well.

A horizontal well can be looked upon as a number of verti-
cal wells drilling next to each other and completed in a limited
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Figure 5.25 Horizontal well drainage area.

pay zone thickness. Figure 5.25 shows the drainage area of
a horizontal well of length L in a reservoir with a pay zone
thickness of h. Each end of the horizontal well would drain
a half-circular area of radius b, with a rectangular drainage
shape of the horizontal well.

Assuming that each end of the horizontal well is repre-
sented by a vertical well that drains an area of a semicircle
with a radius of b, Joshi (1991) proposed the following two
methods for calculating the drainage area of a horizontal
well.

Method I
Joshi proposed that the drainage area is represented by two
semicircles of radius b (equivalent to a radius of a vertical
well rev) at each end and a rectangle, of dimensions 2b − L,
in the center. The drainage area of the horizontal well is then
given by:

A = L
(
2b
)+ πb2

43 560
[5.2.45]

where:

A = drainage area, acres
L = Length of the horizontal well, ft
b = half minor axis of an ellipse, ft

Method II
Joshi assumed that the horizontal well drainage area is an
ellipse and given by:

A = πab
43 560

[5.2.46]

with:

a = L
2

+ b [5.2.47]

where a is the half major axis of an ellipse.
Joshi noted that the two methods give different values for

the drainage area A and suggested assigning the average
value for the drainage of the horizontal well. Most of the
production rate equations require the value of the drainage
radius of the horizontal well, which is given by:

reh =
√

43 560 A
π

where:

reh = drainage radius of the horizontal well, ft
A = drainage area of the horizontal well, acres

Example 5.18 A 480 acre lease is to be developed by
using 12 vertical wells. Assuming that each vertical well
would effectively drain 40 acres, calculate the possible num-
ber of either 1000 or 2000 ft long horizontal wells that will
drain the Lease effectively.

Solution

Step 1. Calculate the drainage radius of the vertical well:

rev = b =
√(

40
) (

43 560
)

π
= 745 ft

Step 2. Calculate the drainage area of the 1000 and 2000 ft
long horizontal well using Joshi’s two methods.

TLFeBOOK



5/358 PREDICTING OIL RESERVOIR PERFORMANCE

Method I:
For the 1000 ft horizontal well and using Equation
5.2.45:

A = L
(
2b
)+ πb2

43 560

=
(
1000

) (
2 × 745

)+ π
(
745
)2

43 560
= 74 acres

For the 2000 ft horizontal well:

A = L
(
2b
)+ πb2

43 560

=
(
2000

) (
2 × 745

)+ π
(
745
)2

43 560
= 108 acres

Method II:
For the 1000 ft horizontal well and using Equation
5.2.46:

a = L
2

+ b

= 1000
2

+ 745 = 1245 ft

A = πab
43 560

= π
(
1245

) (
745
)

43 560
= 67acres

For the 2000 ft horizontal well:

a = 2000
2

+ 745 = 1745 ft

A = π
(
1745

) (
745
)

43 560
= 94 acres

Step 3. Averaging the values from the two methods, the
drainage area of the 1000 ft long is well:

A = 74 + 67
2

= 71 acres

and the drainage area of 2000 ft long well is:

A = 108 + 94
2

= 101 acres

Step 4. Calculate the number of horizontal wells 1000 ft long:
Total number of 1000 ft horizontal wells

= total area
drainage area per well

= 480
71

= 7 wells

Step 5. Calculate the number of horizontal wells 2000 ft long:
Total number of 2000 ft horizontal wells

= total area
drainage area per well

= 480
101

= 5 wells

From a practical standpoint, inflow performance calcu-
lations for horizontal wells are presented here under the
following two flowing conditions:

(1) steady-state single-phase flow;
(2) pseudosteady-state two-phase flow.

The reference textbook by Joshi (1991) provides an excel-
lent treatment of horizontal well technology and it con-
tains detailed documentation of recent methodologies of
generating IPRs.

5.2.3 Horizontal well productivity under steady-state flow
The steady-state analytical solutions are the simplest form of
horizontal well solutions. The steady-state solution requires
that the pressure at any point in the reservoir does not
change with time. The flow rate equation in a steady-state
condition is represented by:

Qoh = Jh(pr − pwf ) = Jh �p [5.2.48]

where:

Qoh = horizontal well flow rate, STB/day
�p = pressure drop from the drainage boundary to

wellbore, psi
Jh = productivity index of the horizontal well,

STB/day/psi

The productivity index of the horizontal well Jh can always
be obtained by dividing the flow rate Qoh by the pressure
drop �p, or:

Jh = Qoh

�p

There are several methods that are designed to predict the
productivity index from the fluid and reservoir properties.
Some of these methods include:

● the Borisov method;
● the Giger, Reiss, and Jourdan method;
● the Joshi method;
● the Benard and Dupuy method.

Borisov method
Borisov (1984) proposed the following expression for pre-
dicting the productivity index of a horizontal well in an
isotropic reservoir, i.e., kv = kh:

Jh = 0. 00708hkh

µoBo

[
ln
(

4reh

L

)
+
(

h
L

)
ln
(

h
2πrw

)] [5.2.49]

where:

h = thickness, ft
kh = horizontal permeability, md
kv = vertical permeability, md
L = length of the horizontal well, ft

reh = drainage radius of the horizontal well, ft
rw = wellbore radius, ft
Jh = productivity index, STB/day/psi

Giger, Reiss, and Jourdan method
For an isotropic reservoir where the vertical permeability
kv equals the horizontal permeability kh, Giger, et al. (1984)
proposed the following expression for determining Jh:

Jh = 0. 00708Lkh

µoBo

[(
L
h

)
ln
(
X
)+ ln

(
h

2rw

)] [5.2.50]

where:

X = 1 +√1 + [L/2reh]2

L/(2reh)
[5.2.51]

To account for the reservoir anisotropy, the authors pro-
posed the following relationships:

Jh = 0. 00708kh

µoBo

[(
1
h

)
ln
(
X
)+

(
β2

L

)
ln
(

h
2rw

)] [5.2.52]
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with the parameter β as defined by:

β =
√

kh

kv
[5.2.53]

where:

kv = vertical permeability, md
L = length of the horizontal section, ft

Joshi method
Joshi (1991) presented the following expression for estimat-
ing the productivity index of a horizontal well in isotropic
reservoirs:

Jh = 0. 00708hkh

µoBo

[
ln
(
R
)+

(
h
L

)
ln
(

h
2rw

)] [5.2.54]

with:

R = a +
√

a2 − (L/2
)2

(
L/2

) [5.2.55]

and a is half the major axis of the drainage ellipse and
given by:

a = (L/2
) [

0. 5 +
√

0. 25 + (2reh/L
)4]0.5

[5.2.56]

Joshi accounted for the influence of the reservoir anisotropy
by introducing the vertical permeability kv into Equation
5.2.54, to give:

Jh = 0. 00708hkh

µoBo

[
ln
(
R
)+

(
B2h
L

)
ln
(

h
2rw

)] [5.2.57]

where the parameters B and R are defined by Equations
5.2.53 and 5.2.55, respectively.

Renard and Dupuy method
For an isotropic reservoir, Renard and Dupuy (1990) pro-
posed the following expression:

Jh = 0. 00708hkh

µoBo

[
cosh−1

(
2a
L

)
+
(

h
L

)
ln
(

h
2πrw

)] [5.2.58]

where a is half the major axis of the drainage ellipse and
given by Equation 5.2.56.

For anisotropic reservoirs, the authors proposed the
following relationship:

Jh = 0. 00708hkh

µoBo

[
cosh−1

(
2a
L

)
+
(

βh
L

)
ln
(

h
2πr ′

w

)] [5.2.59]

where:

r\
w =

(
1 + β

)
rw

2β
[5.2.60]

with the parameter β as defined by Equation 5.2.53.

Example 5.19 A horizontal well 2000 feet long drains
an estimated drainage area of 120 acres. The reservoir is
characterized by an isotropic formation with the following
properties:

kv = kh = 100 md, h = 60 ft,

Bo = 1. 2 bbl/STB, µo = 0. 9 cp,

pe = 3000 psi, pwf = 2500 psi,

rw = 0. 30 ft

Assuming a steady-state flow, calculate the flow rate by using:

(a) the Borisov method;
(b) the Giger, Reiss, and Jourdan method;
(c) the Joshi’s method;
(d) the Renard and Dupuy method.

Solution

(a) Borisov method:

Step 1. Calculate the drainage radius of the horizontal well:

reh =
√

43 560A
π

=
√(

43 560
)

(120)
π

= 1290 ft

Step 2. Calculate Jh by using Equation 5.2.49:

Jh = 0. 00708hkh

µoBo

[
ln
(

4reh
L

)
+
(

h
L

)
ln
(

h
2πrw

)]

=
(
0. 00708

) (
60
) (

100
)

(
0. 9
) (

1. 2
) [

ln

( (
4
) (

1290
)

2000

)
+
(

60
2000

)
ln

(
60

2π
(
0. 3
)
)]

= 37. 4 STB/day/psi

Step 3. Calculate the flow rate by applying Equation 5.2.48:
Qoh = Jh�p

= (37. 4)(3000 − 2500) = 18 700 STB/day

(b) Giger, Reiss, and Jourdan method:

Step 1. Calculate the parameter X from Equation 5.2.51:

X =
1 +

√
1 +

(
L

2reh

)2

L/(2reh)

=
1 +

√√√√1 +
(

2000(
2
) (

1290
)
)2

2000/
[(

2
) (

1290
)] = 2. 105

Step 2. Solve for Jh by applying Equation 5.2.50:

Jh = 0. 00708Lkh

µoBo

[(
L
h

)
ln
(
X
)+ ln

(
h

2rw

)]

=
(
0. 00708

) (
2000

) (
100
)

(
0. 9
) (

1. 2
) [(2000

60

)
ln
(
2. 105

)+ ln

(
60

2
(
0. 3
)
)]

= 44. 57 STB/day

Step 3. Calculate the flow rate:
Qoh = 44. 57(3000 − 2500) = 22 286 STB/day

(c) Joshi method:

Step 1. Calculate the half major axis of the ellipse by using
Equation 5.2.56:

a = (L/2
) [

0. 5 +
√

0. 25 + (2reh/L
)4]0.5

=
(

2000
2

)[
0. 5 +

√
0. 25 + [2(1290

)
/2000

]2]0.5

= 1372 ft
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Step 2. Calculate the parameter R from Equation 5.2.55:

R = a +
√

a2 − (L/2
)2

(
L/2

)

= 1372 +
√(

1372
)2 − (2000/2

)2
(
2000/2

) = 2. 311

Step 3. Solve for Jh by applying Equation 5.2.54:

Jh = 0. 00708hkh

µoBo

[
ln
(
R
)+

(
h
L

)
ln
(

h
2rw

)]

= 0. 00708
(
60
) (

100
)

(
0. 9
) (

1. 2
) [

ln
(
2. 311

)+
(

60
2000

)
ln

(
60(

2
) (

0. 3
)
)]

= 40. 3 STB/day/psi

Step 4. Calculate the flow rate:
Qoh = Jh�p

= (40. 3)(3000 − 2500) = 20 154 STB/day

(d) Renard and Dupuy method:

Step 1. Calculate a from Equation 5.2.56:

a=(L/2
)[

0.5+
√

0.25+(2reh/L
)4]0.5

=
(

2000
2

)[
0.5+

√
0.25+[2(1290

)
/2000

]2]0.5

=1372 ft

Step 2. Apply Equation 5.2.58 to determine Jh:

Jh = 0. 00708hkh

µoBo

[
cosh−1

(
2a
L

)
+
(

h
L

)
ln
(

h
2πrw

)]

= 0. 00708
(
60
) (

100
)

(
0. 9
) (

1. 2
) [

cosh−1
( (

2
) (

1372
)

2000

)
+
(

60
2000

)
Ln

(
60

2π
(
0. 3
)
)]

= 41. 77 STB/day/psi

Step 3. Calculate the flow rate:
Qoh = 41. 77(3000 − 2500) = 20 885 STB/day

Example 5.20 Using the data in Example 5.19 and assum-
ing an isotropic reservoir with kh = 100 md and kv = 10 md,
calculate the flow rate by using:

(a) the Giger, Reiss, and Jourdan method;
(b) the Joshi method;
(c) the Renard and Dupuy method.

Solution

(a) Giger, Reiss, and Jourdan method:

Step 1. Solve for the permeability ratio β by applying Equa-
tion 5.2.53:

β =
√

kh

kv

=
√

100
10

= 3. 162

Step 2. Calculate the parameter X as shown in Example
5.19, to give:

X =
1 +

√
1 +

(
L

2reh

)2

L/(2reh)
= 2. 105

Step 3. Determine Jh by using Equation 5.2.52:

Jh = 0. 00708kh

µoBo

[(
1
h

)
ln
(
X
)+

(
β2

L

)
ln
(

h
2rw

)]

= 0. 00708
(
100
)

(
0. 9
) (

1. 2
) [( 1

60

)
ln
(
2. 105

)+
(

3. 1622

2000

)
ln

(
60(

2
) (

0. 3
)
)]

= 18. 50 STB/day/psi

Step 4. Calculate Qoh:
Qoh = (18. 50)(3000 − 2500) = 9 252 STB/day

(b) Joshi method:

Step 1. Calculate the permeability ratio β:

β =
√

kh

kv
= 3. 162

Step 2. Calculate the parameters a and R as given in
Example 5.19:

a = 1372 ft, R = 2. 311

Step 3. Calculate Jh by using Equation 5.2.54:

Jh = 0. 00708hkh

µoBo

[
ln
(
R
)+

(
h
L

)
ln
(

h
2rw

)]

= 0. 00708
(
60
) (

100
)

(
0. 9
) (

1. 2
)

ln

(
2. 311

)+


(
3. 162

)2 (60
)

2000


 ln

(
60

2
(
0. 3
)
)


= 17. 73 STB/day/psi

Step 4. Calculate the flow rate:
Qoh = (17. 73)(3000 − 2500) = 8 863 STB/day

(c) Renard and Dupuy method:

Step 1. Calculate r\
w from Equation 5.2.60:

r\
w =

(
1 + β

)
rw

2β

r\
w =

(
1 + 3. 162

) (
0. 3
)

(
2
) (

3. 162
) = 0. 1974

Step 2. Apply Equation 5.2.59:

Jh =0.00708
(
60
)(

100
)/

(
0.9
)(

1.2
){

cosh−1

[ (
2
)(

1372
)

2000

]
+
[ (

3.162
)2 (60

)
2000

]
ln

(
60(

2
)
π
(
0.1974

)
)}

=19.65 STB/day/psi

Step 3. Calculate the flow rate :
Qoh = 19. 65(3000 − 2500) = 9 825 STB/day
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5.2.4 Horizontal well productivity under
semisteady-state flow

The complex flow regime existing around a horizontal well-
bore probably precludes using a method as simple as that of
Vogel to construct the IPR of a horizontal well in solution gas
drive reservoirs. However, if at least two stabilized flow tests
are available, the parameters J and n in Fetkovich’s equa-
tion (i.e., Equation 5.2.35) could be determined and used
to construct the IPR of the horizontal well. In this case, the
values of J and n would account not only for the effects of
turbulence and gas saturation around the wellbore, but also
for the effects of the non-radial flow regime existing in the
reservoir.

Bendakhlia and Aziz (1989) used a reservoir model to gen-
erate IPRs for a number of wells and found that a combination
of Vogel’s and Fetkovich’s equations would fit the generated
data if expressed as:

Qoh(
Qoh
)

max

=
[

1 − V
(

pwf

pr

)
− (1 − V

) (pwf

pr

)2
]n

[5.2.61]

where:

(Qoh)max = horizontal well maximum flow rate, STB/day
n = exponent in Fetkovich’s equation
V = variable parameter

In order to apply the equation, at least three stabilized
flow tests are required to evaluate the three unknowns
(Qoh)max, V , and n at any given average reservoir pressure pr .
However, Bendakhlia and Aziz indicated that the parameters
V and n are functions of the reservoir pressure or recovery
factor and, thus, the use of Equation 5.2.61 is not convenient
in a predictive mode.

Cheng (1990) presented a form of Vogel’s equation for
horizontal wells that is based on the results from a numer-
ical simulator. The proposed expression has the following
form:

Qoh(
Qoh
)

max

= 0. 9885 + 0. 2055
(

pwf

pr

)
− 1. 1818

(
pw

pr

)2

[5.2.62]

Petnanto and Economides (1998) developed a generalized
IPR equation for a horizontal and multilateral well in a solu-
tion gas drive reservoir. The proposed expression has the
following form:

Qoh(
Qoh
)

max

= 1 − 0. 25
(

pwf

pr

)
− 0. 75

(
pwf

pr

)n

[5.2.63]

where:

n =

−0. 27 + 1. 46

(
pr

pb

)
− 0. 96

(
pr

pb

)2



× (4 + 1. 66 × 10−3pb) [5.2.64]

with:

(Qoh)max = Jpr

0. 25 + 0. 75n

Example 5.21 A horizontal well 1000 foot long is drilled
in a solution gas drive reservoir. The well is producing at a
stabilized flow rate of 760 STB/day and wellbore pressure of
1242 psi. The current average reservoir pressure is 2145 psi.
Generate the IPR data of this horizontal well by using the
Cheng method.

Solution

Step 1. Use the given stabilized flow data to calculate the
maximum flow rate of the horizontal well:

Qoh(
Qoh
)

max

= 1. 0 + 0. 2055
(

pwf

pr

)
− 1. 1818

(
pw

pr

)2

760(
Qoh
)

max

= 1 + 0. 2055
(

1242
2145

)
− 1. 1818

(
1242
2145

)

(Qoh)max = 1052 STB/day
Step 2. Generate the IPR data by applying Equation 5.2.63:

Qoh = (Qoh
)

max

[
1. 0 + 0. 2055

(
pwf

pr

)

−1. 1818
(

pw

pr

)2
]

pwf
(
Qoh
)

max

2145 0
1919 250
1580 536
1016 875

500 1034
0 1052

5.3 Phase 3. Relating Reservoir Performance to Time

All reservoir performance techniques show the relationship
of cumulative oil production and the instantaneous GOR as
a function of average reservoir pressure. However, these
techniques do not relate the cumulative oil production Np
and cumulative gas production Gp with time. Figure 5.26
shows a schematic illustration of the predicted cumulative
oil production with declining average reservoir pressure.

The time required for production can be calculated by
applying the concept of the IPR in conjunction with the MBE
predictions. For example, Vogel (1968) expressed the well’s
IPR by Equation 5.2.9 as:

Qo = (Qo
)

max

[
1 − 0. 2

(
pwf

pr

)
− 0. 8

(
pwf

pr

)2
]

P
re

ss
ur

e

Np

∆Np

p

 p∗

p

Figure 5.26 Cumulative production as a function of
average reservoir pressure.
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(Qo)T

(pwf)min

p

(Qo)T

Well 2Well 1

Qo

Figure 5.27 Overall field IPR at future average pressure.

The following methodology can be employed to correlate
the predicted cumulative field production with time t:

Step 1. Plot the predicted cumulative oil production Np as a
function of average reservoir pressure p as shown in
Figure 5.26.

Step 2. Assume that the current reservoir pressure is p∗ with
a current cumulative oil production of (Np)∗ and total
field flow rate of (Qo)∗

T .
Step 3. Select a future average reservoir pressure p and

determine the future cumulative oil production Np
from Figure 5.26.

Step 4. Using the selected future average reservoir pressure
p, construct the IPR curve for each well in the field
(as shown schematically in Figure 5.27 for two hypo-
thetical wells). Establish the total field IPR by taking
the summation of the flow rates of all wells at any
time.

Step 5. Using the minimum bottom-hole flowing pressure
( pwf )min, determine the total field flow rate

(
Qo
)

T .

(
Qo
)

T =
# wells∑

i=1

(Qo)i

Step 6. Calculate the average field production rate
(

Qo

)
T

:

(
Qo

)
T

=
(
Qo
)

T + (Qo
)∗

T

2
Step 7. Calculate the time �t required for the incremental

oil production �Np during the first pressure drop
interval, i.e., from p∗ to p, by:

�t = Np − N ∗
p(

Qo

)
T

= �Np(
Qo

)
T

Step 8. Repeat the above steps and calculate the total time t
to reach an average reservoir pressure p, by:

t = ��t

Problems

1. An oil well is producing under steady-state flow condi-
tions at 300 STB/day. The bottom-hole flowing pressure
is recorded at 2500 psi. Given:

h = 23 ft, k = 50 md, µo = 2. 3 cp,

Bo = 1. 4 bbl/STB, re = 660 ft, s = 0. 5

Calculate:

(a) the reservoir pressure;
(b) the AOF;
(c) the productivity index.

2. A well is producing from a saturated oil reservoir with
an average reservoir pressure of 3000 psig. Stabilized
flow test data indicates that the well is capable of pro-
ducing 400 STB/day at a bottom-hole flowing pressure
of 2580 psig.
Calculate the remaining oil-in-place at 3000 psi.

(a) Oil flow rate at pwf = 1950 psig.
(b) Construct the IPR curve at the current average

pressure.
(c) Construct the IPR curve by assuming a constant J .
(d) Plot the IPR curve when the reservoir pressure is

2700 psig.

3. An oil well is producing from an undersaturated reser-
voir that is characterized by a bubble point pressure of
2230 psig. The current average reservoir pressure is
3500 psig. Available flow test data shows that the well
produced 350 STB/day at a stabilized pwf of 2800 psig.
Construct the IPR data, by using:

(a) Vogel’s correlation;
(b) Wiggins method.
(c) Generate the IPR curve when the reservoir pressure

declines to 2230 and 2000 psi.

4. A well is producing from a saturated oil reservoir that
exists at its saturation pressure of 4500 psig. The well
is flowing at a stabilized rate of 800 STB/day and a pwf
of 3700 psig. Material balance calculations provide the
following current and future predictions for oil saturation
and PVT properties:

Present Future

pr 4500 3300
µo, cp 1.45 1.25
Bo, bbl/STB 1.23 1.18
kro 1.00 0.86

Generate the future IPR for the well at 3300 psig by using
the Standing method.

5. A four-point stabilized flow test was conducted on a well
producing from a saturated reservoir that exists at an
average pressure of 4320 psi.

Qo, (STB/day) pwf , (psi)

342 3804
498 3468
646 2928
832 2580

(a) Construct a complete IPR by using the Fetkovich
method.

(b) Construct the IPR when the reservoir pressure
declines to 2500 psi.

6. The following reservoir and flow test data is available on
an oil well:

pressure data: pr = 3280 psi pb = 2624 psi

flow test data: pwf = 2952 psi Qo = STB/day

Generate the IPR data of the well.
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7. A horizontal well 2500 feet long drains an estimated
drainage area of 120 acres. The reservoir is charac-
terized by an isotropic formation with the following
properties:

kv = kh = 60 md, h = 70 ft,

Bo = 1. 4 bbl/STB, µo = 1. 9 cp

pe = 3900 psi, pwf = 3250 psi

rw = 0. 30 ft

Assuming a steady-state flow, calculate the flow rate by
using:

(a) the Borisov method;
(b) the Giger, Reiss, and Jourdan method;
(c) the Joshi method;
(d) the Renard and Dupuy method.

8. A horizontal well 2000 feet long is drilled in a solution gas
drive reservoir. The well is producing at a stabilized flow
rate of 900 STB/day and wellbore pressure of 1000 psi.
The current average reservoir pressure is 2000 psi. Gen-
erate the IPR data of this horizontal well by using the
Cheng method.

9. The following PVT data is for the Aneth Field in Utah:

Pressure Bo Rso Bg µo/µg
(psia) (bbl/STB) (scf/STB) (bbl/SCF)

2200 1.383 727 – −
1850 1.388 727 0.00130 35
1600 1.358 654 0.00150 39
1300 1.321 563 0.00182 47
1000 1.280 469 0.00250 56

700 1.241 374 0.00375 68
400 1.199 277 0.00691 85
100 1.139 143 0.02495 130

40 1.100 78 0.05430 420

The initial reservoir temperature was 133◦F, the initial
pressure was 220 psia, and the bubble-point pressure
was 1850 psia. There was no active water drive. From
1850 psia to 1300 psia a total of 720 MMSTB of oil were
produced and 590.6 MMMscf of gas.

(a) How many reservoir barrels of oil were in place at
1850 psia?

(b) The average porosity was 10%, and connate water
saturation was 28%. The field covered 50 000 acres.
What is the average formation thickness in feet?

10. An oil reservoir initially contains 4 MMSTB of oil at its
bubble point pressure of 3150 psia with 600 scf/STB of
gas in solution. When the average reservoir pressure has
dropped to 2900 psia, the gas in solution is 550 scf/STB.
Boi was 1.34 bbl/STB and Bo at a pressure of 2900 psia
is 1.32 bbl/STB.
Other data:

Rp = 600 scf/STB at 2900 psia, Swi = 0. 25,
Bg = 0. 0011 bbl/SCF at 2900 psia
volumetric reservoir no original gas cap

(a) How many STB of oil will be produced when the
pressure has decreased to 2900 psia?

(b) Calculate the free gas saturation that exists at
2900 psia.

11. The following data is obtained from laboratory core tests,
production data, and logging information:

well spacing = 320 acres
net pay thickness = 50 ft with the gas/oil contact 10 ft

from the top
porosity = 0.17
initial water saturation = 0.26
initial gas saturation = 0.15
bubble-point pressure = 3600 psia
initial reservoir pressure = 3000 psia
reservoir temperature = 120◦F
Boi = 1. 26 bbl/STB
Bo = 1. 37 bbl/STB at the bubble point pressure
Bo = 1. 19 bbl/STB at 2000 psia
Np = 2. 00 MM/STB at 2000 psia
Gp = 2. 4 MMMSCF at 2000 psia
gas compressibility factor, Z = 1. 0 − 0. 0001p
solution, GOR Rso = 0. 2p

Calculate the amount of water that has influxed and the
drive indexes at 2000 psia.

12. The following production data is available on a depletion
drive reservoir:

p GOR Np
(psi) (scf/STB) (MMSTB)

3276 1098.8 0
2912 1098.8 1.1316
2688 1098.8 1.8532
2352 1098.8 2.8249
2016 1587.52 5.9368
1680 2938.88 9.86378
1344 5108.6 12.5632

Calculate cumulative gas produced Gp and cumulative
GOR at each pressure.

13. A volumetric solution gas drive reservoir has an initial
water saturation of 25%. The initial oil formation volume
factor is reported at 1.35 bbl/STB. When 8% of the ini-
tial oil was produced, the value of Bo decreased to 1.28.
Calculate the oil saturation and gas saturation.

14. The following data is available on a volumetric under-
saturated oil reservoir.

pi = 4400 psi, pb = 3400 psi,

N = 120 MMSTB, cf = 4 × 10−6 psi−1,

co = 12 × 10−6 psi−1, cw = 2 × 10−6 psi−1,

Swi = 25%, Boi = 1. 35 bbl/STB

Estimate cumulative oil production when the reservoir
pressure drops to 4000 psi. The oil formation volume
factor at 4000 psi is 1.38 bbl/STB.
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The objective of this chapter is to explain the fundamen-
tals of investment decision making with an emphasis on the
methods most commonly used in the petroleum industry.
To successfully evaluate investment alternatives associated
with oil and gas properties, knowledge of investment deci-
sion making and petroleum engineering evaluation methods
is necessary. Many of the petroleum engineering evalua-
tion methods used to predict future hydrocarbon producing
rates and recoverable reserves were presented in earlier
chapters of this book. Combining those methods with the
investment decision-making and evaluation methods pre-
sented in this chapter will provide the basis for determining
the relative economic merits of most oil and gas investment
opportunities.

6.1 Fundamentals of Economic Equivalence
and Evaluation Methods

Money has a time value. The time value of money depends
on many things and can be different for different individuals
or companies. The concept of the time value of money can
be demonstrated by considering whether someone would
rather receive a particular sum of money today or receive it
a year from now. Most people would prefer to receive it today.
However, if the amount of money to be received a year from
now is increased to an amount that would cause the person
to change their preference, the time value of money for the
person could be established. Some of the issues affecting
the time value of money include the alternative investment
opportunities for the sum of money to be received today,
the perceived risk associated with receiving the money in
the future, and the inflation rate during the associated time
period.

The time value of money is established in the market-
place by the supply and demand for money. The supply
establishes the lending market price (lending rate) and the
demand establishes the borrowing market price (borrow-
ing rate). The difference is the margin for the lender or
go-between. These rates, or “interest rates” as they are com-
monly called, are usually expressed as a percentage of the
original amount of money per unit of time. Knowing the inter-
est rate, you can calculate the value of a specific amount of
money at a different point in time. The different values are
said to be “equivalent” as long as the holder of the money
is indifferent to receiving payment now or in the future at
the agreed interest rate. This is the concept of economic
equivalence. It is this concept that provides the basis for
comparing different investment alternatives and is neces-
sary when comparing investment alternatives with different
cost and payment schedules (see Figure 6.1).

With respect to all economic evaluation methods, time is
relative and the time direction is very important. When deter-
mining the future worth of a present-day amount of money,
the time direction is forward and the time value of money is
said to be compounding. This is because the interest earned
during the first period is added to the original principal to
form the principal for the second period. The compounded
interest concept is generally used to determine economically
equivalent future values. Conversely, when determining the
present worth of a future amount of money, the time direc-
tion is backward and the time value of money is said to be
discounting. This is because a specific amount of money paid
in the future is not worth as much as the same amount paid
today. Hence, the future sum of money must be discounted
to make it equivalent to a present-day sum of money. The
discounting interest concept is generally used to determine
equivalent present values and is considered the most impor-
tant since most investors account for the time value of money
using present value calculations.

0End of Year
$100

1 2 3 4

0

$105

1 2 3End of Year 1 22 4

0End of Year
$110.25

1 2 3 4

0End of Year
$115.76

1 2 3 4

Economic Equivalence

Each of the above payment schedules are said to be
equivalent provided the time value of money is 
defined by the annual compound interest rate of 
5 percent.

Figure 6.1 Economic equivalent payment schedules.

Cash flow is a term used in this text to describe the net
inflow and outflow of money during a specified period of time
such as a month, a quarter, or a year. For example, a partic-
ular investment alternative may generate revenue (inflows)
and incur costs (outflows) for operating expenses, taxes, and
additional capital investments during a single calendar year.
The cash flow for the investment would be defined as the
revenue received minus the costs incurred during the year.
Cash flow can be negative or positive:
Cash flow = revenues − costs [6.1.1]
The term “discounted cash flow” describes a method used to
evaluate the positive and negative cash flow of an investment
alternative using present worth calculations. It is a method
that requires an analytical approach of systematically and
quantitatively evaluating all of the economic considerations
that affect the economic potential of the investment. It is also
the method most commonly used in the petroleum industry
to evaluate different investment alternatives.

Cash flow time lines are used to graphically depict the
associated timing of cash flow for a project. When applied
properly, they can help simplify the complicated nature of a
cash flow evaluation to properly account for the time value of
money. Shown in Figure 6.2 is the basic cash flow time line
used in this text to derive economic equivalence formulas
and solve associated problems.

The basic cash flow time line notation used in this text is:

P = present lump sum of money
F = future lump sum of money
A = amount of each payment in a uniform series of equal

payments
n = number of interest compounding periods
i = periodic interest rate (interest rate per interest

compounding period)

The periodic interest rate (i) is a term used to describe the
interest rate for each interest compounding period (n). It is
usually expressed as a percentage of the principal. Principal
is a term used to describe the sum of money on which interest
is calculated during a specified period of time. For example,

n−1 n

P F
End of
Period

A A A A

Time, periods

0 1 2

Figure 6.2 Basic cash flow time line.
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$100 deposited into a bank account paying interest at 5%
annually would earn $5 after one year. The principal in this
example is the $100. Simple interest is a concept rarely used.
However, since it provides the basis for understanding com-
pound interest formulas, their derivations, and equivalence
applications, it makes for a good starting point. Consider a
present lump sum of money P invested at a simple inter-
est rate i for n periods; then the interest will be P × i × n.
The future lump sum (F) at the end of n periods will be the
present lump sum (P) plus the interest (P ×i×n). The future
lump sum can be calculated using the following formula:

F = P(1 + in) [6.1.2]

6.1.1 Equivalent value formulas
The formulas presented in this subsection are based on
the concept of economic equivalence. They are intended
to mathematically equate present-day money (P), future
money (F), and a uniform series of periodic and equal
payments of money (A). Six two-variable relationships or
factors are derived that describe three basic types of time-
value-of-money calculations. These factors are tabulated in
the Appendix and can be used to simplify the calculation
of economic equivalent values using the following basic
formula:
Quantity

calculated = quantity
given × appropriate time-

value-of-money factor [6.1.3]

Notation is used in this text to describe and simplify the ref-
erence of these factors. The first letter of the factor notation
designates the value or quantity being calculated. The sec-
ond letter designates the quantity given and is followed by
two subscripted terms. The first subscripted term defines
the periodic interest rate (i) expressed as a percentage and
followed with a comma. The second subscripted term in
the notation defines the number of interest compounding
periods (n).

Future worth
As stated above, the compounding interest concept is
defined by adding the interest earned during the period to
the original amount of principal to form the principal for the
next period. Combining this concept with the simple interest
future lump-sum formula 6.1.2, the future worth formula can
be derived. First, let us denote F with a subscript to define
it as the future lump sum or future worth at the end of the
number of interest compounding periods indicated by the
subscript. If we consider a present-day lump sum of money
(P) invested at a periodic interest rate (i), then the future
lump sum at the end of the first period can be calculated by
the following formula:

F1 = P(1 + i) [6.1.4]

If we substitute F1 for the principal at the beginning of the
second period, then it follows that the future lump sum at the
end of the second period can be calculated by the following
formula:

F2 = F1(1 + i) [6.1.5]

If we substitute F2 for the principal at the beginning of the
third period, then it follows that the future lump sum at the
end of the third period can be calculated by the following
formula.

F3 = F2(1 + i) [6.1.6]

This process of substitution can be continued for n periods.
To complete the derivation, if we substitute Equation 6.1.5
for F2, Equation 6.1.6 becomes:

F3 = F1(1 + i)(1 + i) [6.1.7]

If we substitute Equation 6.1.4 for F1, Equation 6.1.7
becomes:

F3 = P(1 + i)(1 + i)(1 + i) [6.1.8]

Equation 6.1.8 can be simplified to:

F3 = P(1 + i)3 [6.1.9]

Since the future worth subscript is the same as the num-
ber of compounding periods, the subscript for future worth
can be dropped. This leaves us with a general equation for
determining the equivalent future worth of a present-day
sum of money compounding at a periodic interest rate (i)
for n periods as:

F = P(1 + i)n [6.1.10]

From the general Equation 6.1.10, the term (1 + i)n is
called the single-payment compound-amount factor and is
designated in this text by F/Pi,n.

Example 6.1 Single-payment compound amount If
$500 is deposited into a savings account paying 5% inter-
est compounded annually, how much money will be in the
account after five years?

Solution To calculate F given P (Figure 6.3), look up the
F/Pi,n factor obtained from the Appendix for 5% interest
and five interest compounding periods and substitute the
appropriate values into Equation 6.1.3 as follows:

F = P
[

F
Pi,n

]

= $500(1. 27628) = $638. 14

Alternatively, the future worth can be mathematically calcu-
lated using Equation 6.1.10 as follows:

F = P(1 + i)n = $500(1 + 0. 05)5 = $638. 14

Present worth
As stated above, the discounting interest concept is generally
used to determine the equivalent present worth of a future
lump sum of money and is considered the most important
since most investors account for the time value of money
using present worth or present value calculations. Recall that
the primary difference between determining the value of a
future lump sum and the value of a present lump sum is the
time direction. It follows then that the present worth formula
is simply another form of the future worth formula 6.1.10.
Solving for P we get:

P = F
(1 + i)n

[6.1.11]

If a future amount of money (F) is to be received n peri-
ods from now, the present value (P) of that money can be
determined for a given interest rate (i) by Equation 6.1.11.
From this equation, the term (1+ i)−n is commonly referred
to as the single-payment discount factor or single-payment
present worth factor and is designated in this text by P/Fi,n.

Example 6.2 Single-payment discount factor If $500
is to be received five years from now, how much is it
worth if the time value of money is defined by 5% interest
compounded annually?

P = $500

Time, Years

F = ?

0 1 2 3 4 5

Figure 6.3
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Time, Years

F = $500P = ?

0 1 2 3 4 5

Figure 6.4

Solution To calculate P given F (Figure 6.4), look up the
P/Fi,n factor obtained from the Appendix for 5% interest
and five interest compounding periods and substitute the
appropriate values into Equation 6.1.3 as follows:

P = F
[

P
Fi,n

]

= $500(0. 78353) = $391. 77
Alternatively, the future worth can be mathematically cal-
culated using Equation 6.1.11 as follows with the small
difference due to rounding in the look-up table:

P = F
(1 + i)n

= $500
(1 + 0. 05)5 = $391. 76

Future worth of a uniform series
The formula presented in this subsection is called the uni-
form series compound-amount formula. It is an equivalent
value formula used to determine the future value (F) of a
uniform series of equal payments (A) made at the end of
each period of a series of interest compounding periods (n)
at a given periodic interest rate (i) as shown in Figure 6.5.
This formula could be used to determine the future value
of an investment vehicle such as a savings plan or a retire-
ment fund where periodic and equal deposits are made over
a specified period of time accumulating at a specified interest
rate. Because the payments draw interest for a different num-
ber of compounding periods, the formula must be derived
by determining the future worth of each payment with the
future worth formula 6.1.10 and adding the individual results.
It is worth noting that the final payment in the uniform series
of equal payments occurs at the same time the future worth
is determined so the final payment does not earn interest.

Substituting A for P in Equation 6.1.10 and calculating the
future worth for each payment in Figure 6.5, the formula for
determining the future worth of the series is as follows:
F = A(1) + A(1 + i) + A(1 + i)2 + · · · + A(1 + i)n−1

[6.1.12]
To continue the derivation, if we multiply both sides of the
equation by (1 + i), then Equation 6.1.12 becomes:
F(1+i)=A(1+i)+A(1+i)2 +A(1+i)3 +···+A(1+i)n

[6.1.13]
If we then subtract Equation 6.1.12 from 6.1.13, we get:
F(1 + i) − F = A(1 + i)n − A [6.1.14]

A A A A

one period

two periods

n−1 periods

0
End of
Period

Time, periods

F = ?
1 n−2 n−1 n

Figure 6.5 Cash flow diagram used to derive the
uniform series compound-amount formula.

F = ?
A = $500 A = $500 A = $500 A = $500 A = $500

Time, Years
0 1 2 3 4 5

Figure 6.6

With further simplification we get:

F
[(

1 + i
)− 1

] = A
[(

1 + i
)n − 1

]
[6.1.15]

The final form of the equation is:

F =
A
[(

1 + i
)n − 1

]

i
[6.1.16]

Equation 6.1.16 is the uniform series compound-amount
formula and is used to determine the future value of a uni-
form series of equal payments. From the equation, the term
A
[(

1 + i
)n − 1

] /
i is called the uniform series compound-

amount factor and is designated in this text by F/Ai,n.

Example 6.3 Uniform series compound-amount
factor If $500 is deposited into a savings account at the end
of every year for five years, how much will the account be
worth if interest compounds annually at 5%?

Solution To calculate F given A (Figure 6.6), look up the
F/Ai,n factor obtained from the Appendix for 5% interest
and five interest compounding periods and substitute the
appropriate values into Equation 6.1.3 as follows:

F = A
[

F
Ai,n

]

= $500(5. 52563) = $2762. 82
Alternatively, the future worth can be mathematically calcu-
lated using Equation 6.1.16 as follows:

F =
A
[(

1 + i
)n − 1

]

i

=
$500

[(
1 + 0. 05

)5 − 1
]

0. 05
= $2762. 82

Present worth of a uniform series
This formula is called the uniform series present worth for-
mula. It is an equivalent value formula used to determine the
present value (P) of a uniform series of equal payments (A)
made at the end of each period of a series of interest com-
pounding periods (n) at a given periodic interest rate (i) as
shown in Figure 6.7. This formula could be used to deter-
mine the present value of an annuity, the right to receive

End of
Period

Time, periods

P = ?

one period

two periods

n periods

0 1

A A A

2 n

Figure 6.7 Cash flow diagram depicting the present
worth of a uniform series of equal payments.
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P = ?
A = $500 A = $500 A = $500 A = $500 A = $500

Time, Years
0 1 2 3 4 5

Figure 6.8

periodic payments of a fixed amount over a specified period
of time.

The uniform series present worth formula can be derived
by substituting F in Equation 6.1.16 with Equation 6.1.10 as
follows:

P
(
1 + i

)n =
A
[(

1 + i
)n − 1

]

i
[6.1.17]

Solving for P , Equation 6.1.17 becomes:

P =
A
[(

1 + i
)n − 1

]

i(1 + i)n
[6.1.18]

From Equation 6.1.18, the term
[
(1 + i)n − 1

]/
i(1 + i)n is

commonly referred to as the uniform series present worth
factor and is designated in this text by P/Ai,n.

Example 6.4 Uniform series present worth factor
Calculate the present value of depositing $500 into a sav-
ings account at the end of every year for five years if interest
compounds annually at 5%.

Solution To calculate P given A (Figure 6.8), look up the
P/Ai,n factor obtained from the Appendix for 5% interest
and five interest compounding periods and substitute the
appropriate values into Equation 6.1.3 as follows:

P = A
[

P
Ai,n

]

= $500(4. 32948) = $2164. 74

Alternatively, the future worth can be mathematically calcu-
lated using Equation 6.1.18 as follows:

P =
A
[(

1 + i
)n − 1

]

i(1 + i)n

=
$500

[(
1 + 0. 05

)5 − 1
]

0. 05(1 + 0. 05)5 = $2164. 74

Uniform series for a future worth
This formula is called the sinking fund formula and is simply
the inverse of the uniform series compound-amount formula
6.1.16. It is used to determine the periodic and equal pay-
ments (A) necessary to accumulate a specified future lump
sum of money (F) after a specified number of compound-
ing interest periods (n) at a given periodic interest rate (i).
This formula could be used to determine the magnitude of
the periodic deposits necessary to allow a savings plan or
retirement fund to reach a future lump sum of money:

A = F

[
i(

1 + i
)n − 1

]
[6.1.19]

From Equation 6.1.19, the term i/(1 + i)n − 1 is commonly
referred to as the sinking fund factor and is designated in
this text by A/Fi,n.

Example 6.5 Sinking fund factor How much money
must be deposited into a savings account at the end of every
year for five years if interest compounds annually at 5% and
the goal is to have $500 in the account after the final payment?

F = $500
A = ? A = ? A = ? A = ? A = ?

Time, Years
0 1 2 3 4 5

Figure 6.9

Solution To calculate A given F (Figure 6.9), look up the
A/Fi,n factor obtained from the Appendix for 5% interest
and five interest compounding periods and substitute the
appropriate values into Equation 6.1.3 as follows:

A = F
[

A
Fi,n

]

= $500(0. 18097) = $90. 49

Alternatively, the future worth can be mathematically calcu-
lated using Equation 6.1.19 as follows:

A = F

[
i(

1 + i
)n − 1

]

= 500

[
0. 05(

1 + 0. 05
)5 − 1

]
= $90. 49

Uniform series for a present worth
This formula is called the capital recovery formula and is sim-
ply the inverse of the uniform series present worth formula
6.1.18. It is used to equate a series of periodic and equal pay-
ments (A) made at the end of each period of a specified series
of compounding interest periods (n) to a given present lump
sum of money (P) at a given periodic interest rate (i). This
formula could be used to determine the periodic payments
required to pay back a loan:

A =
P
[
i
(
1 + i

)n]
[
(1 + i)n − 1

] [6.1.20]

From Equation 6.1.20, the term
[
i(1 + i)n

]/[
(1 + i)n − 1

]
is

commonly referred to as the capital recovery factor and it is
designated in this text by A/Pi,n.

Example 6.6 Capital recovery factor How much should
the end of every year payments be to repay a $500 loan in five
years if the interest charged is 5% compounded annually?

Solution To calculate A given P (Figure 6.10), look up the
A/Pi,n factor obtained from the Appendix for 5% interest
and five interest compounding periods and substitute the
appropriate values into Equation 6.1.3 as follows:

A = P
[

A
Pi,n

]

= $500(0. 23097) = $115. 49

P = $500
A = ? A = ? A = ? A = ? A = ?

Time, Years
0 1 2 3 4 5

Figure 6.10
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Alternatively, the future worth can be mathematically calcu-
lated using Equation 6.1.20 as follows:

A =
P
[
i
(
1 + i

)n]
[
(1 + i)n − 1

]

=
$500

[
0. 05

(
1 + 0. 05

)5]
[
(1 + 0. 05)5 − 1

] = $115. 49

Beginning-, end-, and midpoint-of-period timing
(discounting)
All of the compound interest formulas presented in this
text so far have used end-of-period timing. Beginning- or
midpoint-of-period timing can be valid choices depending on
the situation. The following example illustrates the impact
these timing assumptions have on value determination.

Example 6.7 Beginning-, end-, and midpoint-of-
period discounting Calculate the present value of receiv-
ing $500 at the beginning of the year, five years from now,
assuming an annual compounded interest rate of 5%. Using
the same terms, calculate the present value of receiving the
same amount of money at the midpoint of the fifth year.
Finally, calculate the present value of receiving two payments
of $250, one at the beginning of the fifth year and the other
at the end assuming the same compounded interest rate.
Compare your answers to the present value calculated in
Example 6.2.

Solution See Figure 6.11:

Step 1. Recognizing that the beginning of the fifth year is
the same as the end of the fourth year, substitute the
given values into Equation 6.1.11 as follows:

P = F
(1 + i)n

= $500
(1 + 0. 05)4 = $411. 35

Step 2. Recognizing that the midpoint of the fifth year is
4.5 time periods from the present, substitute the
given values into Equation 6.1.11 as follows:

P = F
(1 + i)n

= $500
(1 + 0. 05)4.5 = $401. 44

Step 3. Add the present values determined for the two
$250 payments by substituting the given values into
Equation 6.1.11 as follows:

P = $250
(1 + 0. 05)4 + $250

(1 + 0. 05)5

= $205. 68 + $195. 88 = $401. 56

In Example 6.2, the present value of receiving $500 at the end
of the fifth year assuming 5% interest compounded annually
was equal to $391.76.

F = $500

Time, Years
0 1 2 3 4 5

F = $500

Time, Years
0 1 2 3 4 5

P = ?

P = ?

P = ?

F = $250 F = $250

Time, Years
0 1 2 3 4 5

Figure 6.11

The results of this exercise demonstrate the present
value differences of the different period timing assumptions.
Selecting the proper timing assumption to solve a simple
time-value-of-money problem is dependent on the timing of
the associated cash flow. The primary thing to remember
is to place the timing of costs and revenues in the calcula-
tions as close as possible to when they will actually occur.
Often, oil field economic evaluations are very complicated
and involve investments, revenues, and costs that occur at
different times in a year and are spread over multiple years.
Usually, the uncertainty associated with estimating the exact
timing of the cash flow for a relatively long-life project
or property makes this issue insignificant. However, most
industry-accepted economic evaluation software packages
offer the user the option to choose the period timing assump-
tion. The timing assumption chosen, whether midpoint or
end-of-period timing (more often called the midpoint- or end-
of-period discounting) is not nearly as important as making
sure that the economic evaluations that need to be com-
pared or ranked use the same assumption. Most companies
establish guidelines to standardize this assumption and if a
particular evaluation justifies using a different assumption
than the standard, make sure that information is provided
with the results.

Nominal and effective interest rates
Financial institutions normally express their interest rates
on a nominal annual basis and commonly refer to them as
“annual percentage rates” or “APRs.” Nominal interest is also
the most commonly referenced interest rate—when some-
one says they are paying 5% interest, they usually mean they
are paying 5% interest on an annual basis. In this text, nominal
interest rate (in) is a term used to define the annual interest
rate or APR and can be used to define the periodic interest
rate (i) using the following formula where m is the number
of interest compounding periods in a year:

in = i × m [6.1.21]

Effective interest rate (ie) is a term used to define the annual
interest rate effectively realized as a result of compounding
m times per year. The formula for calculating the effective
interest rate can be derived from Equation 6.1.10. For deriva-
tion purposes, let us denote F with a subscript to denote it
as a future value to be kept separate and distinct. Let us also
assume that P dollars are invested at a periodic interest rate
of i for m periods. Equation 6.1.10 becomes:

F1 = P(1 + i)m [6.1.22]

If we assume that the same P dollars are invested at an effec-
tive interest rate (ie), and we determine the future value (F2)
after one year, we get:

F2 = P(1 + ie)1 [6.1.23]

Since P is the same in both cases, then F2 = F1 and the
remaining portions of Equation 6.1.23 can be set equal to
each other as follows:

(1 + ie)1 = (1 + i)m [6.1.24]

Solving for ie, we get:

ie = (1 + i)m − 1 [6.1.25]

Example 6.8 Nominal and effective interest rates—
effect of compounding frequency Calculate the effective
interest rate (ie) for 5% nominal interest rate compounded
quarterly, monthly, and daily.

Solution Using Equation 6.1.25, substitute the given infor-
mation as follows:

ie = (1 + i)m − 1
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Figure 6.12

ie compounded quarterly = (1+0. 05/4)4 −1 = 0. 050945
or 5. 0945%
ie compounded monthly= (1+0. 05/12)12−1 = 0. 051162
or 5. 1162%
ie compounded daily = (1+0. 05/365)365 −1 = 0. 051267
or 5. 1267%

As demonstrated in Example 6.8, increasing the number of
compounding periods per year increases the effective inter-
est rate. However, in the above example, had we calculated
the effective interest rate for increasing numbers of com-
pounding periods per year, we would have found diminishing
returns with respect to increasing effective interest rates.
As it turns out, compounding more often than monthly has
negligible effect on the results of most oil field economic
evaluations.

Time value of money—effect on investment
decision analysis
It is important to remember that economic equivalence
assumes that the agreed periodic interest rate defines the
time value of money and that the holder of the money is
indifferent to receiving payment now or in the future at the
agreed interest rate. It was also stated that the time value
of money depends on many things and can be different
for different individuals or companies. Realistically defining
the time value of money is very important and can affect
the results of investment decision analysis especially when
considering projects with long lives. The following example
illustrates the impact different periodic interest rates can
have on investment decision analysis.

Example 6.9 Time value of money–effect on invest-
ment decision analysis Suppose you had the choice
between receiving one of two different uniform series of
equal payments: $500 annually for 5 years (option A) or
$250 annually for fifteen years (option B). Which would
you choose if you defined the time value of money by the
annual compounded interest rate of 5%? Would your prefer-
ence change if you defined the time value of money by a
different annual compounded interest rate, say 10% or 15%?

Solution Look up the six different P/Ai,n factors obtained
from the Appendix that correspond to the two uniform-
series-of-equal-payment options (Figure 6.12) and the three
different periodic interest rates:

P/A5,5 = 4. 32948, P/A10,5 = 3. 79079,
P/A15,5 = 3. 35216, P/A5,15 = 10. 37966,
P/A10,15 = 7. 60608, P/A15,15 = 5. 84737

Substitute the appropriate values into Equation 6.1.3 and cal-
culate the six present values. Table 6.1 contains the correct
results.

Based on these results, if you define the time value of
money using 5%, option B may be the better choice since the
present value is almost 20% higher than the present value
for option A. However, if 10% more accurately defines your

Table 6.1

Option A n P @ i=5% P @ i=10% P @ i=15%
($) ($) ($)

A 500 5 2164.74 1895.40 1676.08
B 250 15 2594.92 1901.52 1461.84

time value of money, the present values of the two options
are within 1% of each other, so other issues may need to be
considered before choosing. If 15% is the rate that defines the
time value of money, then option A may be your preference
since its present value is almost 15% higher than option B.

Although Example 6.9 is simplistic, it illustrates another rea-
son why seemingly similar individuals or companies can
determine different economic values for the same project.
Not only can different cost, revenue, and timing assump-
tions be used by different evaluators, but choosing a dif-
ferent interest rate to define the time value of money can
have a material impact on the results as well. Because the
periodic interest rate used in investment decision analy-
sis can represent the cost of borrowed money, the rate of
return on invested capital, or the minimum rate of return,
most companies establish guidelines to standardize this
assumption.

Rate of return analysis
Up to this point in the text, the periodic interest rate (i) has
been a given quantity used to calculate equivalent values.
There are times when the costs and revenues are believed
to be known but the periodic interest rate is not. In this
type of problem, the periodic interest rate is more commonly
referred to as the rate of return. We can solve this type of
problem by developing an equation that sets the known quan-
tities equal to each other and solving for the rate of return
through a trial-and-error process. For illustrative purposes,
let us take Example 6.6 and change it to read as follows.

Example 6.10 Rate of return What annual com-
pounded interest rate is being paid on a $500 loan if the
lender requires it to be repaid with five equal end-of-year
payments of $115.49?

Solution To calculate i given A and P (Figure 6.13), sub-
stitute the known quantities into Equation 6.1.3 and solve for
the A/Pi,n factor as follows:

A = P
[

A
Pi,n

]
$115. 49 = $500(A/Pi,5)

A/Pi,5 = $115. 49/$500 = 0. 23098

At this point, we search the Appendix for an A/Pi,5 factor that
equals 0.23098. As would be expected, we find 0.23097 on the
5% interest table indicating that the lender was satisfied with
a 5% rate of return on their money. The difference between
the A/Pi,5 factor of 0.23097 and 0.23098 is due to rounding.

Often, the A/Pi,n factor calculated will fall between values in
the Appendix. In that case, interpolation is required to solve
for the rate of return.

P = $500 A = $115.49 A = $115.49

Time, Years

A = $115.49 A = $115.49 A = $115.49

0 1 2 3 4 5

Figure 6.13
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6.1.2 Oil field evaluation methods
There are four economic evaluation methods commonly
used to calculate equivalent values of different investment
alternatives: present worth, future worth, annual worth,
and rate of return. Although when applied correctly, all of
these methods will lead to the same economic conclusion,
emphasis is placed in this text on the two most com-
mon economic evaluation methods used in the petroleum
industry—present worth and rate of return. The other meth-
ods, annual worth and future worth, are rarely used in typical
oil field evaluations so are not included in this text.

Present worth method
The present worth method is more commonly referred to
as the net present value (NPV) method or the discounted
cash flow method. It is a method used to evaluate the pos-
itive and negative cash flow of an investment alternative
using present worth calculations that requires an analyti-
cal approach of systematically and quantitatively evaluating
all of the economic considerations that affect the economic
potential of the investment. The NPV of an investment alter-
native is determined by calculating the present worth of all
the future net cash flows and summing them. It is based on
the economic equivalence concepts presented earlier in this
text and is highly dependent on the interest rate (commonly
referred to as the discount rate) chosen to determine the
time value of money. NPV calculations are commonly done
on a “before-tax” and “after-tax” basis. The NPV method of
investment decision analysis is illustrated in the following
example.

Example 6.11 Net present value (NPV) Suppose you
have the opportunity to drill an oil well for $1 500 000. The
well is expected to generate revenues and incur costs as
shown in Table 6.2 over a 16 year period. What is the
before-tax NPV discounted at 10% (BTAX NPV10) for your
investment opportunity in the proposed well?

Solution Look up the P/F10,n factors obtained from the
Appendix for periods 1 through 15. Substitute the BTAX
cash flow value (F) shown in Table 6.2 for each time period
and the appropriate P/F10,n factor from the Appendix into

Table 6.2

Year Net Direct Capital BTAX
revenue operating costs net cash
($ × 1000) costs ($ × 1000) flow

($ × 1000) ($ × 1000)

0 1500.0 −1500.0
1 1107.8 179.7 0.0 928.2
2 886.3 146.1 0.0 740.1
3 709.0 119.3 0.0 589.7
4 567.2 97.8 0.0 469.4
5 453.8 80.7 0.0 373.1
6 363.0 66.9 0.0 296.1
7 290.4 56.0 0.0 234.5
8 232.3 47.2 0.0 185.2
9 185.9 40.1 0.0 145.7

10 148.7 34.5 0.0 114.2
11 123.7 30.0 0.0 93.7
12 102.8 26.4 0.0 76.4
13 85.3 23.5 0.0 61.7
14 70.6 21.2 0.0 49.4
15 58.5 19.4 0.0 39.1
16 0.0 0.0 0.0 0.0

5385.3 988.9 1500.0 2896.4

Table 6.3

Year BTAX net P/F10,n factor NPV
cash flow discounted
($ × 1000) @ 10% ($ × 1000)

0 −1500.0 1.00000 −1500.0
1 928.2 0.90909 843.8
2 740.1 0.82645 611.7
3 589.7 0.75131 443.1
4 469.4 0.68301 320.6
5 373.1 0.62092 231.7
6 296.1 0.56447 167.1
7 234.5 0.51316 120.3
8 185.2 0.46651 86.4
9 145.7 0.42410 61.8

10 114.2 0.38554 44.0
11 93.7 0.35049 32.8
12 76.4 0.31863 24.3
13 61.7 0.28966 17.9
14 49.4 0.26333 13.0
15 39.1 0.23939 9.4
16 0.0

2896.0 1527.8

Equation 6.1.3 and solve. Repeat for each time period and
sum the results. The correct results are shown in Table 6.3.

Rate of return method
The rate of return method is more often referred to as the
discounted cash flow rate of return (DCFROR) method. It is
a method widely used as a measure of profitability because
it does not require that the discount rate or time value of
money be established before making the calculation. The
discounted cash flow rate of return (ROR) is calculated
by discounting the estimated cash flows of an investment
alternative until the sum of the cash flows equals zero. As
with NPV calculations, the discounted cash flow ROR is
routinely calculated on a “before-tax” and “after-tax” basis.
The DCFROR method of investment decision analysis is
illustrated in the following example.

Example 6.12 Discounted cash flow rate of return
(DCFROR) Calculate the before-tax discounted rate of
return (BTAX DCFROR) for the oil well investment oppor-
tunity in Example 6.11.

Solution Through a trial-and-error process, the discount
rate that causes the sum of the future net cash flows to equal
zero is shown in Table 6.4 to be approximately 41.5%.

6.2 Reserves Definitions and Classifications

Before any quantities of hydrocarbon resources can be clas-
sified as reserves, they must meet two basic criteria. First,
they must be physically producible. Second, they must be
economically producible. Once hydrocarbon resources meet
these two criteria, they are further classified based on the
needs or the requirements placed on the owner of the
reserves. For example, a privately held independent oil and
gas company may need to define its reserves to meet the
requirements of the owner(s) or the financial institution(s)
with which it does business. However, an oil and gas com-
pany that has issued stock that is publicly traded on a stock
exchange will be required to define its reserves based on
the definitions established by the regulating agency of the
exchange.
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Table 6.4

Year BTAX net NPV NPV
cash flow discounted discounted
($ × 1000) @ 10% ($ × 1000) 41.5% ($ × 1000)

0 −1500.0 −1500.0 −1500.0
1 928.2 843.8 655.9
2 740.1 611.7 369.6
3 589.7 443.1 208.1
4 469.4 320.6 117.1
5 373.1 231.7 65.8
6 296.1 167.1 36.9
7 234.5 120.3 20.6
8 185.2 86.4 11.5
9 145.7 61.8 6.4

10 114.2 44.0 3.5
11 93.7 32.8 2.1
12 76.4 24.3 1.2
13 61.7 17.9 0.7
14 49.4 13.0 0.4
15 39.1 9.4 0.2
16 0.0 0

2896.4 1527.8 0.0

Many of the terms used by the various organizations con-
cerned with reserves classifications and definitions are the
same. However, the definitions associated with the terms
may not be the same. It is important that the reserve evalua-
tor understand which reserves definitions are to be used in
an evaluation and to apply the definitions rigorously.

With respect to this text, we will review the definitions
published by three agencies concerned with the classifica-
tion and definition of reserves. Two of the agencies, the
World Petroleum Congress and the Society of Petroleum
Engineers, use the same definitions. The third agency is the
Securities and Exchange Commission (SEC), the regulat-
ing agency that, among other things, defines such terms for
publicly traded companies in the United States. There are
other widely used definitions that justify review but were
not included in this text due to space considerations.

6.2.1 World petroleum congress/society of
petroleum engineers

The World Petroleum Congress and the Society of Petroleum
Engineers, working independently, published a set of simi-
lar reserves definitions in the late 1980s. Working together,
the two organizations developed and approved a single set of
definitions by March 1997 that could be used worldwide to
remove some of the subjectivity that normally accompanies
reserves estimation and provide a measure of reserves com-
parability as well. The following definitions are taken from
the Society of Petroleum Engineers.

Proved reserves (WPC/SPE)
Proved reserves are those quantities of petroleum which, by
analysis of geological and engineering data, can be estimated
with reasonable certainty to be commercially recoverable,
from a given date forward, from known reservoirs and under
current economic conditions, operating methods, and gov-
ernment regulations. Proved reserves can be categorized as
developed or undeveloped.

If deterministic methods are used, the term reasonable
certainty is intended to express a high degree of confidence
that the quantities will be recovered. If probabilistic meth-
ods are used, there should be at least a 90% probability that

the quantities actually recovered will equal or exceed the
estimate.

Establishment of current economic conditions should
include relevant historical petroleum prices and associated
costs and may involve an averaging period that is consis-
tent with the purpose of the reserves estimate, appropriate
contract obligations, corporate procedures, and government
regulations involved in reporting these reserves.

In general, reserves are considered proved if the com-
mercial producibility of the reservoir is supported by actual
production or formation tests. In this context, the term
proved refers to the actual quantities of petroleum reserves
and not just the productivity of the well or reservoir. In cer-
tain cases, proved reserves may be assigned on the basis of
well logs and/or core analysis that indicate the subject reser-
voir is hydrocarbon bearing and is analogous to reservoirs
in the same area that are producing or have demonstrated
the ability to produce on formation tests. The area of the
reservoir considered as proved includes

● the area delineated by drilling and defined by fluid
contacts, if any, and

● the undrilled portions of the reservoir that can reason-
ably be judged as commercially productive on the basis
of available geological and engineering data.

In the absence of data on fluid contacts, the lowest known
occurrence of hydrocarbons controls the proved limit unless
otherwise indicated by definitive geological, engineering, or
performance data.

Reserves may be classified as proved if facilities to process
and transport those reserves to market are operational at
the time of the estimate or there is a reasonable expectation
that such facilities will be installed. Reserves in undevel-
oped locations may be classified as proved undeveloped
provided:

● the locations are direct offsets to wells that have indicated
commercial production in the objective formation,

● it is reasonably certain that such locations are within
the known proved productive limits of the objective
formation,

● the locations conform to existing well spacing regulations
where applicable, and

● it is reasonably certain the locations will be developed.
Reserves from other locations are categorized as proved
undeveloped only where interpretations of geological and
engineering data from wells indicate with reasonable
certainty that the objective formation is laterally continu-
ous and contains commercially recoverable petroleum at
locations beyond direct offsets.

Reserves which are to be produced through the application
of established improved recovery methods are included in
the proved classification when:

● successful testing by a pilot project or favorable response
of an installed program in the same or an analogous
reservoir with similar rock and fluid properties pro-
vides support for the analysis on which the project was
based, and

● it is reasonably certain that the project will proceed.
Reserves to be recovered by improved recovery meth-
ods that have yet to be established through commer-
cially successful applications are included in the proved
classification only:

– after a favorable production response from the subject
reservoir from either (a) a representative pilot or (b) an
installed program where the response provides support
for the analysis on which the project is based; and

– it is reasonably certain the project will proceed.
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Unproved reserves (WPC/SPE)
Unproved reserves are based on geological and/or engi-
neering data similar to that used in estimates of proved
reserves—but technical, contractual, economic, or regula-
tory uncertainties preclude such reserves being classified
as proved. Unproved reserves may be further classified as
probable reserves and possible reserves.

Unproved reserves may be estimated assuming future
economic conditions different from those prevailing at the
time of the estimate. The effect of possible future improve-
ments in economic conditions and technological develop-
ments can be expressed by allocating appropriate quantities
of reserves to the probable and possible classifications.

Probable reserves (WPC/SPE)
Probable reserves are those unproved reserves which anal-
ysis of geological and engineering data suggests are more
likely than not to be recoverable, In this context, when prob-
abilistic methods are used, there should be at least a 50%
probability that the quantities actually recovered will equal or
exceed the sum of estimated proved plus probable reserves.

In general, probable reserves may include:

● reserves anticipated to be proved by normal step-out
drilling where subsurface control is inadequate to classify
these reserves as proved,

● reserves in formations that appear to be productive based
on well log characteristics but lack core data or definitive
tests and which are not analogous to producing or proved
reservoirs in the area,

● incremental reserves attributable to infill drilling that
could have been classified as proved if closer statutory
spacing had been approved at the time of the estimate,

● reserves attributable to improved recovery methods that
have been established by repeated commercially success-
ful applications when (a) a project or pilot is planned but
not in operation and (b) rock, fluid, and reservoir charac-
teristics appear favorable for commercial application,

● reserves in an area of the formation that appears to be sep-
arated from the proved area by faulting and the geologic
interpretation indicates the subject area is structurally
higher than the proved area,

● reserves attributable to a future workover, treatment,
retreatment, change of equipment, or other mechanical
procedures, where such procedure has not been proved
successful in wells which exhibit similar behavior in
analogous reservoirs, and

● incremental reserves in proved reservoirs where an alter-
native interpretation of performance or volumetric data
indicates more reserves than can be classified as proved.

Possible reserves (WPC/SPE)
Possible reserves are those unproved reserves which anal-
ysis of geological and engineering data suggests are less
likely to be recoverable than probable reserves. In this con-
text, when probabilistic methods are used, there should be
at least a 10% probability that the quantities actually recov-
ered will equal or exceed the sum of estimated proved plus
probable plus possible reserves.

In general, possible reserves may include:

● reserves which, based on geological interpretations,
could possibly exist beyond areas classified as probable,

● reserves in formations that appear to be petroleum bear-
ing based on log and core analysis but may not be
productive at commercial rates,

● incremental reserves attributed to infill drilling that are
subject to technical uncertainty,

● reserves attributed to improved recovery methods when
(a) a project or pilot is planned but not in operation and
(b) rock, fluid, and reservoir characteristics are such

that a reasonable doubt exists that the project will be
commercial, and

● reserves in an area of the formation that appears to be
separated from the proved area by faulting and geologi-
cal interpretation indicates the subject area is structurally
lower than the proved area.

Reserve status categories (WPC/SPE)
Reserve status categories define the development and pro-
ducing status of wells and reservoirs.

Developed reserves Developed reserves are expected to
be recovered from existing wells including reserves behind
pipe. Improved recovery reserves are considered devel-
oped only after the necessary equipment has been installed,
or when the costs to do so are relatively minor. Devel-
oped reserves may be subcategorized as producing or
non-producing.
Producing reserves subcategorized as producing are
expected to be recovered from completion intervals which
are open and producing at the time of the estimate. Improved
recovery reserves are considered producing only after the
improved recovery project is in operation.
Non-producing reserves subcategorized as non-producing
include shut-in and behind-pipe reserves. Shut-in reserves
are expected to be recovered from:

● completion intervals which are open at the time of the
estimate but which have not started producing,

● wells which were shut in for market conditions or pipeline
connections, or

● wells not capable of production for mechanical reasons.
Behind-pipe reserves are expected to be recovered from
zones in existing wells, which will require additional com-
pletion work or future recompletion prior to the start of
production.

Undeveloped reserves Undeveloped reserves are expected
to be recovered:

● from new wells on undrilled acreage,
● from deepening existing wells to a different reservoir, or
● where a relatively large expenditure is required to (a)

recomplete an existing well or (b) install production or
transportation facilities for primary or improved recovery
projects.

6.2.2 Securities and exchange commission (SEC)
The regulations that govern the securities industry in the
United States are based on a simple concept—all investors
should have access to certain basic facts about an investment
prior to buying it. To achieve this, the SEC has developed
definitions and regulations that require public companies to
disclose meaningful financial and other information to the
public. With respect to publicly traded oil and gas compa-
nies, reserves are considered meaningful information and
reporting of those reserves is required using SEC defini-
tions. Because the SEC requires that only proved reserves
be reported, the only definitions provided by the SEC are
those for proved reserves. All other reserves are classified
as unproved. The definitions listed below are taken from SEC
Regulation 210.4-10, Financial Accounting and Reporting for
Oil and Gas Producing Activities Pursuant to the Federal
Securities Laws and the Energy Policy and Conservation Act
of 1975.

Proved reserves (SEC)
Proved oil and gas reserves are the estimated quantities of
crude oil, natural gas, and natural-gas liquids which geo-
logical and engineering data demonstrates with reasonable
certainty to be recoverable in future years from known reser-
voirs under existing economic and operating conditions,
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i.e., prices and costs as of the date the estimate is made.
Prices include consideration of changes in existing prices
provided only by contractual arrangements, but not on
escalations based upon future conditions.

(1) Reservoirs are considered proved if economic pro-
ducibility is supported by either actual production or
conclusive formation test. The area of a reservoir con-
sidered proved includes:

● that portion delineated by drilling and defined by gas–
oil and/or oil–water contacts, if any, and

● the immediately adjoining portions not yet drilled
but which can be reasonably judged as economically
productive on the basis of available geological and
engineering data. In the absence of information on
fluid contacts, the lowest known structural occur-
rence of hydrocarbons controls the lower proved limit
of the reservoir.

(2) Reserves which can be produced economically through
application of improved recovery techniques (such as
fluid injection) are included in the proved classification
when successful testing by a pilot project, or the oper-
ation of an installed program in the reservoir, provides
support for the engineering analysis on which the project
or program was based.

(3) Estimates of proved reserves do not include the
following:

● oil that may become available from known reservoirs
but is classified separately as indicated additional
reserves;

● crude oil, natural gas, and natural-gas liquids, the
recovery of which is subject to reasonable doubt
because of uncertainty as to geology, reservoir char-
acteristics, or economic factors;

● crude oil, natural gas, and natural-gas liquids that may
occur in undrilled prospects; and

● crude oil, natural gas, and natural-gas liquids that may
be recovered from oil shales, coal, gilsonite and other
such sources.

Proved developed reserves (SEC)
Proved developed oil and gas reserves are reserves that
can be expected to be recovered through existing wells
with existing equipment and operating methods. Addi-
tional oil and gas expected to be obtained through the
application of fluid injection or other improved recovery
techniques for supplementing the natural forces and mech-
anisms of primary recovery should be included as proved
developed reserves only after testing by a pilot project or
after the operation of an installed program has confirmed
through production response that increased recovery will
be achieved.

Proved undeveloped reserves (SEC)
Proved undeveloped oil and gas reserves are reserves
that are expected to be recovered from new wells on
undrilled acreage, or from existing wells where a relatively
major expenditure is required for recompletion. Reserves
on undrilled acreage shall be limited to those drilling units
offsetting productive units that are reasonably certain of pro-
duction when drilled. Proved reserves for other undrilled
units can be claimed only where it can be demonstrated with
certainty that there is continuity of production from the exist-
ing productive formation. Under no circumstances should
estimates for proved undeveloped reserves be attributable
to any acreage for which an application of fluid injection or
other improved recovery technique is contemplated, unless
such techniques have been proved effective by actual tests
in the area and in the same reservoir.

6.3 Accounting Principles

The accounting practices that apply to oil and gas industry
activities are established by the governing tax authori-
ties having jurisdiction. In the United States, for example,
Congress passes laws that set the federal tax rates and estab-
lishes the accounting practices used to determine the taxable
and non-taxable portions of the revenue from an oil and gas
property. Similarly, State and local law makers set the tax
rates for the oil and gas industry in their jurisdictions. The
Internal Revenue Service (IRS) and the State and local tax
authorities oversee the implementation of those laws. The
accounting practices established in the laws and followed
by the IRS are generally based on what are known as the
generally accepted accounting principles (GAAP) published
in the U.S. by the Financial Accounting Standards Board
(FASB). Different GAAP standards are used internation-
ally and can be very different. Under the current laws and
GAAP, the respective tax authorities in the United States
recognize that a portion of the revenue from a property
represents the return or recovery of the invested capital,
a portion of the revenue represents the return of expenses
associated with operating or maintaining the investment, and
a portion of the revenue represents income. This distinc-
tion is important because the United States, for example,
endeavors to tax only the income portion of the revenue.
The determination of which portion of the annual revenue
from a property is considered income and which portion
is considered the recovery of invested capital or expenses
can be very complicated and varies from one tax author-
ity to the next. It is not our intention to investigate all of
the specific details of any one particular taxing authority.
However, it is important to investigate some of the funda-
mental terminology and associated definitions commonly
used throughout the industry to understand how they apply
to oil field economic evaluations and investment decision
analysis.

There are two classes or types of costs associated with gen-
erally accepted oil field accounting practices—capitalized
costs and expensed costs. Capitalized costs are expenditures
for items that can generate revenue in future periods. Exam-
ples are purchases of land, equipment, the drilling of a well,
or installation of facilities to produce a well. These types
of assets have the capacity to generate revenue in future
periods beyond the period in which they were purchased,
built, or placed into service. Capitalized items are considered
assets of the individual or firm that owns them.

Expensed costs are expenditures for items that expire or
are believed to expire during the accounting period they
are incurred in an attempt to generate revenue during the
period. Examples of expensed costs include the costs for
labor, power, consumable items required for continued oper-
ations, etc. These items are expensed because they do not
provide any benefit for any period other than the period in
which the cost was incurred.

The primary thing to remember about expensed costs and
capitalized costs is that expenses are charged against rev-
enue during the period in which the expense was incurred
whereas only a portion of capitalized costs is charged against
the revenue of the period they are incurred. The recov-
ery of the remaining, uncharged portion of the capitalized
cost is charged or expensed against the revenue of future
periods based on the rules established by the governing
tax authority. The following subsection describes the terms
and definitions associated with the accounting methods of
recovering capitalized costs.

6.3.1 Depreciation, depletion, and amortization (DD&A)
Depreciation is a term used to describe a common account-
ing method for recovering the investment costs of the
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“fixed assets,” or more commonly called the “tangible
assets” associated with oil and gas industry activity. Fixed
or tangible assets are just as they sound: they are assets that
are tangible—one can usually see or touch tangible assets.
Tangible assets include such things as oil field tubulars and
line pipe, wellheads, pumping equipment, tanks and tank bat-
tery equipment, buildings, cars, etc. The costs associated
with tangible assets are considered investment capital and
are allowed to be recovered against the current and future
revenue from a property. The rate of recovery is generally
established by the taxing authority based on the perceived
“useful life” of the asset. However, some jurisdictions will
use the rate of recovery as an incentive-allowing acceler-
ated recoveries in certain circumstances. It is important
to remember a couple of things. First, the taxing author-
ity establishes the different recovery rates or depreciation
schedules for the different types of tangible equipment based
on its useful life and the useful life may not be the same
as the actual property life. Second, the taxing authorities
may change the depreciation rates from time to time caus-
ing depreciation schedules for the same type of tangible
asset to be different. The reasons for establishing differ-
ent depreciation schedules vary but are usually based on
when the tax law was changed and when the asset was pur-
chased or placed in service. From an evaluator’s view point,
it is imperative to understand the applicable depreciation
schedules.

The concept of depreciation can be applied to a mineral
resource such as oil and gas reserves and the accounting
term used to define it is called depletion. Depletion is an
accounting method of recovering the costs associated with
the value of a natural resource. Examples are costs associ-
ated with a lease bonus or the acquisition costs of an oil or
gas property in excess of the value of the depreciable equip-
ment (tangible equipment). The recovery of the value of the
natural resource is usually associated with the perceived life
of the natural resource.

When this concept is applied to the recovery of an
intangible item, the accounting term is called amortization.
Examples of intangible items are items associated with the
installation or construction of tangible assets, such as the
costs for a drilling rig, labor costs for contractors or consul-
tants to drill or complete a well, cementing services, logging
and coring services, testing services, equipment rentals,
etc. As with depreciation and depletion schedules, the tax-
ing authority defines amortization schedules for intangible
items.

Collectively, the terms depreciation, depletion, and amor-
tization are referred to as DD&A. For the purposes of this
text, the term amortization will be used to include and refer to
all three. As stated before, it is imperative that the evaluator
understand the DD&A (amortization) schedules associated
with a property because the DD&A expenses are usually
deducted from revenues for determining federal, State, or
provincial tax purposes or used to determine the costs recov-
ered in an international contract such as a production sharing
contract (PSC).

6.3.2 Amortization schedules
As stated earlier, the capitalized costs associated with oil and
gas industry activity are recovered (amortized or expensed)
against current and future income. The amount recovered
during an accounting period is dependent on the recov-
ery schedule or more commonly called the depreciation
or amortization schedule. Four amortization schedules for
recovering capitalized costs are presented in this text.
Two of the schedules are classified as accelerated recov-
ery methods. The fourth schedule is dependent on the
accounting method chosen by the company that owns the
assets.

Straight-line (SL) method
Considered the simplest amortization schedule, the straight-
line amortization method expenses the capital costs evenly
across an asset’s useful life. For example, an asset having no
residual value at the end of its four year useful life would allow
the owner to expense 1/4 (25%) of the asset value against
income each year for four years. International contracts often
times use straight-line cost recovery schedules and define
them using a percentage or a rate per year such as 25%. In
this case, 25% of the costs would be recovered each year for
four years.

Example 6.13 Straight-line amortization Calculate the
amortization schedule for a $500 asset assuming the straight-
line (SL) amortization method and a five year useful life.

Solution $500 divided by five years equals $100 per year
for five years.

Double declining balance (DDB) method
This is a form of accelerated cost recovery that amortizes
capital costs at twice the rate of the straight-line method.
Using the DDB method, twice the straight-line rate is applied
each year to the remaining unamortized value of the asset.
For example, an asset requiring a four year DDB would amor-
tize 50% of the asset value in the first year. The remaining
balance for the second year is 50% and the allowed amorti-
zation would be 50% of 50% or simply 25% of the asset value.
The remaining balance for the third year would be 25% of
the asset value so the amortized amount for the third year
would be 50% of 25% or 12.5% of the asset value. The remain-
ing balance for the fourth year would be 12.5% of the asset
value so the amortized amount for the fourth year would be
50% of 12.5% or 6.25% of the asset value.

Example 6.14 Double declining balance amortization
Calculate the amortization schedule for a $500 asset assum-
ing the double declining balance (DDB) amortization
method and a five year useful life.

Solution The straight-line (SL) amortization rate assum-
ing a five year useful life is 1/5 or 20%. Therefore, the
DDB amortization rate is 40% (2 × 20%). The amount to be
expensed the first year is 40% of $500 or $200. The remain-
ing balance for the second year is $300 ($500 − $200) so
the amount to be expensed during the second year is 40%
of $300 or $120. The remaining balance for the third year is
$180 ($500 − $200 − $120) so the amount to be expensed
the third year is 40% of $180 or $72. The remaining balance
for the fourth year is $108 ($500 − $200 − $120 − $72) so
the amount to be expensed the fourth year is 40% of $108
or $43.20. The remaining balance for the fifth year is $64.80
($500 − $200 − $120 − $72 − $43.20) so the amount to be
expensed the fifth and final year is 40% of $64.80 or $25.92.
Note that $38.88 of the original asset value is not recovered.

Sum-of-the-year’s digits (SYD)
Another accelerated cost recovery method, SYD is based on
an inverted scale of the summation of digits for the years
of depreciable life. For example, assuming an asset is amor-
tized over four years, the digits for each of the four years 1,
2, 3, and 4 are added to produce 10. Since SYD is based on
the inverted scale, the first year’s rate is 4/10 (40%) of the
asset value, the second year is 3/10 (30%), the third year is
2/10 (20%), and the fourth year is 1/10 (10%).

Example 6.15 Sum-of-the-year’s digits (SYD) amor-
tization Calculate the amortization schedule for a $500 asset
assuming the SYD amortization method and a five year
useful life.
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Solution The sum of the year’s digits is 15 (1 + 2 + 3 +
4 + 5). Therefore, the amortization rate for the first year is
5/15 (33.33%) of the $500 asset value or simply $166.67. The
amortization rate for the remaining years 2, 3, 4, and 5 are
4/15 (26.67%), 3/15 (20%), 2/15 (13.33%), and 1/15 (6.67%),
respectively. The corresponding amortization schedule for
years 2, 3, 4, and 5 are $133.33, $100, $66.67, and $33.33,
respectively.

Unit-of-production method
This method of amortizing capital costs associated with oil
and gas industry activity is dependent on the accounting
method chosen by the company owning the assets. More
will be discussed later in this section concerning differ-
ent accounting methods. A general formula illustrating the
concept of unit-of-production amortization follows:[

Amortization
for period

]
=
[

unamortized costs at
end of period

]

× production for period
reserves at the beginning of period

[6.3.1]

Unamortized costs at the end of period are equal to the total
capitalized costs at the end of the current period less accu-
mulated amortization taken in prior periods. The reserves at
the beginning of period should be determined by adding the
estimated remaining recoverable reserves at the end of the
current period to the production for the current period so
that reserve revisions determined during the current period
can be included.

When reserves of both oil and gas are used to determine
amortization, they should be calculated on the basis of total
energy equivalent units of oil or gas. Although it may be more
precise to determine the actual energy equivalent content of
the oil and gas, it is acceptable to use a general approximation
of one barrel of oil as equivalent to 6000 cubic feet (6 MCF)
of gas.

Example 6.16 Unit-of-production amortization
Assuming total capitalized costs at the end of the period
are equal to $1 500 000, accumulated amortization taken
in prior periods is equal to $500 000, estimated remaining
recoverable reserves at the end of the period are equal to
440 000 BOE, and production during the period is equal to
60 000 BOE, calculate the amortization for the period using
the unit-of-production method.

Solution

Amortization for period = ($1 500 000 − $500 000)

× 60 000/(440 000 + 60 000)

= $120 000

6.3.3 Successful efforts and full cost accounting
Companies that chose the successful efforts accounting
method can report considerably different earnings, return
on equity, and book value for the same activity and success
than if they chose full cost accounting. The primary dif-
ferences between the two methods are associated with the
size and use of cost centers, the capitalization of exploration
costs, and the determination of unit-of-production amorti-
zation. These differences stem from different philosophical
opinions concerning what capital contributes to growth.
Full cost accounting borrows concepts from Research and
Development accounting that argues that all capital costs,
regardless of success, contribute to the growth of the com-
pany. It is generally preferred by smaller upstream oil and

gas companies including some large independents. Suc-
cessful efforts accounting contends that only the capital
invested in successful projects contribute to growth. Suc-
cessful efforts is the preferred accounting method of the
SEC and used by all large integrated oil and gas companies.

Cost centers
Successful efforts accounting allows proved properties in
a common geological structure to be combined or aggre-
gated for the purpose of forming cost centers and computing
amortization. Because the definition of a geological structure
can be subjective, there can be subjectivity associated with
defining the cost centers. Most successful efforts companies
define their cost centers through cost aggregation by well,
by property, by reservoir, or by field.

Full cost accounting requires that cost centers be estab-
lished on a country-by-country basis except in the rare case
where a company makes a significant acquisition of prop-
erties with lives substantially shorter than the composite
productive life of the cost center. As a result, all exploration,
development, and acquisition costs associated with oil and
gas activities within a country are aggregated together for
amortization purposes.

Exploration costs
Successful efforts accounting allows exploration costs lead-
ing to the discovery of commercial quantities of oil and gas to
be capitalized. All other exploration costs are to be expensed
or written off since those expenditures are said to provide
no further benefit. For example, using successful efforts
accounting, all exploration dry hole costs are expensed in
the period they are incurred.

Full cost accounting, on the other hand, allows all explo-
ration costs to be capitalized regardless of success because
they are said to contribute ultimately to the production of
reserves. As a result, it is not necessary to establish a direct
relationship between costs incurred and specific reserves
discovered using the full cost accounting method.

Unit-of-production amortization
As noted earlier in this text, the determination of unit-of-
production amortization is dependent on the accounting
method a company chooses. The general equation for unit-
of-production amortization Equation 6.3.1 is the same for
both methods. The differences between the two methods
are associated with the capital and corresponding reserves
definitions. The following equations and corresponding def-
initions summarize the primary differences in successful
efforts and full cost accounting with respect to unit-of-
production amortization calculations:

Amortization expense = UC × PP
PP + R

[6.3.2]

where:

UC = the unamortized costs at the end of the period,
defined below

PP = the period production (usually defined as
hydrocarbons sold)

R = the reserves at the beginning of the period,
defined below

For successful efforts accounting, the unamortized costs (UC)
are determined using the following formula:

UC = ICC − AA + (DR&A) − SV − EC [6.3.3]
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where:

ICC = the incurred capitalized costs of wells and
development facilities or of mineral property
interests

AA = the accumulated amortization of prior periods
DR&A = the estimated undiscounted future

dismantlement, restoration, and abandonment
costs (P&A costs)

SV = the estimated undiscounted future
salvage value of well and lease equipment

EC = the excluded capitalized development costs
allowed under certain circumstances

For full cost accounting, the unamortized costs (UC) are
determined using the following formula:
UC = ICC − AA + (DR&A) − SV − EUC + FDC [6.3.4]
where:

ICC = the incurred capitalized costs of exploration,
development, and acquisition activities

Appendix

Table 6A.1 Periodic Interest Rate (i) = 0.5%

n F/Pi,n P/Fi,n F/Ai,n P/Ai,n A/Fi,n A/Pi,n

1 1.00500 0.99502 1.00000 0.99502 1.00000 1.00500
2 1.01003 0.99007 2.00500 1.98510 0.49875 0.50375
3 1.01508 0.98515 3.01502 2.97025 0.33167 0.33667
4 1.02015 0.98025 4.03010 3.95050 0.24813 0.25313
5 1.02525 0.97537 5.05025 4.92587 0.19801 0.20301

6 1.03038 0.97052 6.07550 5.89638 0.16460 0.16960
7 1.03553 0.96569 7.10588 6.86207 0.14073 0.14573
8 1.04071 0.96089 8.14141 7.82296 0.12283 0.12783
9 1.04591 0.95610 9.18212 8.77906 0.10891 0.11391

10 1.05114 0.95135 10.22803 9.73041 0.09777 0.10277

11 1.05640 0.94661 11.27917 10.67703 0.08866 0.09366
12 1.06168 0.94191 12.33556 11.61893 0.08107 0.08607
13 1.06699 0.93722 13.39724 12.55615 0.07464 0.07964
14 1.07232 0.93256 14.46423 13.48871 0.06914 0.07414
15 1.07768 0.92792 15.53655 14.41662 0.06436 0.06936

16 1.08307 0.92330 16.61423 15.33993 0.06019 0.06519
17 1.08849 0.91871 17.69730 16.25863 0.05651 0.06151
18 1.09393 0.91414 18.78579 17.17277 0.05323 0.05823
19 1.09940 0.90959 19.87972 18.08236 0.05030 0.05530
20 1.10490 0.90506 20.97912 18.98742 0.04767 0.05267

21 1.11042 0.90056 22.08401 19.88798 0.04528 0.05028
22 1.11597 0.89608 23.19443 20.78406 0.04311 0.04811
23 1.12155 0.89162 24.31040 21.67568 0.04113 0.04613
24 1.12716 0.88719 25.43196 22.56287 0.03932 0.04432
25 1.13280 0.88277 26.55912 23.44564 0.03765 0.04265

26 1.13846 0.87838 27.69191 24.32402 0.03611 0.04111
27 1.14415 0.87401 28.83037 25.19803 0.03469 0.03969
28 1.14987 0.86966 29.97452 26.06769 0.03336 0.03836
29 1.15562 0.86533 31.12439 26.93302 0.03213 0.03713
30 1.16140 0.86103 32.28002 27.79405 0.03098 0.03598

35 1.19073 0.83982 38.14538 32.03537 0.02622 0.03122
40 1.22079 0.81914 44.15885 36.17223 0.02265 0.02765
45 1.25162 0.79896 50.32416 40.20720 0.01987 0.02487
50 1.28323 0.77929 56.64516 44.14279 0.01765 0.02265
55 1.31563 0.76009 63.12577 47.98145 0.01584 0.02084

(continued)

AA = the accumulated amortization of prior periods
DR&A = the estimated undiscounted future

dismantlement, restoration, and abandonment
costs (P&A costs)

SV = the estimated undiscounted future salvage value
of well and lease equipment

EUC = the excluded capitalized unproved property costs
associated with the acquisition of unproved
properties and certain allowable capitalized
development costs

FDC = the undiscounted estimated future development
costs associated with proved undeveloped
reserves

For successful efforts accounting, reserves (R) = proved
reserves at the end of the period using proved developed
(PD) reserves for well and equipment amortization, and total
proved reserves for property acquisition amortization.

For full cost accounting, reserves (R) = total proved
reserves at the end of the period.
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Table 6A.1 Periodic Interest Rate (i) = 0.5% (continued)

n F/Pi,n P/Fi,n F/Ai,n P/Ai,n A/Fi,n A/Pi,n

60 1.34885 0.74137 69.77003 51.72556 0.01433 0.01933
65 1.38291 0.72311 76.58206 55.37746 0.01306 0.01806
70 1.41783 0.70530 83.56611 58.93942 0.01197 0.01697
75 1.45363 0.68793 90.72650 62.41365 0.01102 0.01602
80 1.49034 0.67099 98.06771 65.80231 0.01020 0.01520

85 1.52797 0.65446 105.59430 69.10750 0.00947 0.01447
90 1.56655 0.63834 113.31094 72.33130 0.00883 0.01383
95 1.60611 0.62262 121.22243 75.47569 0.00825 0.01325

100 1.64667 0.60729 129.33370 78.54264 0.00773 0.01273

Table 6A.2 Periodic Interest Rate (i) = 1%

n F/Pi,n P/Fi,n F/Ai,n P/Ai,n A/Fi,n A/Pi,n

1 1.01000 0.99010 1.00000 0.99010 1.00000 1.01000
2 1.02010 0.98030 2.01000 1.97040 0.49751 0.50751
3 1.03030 0.97059 3.03010 2.94099 0.33002 0.34002
4 1.04060 0.96098 4.06040 3.90197 0.24628 0.25628
5 1.05101 0.95147 5.10101 4.85343 0.19604 0.20604

6 1.06152 0.94205 6.15202 5.79548 0.16255 0.17255
7 1.07214 0.93272 7.21354 6.72819 0.13863 0.14863
8 1.08286 0.92348 8.28567 7.65168 0.12069 0.13069
9 1.09369 0.91434 9.36853 8.56602 0.10674 0.11674

10 1.10462 0.90529 10.46221 9.47130 0.09558 0.10558

11 1.11567 0.89632 11.56683 10.36763 0.08645 0.09645
12 1.12683 0.88745 12.68250 11.25508 0.07885 0.08885
13 1.13809 0.87866 13.80933 12.13374 0.07241 0.08241
14 1.14947 0.86996 14.94742 13.00370 0.06690 0.07690
15 1.16097 0.86135 16.09690 13.86505 0.06212 0.07212

16 1.17258 0.85282 17.25786 14.71787 0.05794 0.06794
17 1.18430 0.84438 18.43044 15.56225 0.05426 0.06426
18 1.19615 0.83602 19.61475 16.39827 0.05098 0.06098
19 1.20811 0.82774 20.81090 17.22601 0.04805 0.05805
20 1.22019 0.81954 22.01900 18.04555 0.04542 0.05542

21 1.23239 0.81143 23.23919 18.85698 0.04303 0.05303
22 1.24472 0.80340 24.47159 19.66038 0.04086 0.05086
23 1.25716 0.79544 25.71630 20.45582 0.03889 0.04889
24 1.26973 0.78757 26.97346 21.24339 0.03707 0.04707
25 1.28243 0.77977 28.24320 22.02316 0.03541 0.04541

26 1.29526 0.77205 29.52563 22.79520 0.03387 0.04387
27 1.30821 0.76440 30.82089 23.55961 0.03245 0.04245
28 1.32129 0.75684 32.12910 24.31644 0.03112 0.04112
29 1.33450 0.74934 33.45039 25.06579 0.02990 0.03990
30 1.34785 0.74192 34.78489 25.80771 0.02875 0.03875

35 1.41660 0.70591 41.66028 29.40858 0.02400 0.03400
40 1.48886 0.67165 48.88637 32.83469 0.02046 0.03046
45 1.56481 0.63905 56.48107 36.09451 0.01771 0.02771
50 1.64463 0.60804 64.46318 39.19612 0.01551 0.02551
55 1.72852 0.57853 72.85246 42.14719 0.01373 0.02373

60 1.81670 0.55045 81.66967 44.95504 0.01224 0.02224
65 1.90937 0.52373 90.93665 47.62661 0.01100 0.02100
70 2.00676 0.49831 100.67634 50.16851 0.00993 0.01993
75 2.10913 0.47413 110.91285 52.58705 0.00902 0.01902
80 2.21672 0.45112 121.67152 54.88821 0.00822 0.01822

85 2.32979 0.42922 132.97900 57.07768 0.00752 0.01752
90 2.44863 0.40839 144.86327 59.16088 0.00690 0.01690
95 2.57354 0.38857 157.35376 61.14298 0.00636 0.01636

100 2.70481 0.36971 170.48138 63.02888 0.00587 0.01587
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Table 6A.3 Periodic Interest Rate (i) = 2%

n F/Pi,n P/Fi,n F/Ai,n P/Ai,n A/Fi,n A/Pi,n

1 1.02000 0.98039 1.00000 0.98039 1.00000 1.02000
2 1.04040 0.96117 2.02000 1.94156 0.49505 0.51505
3 1.06121 0.94232 3.06040 2.88388 0.32675 0.34675
4 1.08243 0.92385 4.12161 3.80773 0.24262 0.26262
5 1.10408 0.90573 5.20404 4.71346 0.19216 0.21216

6 1.12616 0.88797 6.30812 5.60143 0.15853 0.17853
7 1.14869 0.87056 7.43428 6.47199 0.13451 0.15451
8 1.17166 0.85349 8.58297 7.32548 0.11651 0.13651
9 1.19509 0.83676 9.75463 8.16224 0.10252 0.12252

10 1.21899 0.82035 10.94972 8.98259 0.09133 0.11133

11 1.24337 0.80426 12.16872 9.78685 0.08218 0.10218
12 1.26824 0.78849 13.41209 10.57534 0.07456 0.09456
13 1.29361 0.77303 14.68033 11.34837 0.06812 0.08812
14 1.31948 0.75788 15.97394 12.10625 0.06260 0.08260
15 1.34587 0.74301 17.29342 12.84926 0.05783 0.07783

16 1.37279 0.72845 18.63929 13.57771 0.05365 0.07365
17 1.40024 0.71416 20.01207 14.29187 0.04997 0.06997
18 1.42825 0.70016 21.41231 14.99203 0.04670 0.06670
19 1.45681 0.68643 22.84056 15.67846 0.04378 0.06378
20 1.48595 0.67297 24.29737 16.35143 0.04116 0.06116

21 1.51567 0.65978 25.78332 17.01121 0.03878 0.05878
22 1.54598 0.64684 27.29898 17.65805 0.03663 0.05663
23 1.57690 0.63416 28.84496 18.29220 0.03467 0.05467
24 1.60844 0.62172 30.42186 18.91393 0.03287 0.05287
25 1.64061 0.60953 32.03030 19.52346 0.03122 0.05122

26 1.67342 0.59758 33.67091 20.12104 0.02970 0.04970
27 1.70689 0.58586 35.34432 20.70690 0.02829 0.04829
28 1.74102 0.57437 37.05121 21.28127 0.02699 0.04699
29 1.77584 0.56311 38.79223 21.84438 0.02578 0.04578
30 1.81136 0.55207 40.56808 22.39646 0.02465 0.04465

35 1.99989 0.50003 49.99448 24.99862 0.02000 0.04000
40 2.20804 0.45289 60.40198 27.35548 0.01656 0.03656
45 2.43785 0.41020 71.89271 29.49016 0.01391 0.03391
50 2.69159 0.37153 84.57940 31.42361 0.01182 0.03182
55 2.97173 0.33650 98.58653 33.17479 0.01014 0.03014

60 3.28103 0.30478 114.05154 34.76089 0.00877 0.02877
65 3.62252 0.27605 131.12616 36.19747 0.00763 0.02763
70 3.99956 0.25003 149.97791 37.49862 0.00667 0.02667
75 4.41584 0.22646 170.79177 38.67711 0.00586 0.02586
80 4.87544 0.20511 193.77196 39.74451 0.00516 0.02516

85 5.38288 0.18577 219.14394 40.71129 0.00456 0.02456
90 5.94313 0.16826 247.15666 41.58693 0.00405 0.02405
95 6.56170 0.15240 278.08496 42.38002 0.00360 0.02360

100 7.24465 0.13803 312.23231 43.09835 0.00320 0.02320

Table 6A.4 Periodic Interest Rate (i) = 3%

n F/Pi,n P/Fi,n F/Ai,n P/Ai,n A/Fi,n A/Pi,n

1 1.03000 0.97087 1.00000 0.97087 1.00000 1.03000
2 1.06090 0.94260 2.03000 1.91347 0.49261 0.52261
3 1.09273 0.91514 3.09090 2.82861 0.32353 0.35353
4 1.12551 0.88849 4.18363 3.71710 0.23903 0.26903
5 1.15927 0.86261 5.30914 4.57971 0.18835 0.21835

6 1.19405 0.83748 6.46841 5.41719 0.15460 0.18460
7 1.22987 0.81309 7.66246 6.23028 0.13051 0.16051
8 1.26677 0.78941 8.89234 7.01969 0.11246 0.14246
9 1.30477 0.76642 10.15911 7.78611 0.09843 0.12843

10 1.34392 0.74409 11.46388 8.53020 0.08723 0.11723

(continued)
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Table 6A.4 Periodic Interest Rate (i) = 3% (continued)

n F/Pi,n P/Fi,n F/Ai,n P/Ai,n A/Fi,n A/Pi,n

11 1.38423 0.72242 12.80780 9.25262 0.07808 0.10808
12 1.42576 0.70138 14.19203 9.95400 0.07046 0.10046
13 1.46853 0.68095 15.61779 10.63496 0.06403 0.09403
14 1.51259 0.66112 17.08632 11.29607 0.05853 0.08853
15 1.55797 0.64186 18.59891 11.93794 0.05377 0.08377

16 1.60471 0.62317 20.15688 12.56110 0.04961 0.07961
17 1.65285 0.60502 21.76159 13.16612 0.04595 0.07595
18 1.70243 0.58739 23.41444 13.75351 0.04271 0.07271
19 1.75351 0.57029 25.11687 14.32380 0.03981 0.06981
20 1.80611 0.55368 26.87037 14.87747 0.03722 0.06722

21 1.86029 0.53755 28.67649 15.41502 0.03487 0.06487
22 1.91610 0.52189 30.53678 15.93692 0.03275 0.06275
23 1.97359 0.50669 32.45288 16.44361 0.03081 0.06081
24 2.03279 0.49193 34.42647 16.93554 0.02905 0.05905
25 2.09378 0.47761 36.45926 17.41315 0.02743 0.05743

26 2.15659 0.46369 38.55304 17.87684 0.02594 0.05594
27 2.22129 0.45019 40.70963 18.32703 0.02456 0.05456
28 2.28793 0.43708 42.93092 18.76411 0.02329 0.05329
29 2.35657 0.42435 45.21885 19.18845 0.02211 0.05211
30 2.42726 0.41199 47.57542 19.60044 0.02102 0.05102

35 2.81386 0.35538 60.46208 21.48722 0.01654 0.04654
40 3.26204 0.30656 75.40126 23.11477 0.01326 0.04326
45 3.78160 0.26444 92.71986 24.51871 0.01079 0.04079
50 4.38391 0.22811 112.79687 25.72976 0.00887 0.03887
55 5.08215 0.19677 136.07162 26.77443 0.00735 0.03735

60 5.89160 0.16973 163.05344 27.67556 0.00613 0.03613
65 6.82998 0.14641 194.33276 28.45289 0.00515 0.03515
70 7.91782 0.12630 230.59406 29.12342 0.00434 0.03434
75 9.17893 0.10895 272.63086 29.70183 0.00367 0.03367
80 10.64089 0.09398 321.36302 30.20076 0.00311 0.03311

85 12.33571 0.08107 377.85695 30.63115 0.00265 0.03265
90 14.30047 0.06993 443.34890 31.00241 0.00226 0.03226
95 16.57816 0.06032 519.27203 31.32266 0.00193 0.03193

100 19.21863 0.05203 607.28773 31.59891 0.00165 0.03165

Table 6A.5 Periodic Interest Rate (i) = 4%

n F/Pi,n P/Fi,n F/Ai,n P/Ai,n A/Fi,n A/Pi,n

1 1.04000 0.96154 1.00000 0.96154 1.00000 1.04000
2 1.08160 0.92456 2.04000 1.88609 0.49020 0.53020
3 1.12486 0.88900 3.12160 2.77509 0.32035 0.36035
4 1.16986 0.85480 4.24646 3.62990 0.23549 0.27549
5 1.21665 0.82193 5.41632 4.45182 0.18463 0.22463

6 1.26532 0.79031 6.63298 5.24214 0.15076 0.19076
7 1.31593 0.75992 7.89829 6.00205 0.12661 0.16661
8 1.36857 0.73069 9.21423 6.73274 0.10853 0.14853
9 1.42331 0.70259 10.58280 7.43533 0.09449 0.13449

10 1.48024 0.67556 12.00611 8.11090 0.08329 0.12329

11 1.53945 0.64958 13.48635 8.76048 0.07415 0.11415
12 1.60103 0.62460 15.02581 9.38507 0.06655 0.10655
13 1.66507 0.60057 16.62684 9.98565 0.06014 0.10014
14 1.73168 0.57748 18.29191 10.56312 0.05467 0.09467
15 1.80094 0.55526 20.02359 11.11839 0.04994 0.08994

16 1.87298 0.53391 21.82453 11.65230 0.04582 0.08582
17 1.94790 0.51337 23.69751 12.16567 0.04220 0.08220
18 2.02582 0.49363 25.64541 12.65930 0.03899 0.07899
19 2.10685 0.47464 27.67123 13.13394 0.03614 0.07614
20 2.19112 0.45639 29.77808 13.59033 0.03358 0.07358

(continued)

TLFeBOOK



6/382 INTRODUCTION TO OIL FIELD ECONOMICS

Table 6A.5 Periodic Interest Rate (i) = 4% (continued)

n F/Pi,n P/Fi,n F/Ai,n P/Ai,n A/Fi,n A/Pi,n

21 2.27877 0.43883 31.96920 14.02916 0.03128 0.07128
22 2.36992 0.42196 34.24797 14.45112 0.02920 0.06920
23 2.46472 0.40573 36.61789 14.85684 0.02731 0.06731
24 2.56330 0.39012 39.08260 15.24696 0.02559 0.06559
25 2.66584 0.37512 41.64591 15.62208 0.02401 0.06401

26 2.77247 0.36069 44.31174 15.98277 0.02257 0.06257
27 2.88337 0.34682 47.08421 16.32959 0.02124 0.06124
28 2.99870 0.33348 49.96758 16.66306 0.02001 0.06001
29 3.11865 0.32065 52.96629 16.98371 0.01888 0.05888
30 3.24340 0.30832 56.08494 17.29203 0.01783 0.05783

35 3.94609 0.25342 73.65222 18.66461 0.01358 0.05358
40 4.80102 0.20829 95.02552 19.79277 0.01052 0.05052
45 5.84118 0.17120 121.02939 20.72004 0.00826 0.04826
50 7.10668 0.14071 152.66708 21.48218 0.00655 0.04655
55 8.64637 0.11566 191.15917 22.10861 0.00523 0.04523

60 10.51963 0.09506 237.99069 22.62349 0.00420 0.04420
65 12.79874 0.07813 294.96838 23.04668 0.00339 0.04339
70 15.57162 0.06422 364.29046 23.39451 0.00275 0.04275
75 18.94525 0.05278 448.63137 23.68041 0.00223 0.04223
80 23.04980 0.04338 551.24498 23.91539 0.00181 0.04181

85 28.04360 0.03566 676.09012 24.10853 0.00148 0.04148
90 34.11933 0.02931 827.98333 24.26728 0.00121 0.04121
95 41.51139 0.02409 1012.78465 24.39776 0.00099 0.04099

100 50.50495 0.01980 1237.62370 24.50500 0.00081 0.04081

Table 6A.6 Periodic Interest Rate (i) = 5%

n F/Pi,n P/Fi,n F/Ai,n P/Ai,n A/Fi,n A/Pi,n

1 1.05000 0.95238 1.00000 0.95238 1.00000 1.05000
2 1.10250 0.90703 2.05000 1.85941 0.48780 0.53780
3 1.15763 0.86384 3.15250 2.72325 0.31721 0.36721
4 1.21551 0.82270 4.31013 3.54595 0.23201 0.28201
5 1.27628 0.78353 5.52563 4.32948 0.18097 0.23097

6 1.34010 0.74622 6.80191 5.07569 0.14702 0.19702
7 1.40710 0.71068 8.14201 5.78637 0.12282 0.17282
8 1.47746 0.67684 9.54911 6.46321 0.10472 0.15472
9 1.55133 0.64461 11.02656 7.10782 0.09069 0.14069

10 1.62889 0.61391 12.57789 7.72173 0.07950 0.12950

11 1.71034 0.58468 14.20679 8.30641 0.07039 0.12039
12 1.79586 0.55684 15.91713 8.86325 0.06283 0.11283
13 1.88565 0.53032 17.71298 9.39357 0.05646 0.10646
14 1.97993 0.50507 19.59863 9.89864 0.05102 0.10102
15 2.07893 0.48102 21.57856 10.37966 0.04634 0.09634

16 2.18287 0.45811 23.65749 10.83777 0.04227 0.09227
17 2.29202 0.43630 25.84037 11.27407 0.03870 0.08870
18 2.40662 0.41552 28.13238 11.68959 0.03555 0.08555
19 2.52695 0.39573 30.53900 12.08532 0.03275 0.08275
20 2.65330 0.37689 33.06595 12.46221 0.03024 0.08024

21 2.78596 0.35894 35.71925 12.82115 0.02800 0.07800
22 2.92526 0.34185 38.50521 13.16300 0.02597 0.07597
23 3.07152 0.32557 41.43048 13.48857 0.02414 0.07414
24 3.22510 0.31007 44.50200 13.79864 0.02247 0.07247
25 3.38635 0.29530 47.72710 14.09394 0.02095 0.07095

26 3.55567 0.28124 51.11345 14.37519 0.01956 0.06956
27 3.73346 0.26785 54.66913 14.64303 0.01829 0.06829
28 3.92013 0.25509 58.40258 14.89813 0.01712 0.06712
29 4.11614 0.24295 62.32271 15.14107 0.01605 0.06605
30 4.32194 0.23138 66.43885 15.37245 0.01505 0.06505

35 5.51602 0.18129 90.32031 16.37419 0.01107 0.06107
40 7.03999 0.14205 120.79977 17.15909 0.00828 0.05828

(continued)
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Table 6A.6 Periodic Interest Rate (i) = 5% (continued)

n F/Pi,n P/Fi,n F/Ai,n P/Ai,n A/Fi,n A/Pi,n

45 8.98501 0.11130 159.70016 17.77407 0.00626 0.05626
50 11.46740 0.08720 209.34800 18.25593 0.00478 0.05478
55 14.63563 0.06833 272.71262 18.63347 0.00367 0.05367

60 18.67919 0.05354 353.58372 18.92929 0.00283 0.05283
65 23.83990 0.04195 456.79801 19.16107 0.00219 0.05219
70 30.42643 0.03287 588.52851 19.34268 0.00170 0.05170
75 38.83269 0.02575 756.65372 19.48497 0.00132 0.05132
80 49.56144 0.02018 971.22882 19.59646 0.00103 0.05103

85 63.25435 0.01581 1245.08707 19.68382 0.00080 0.05080
90 80.73037 0.01239 1594.60730 19.75226 0.00063 0.05063
95 103.03468 0.00971 2040.69353 19.80589 0.00049 0.05049

100 131.50126 0.00760 2610.02516 19.84791 0.00038 0.05038

Table 6A.7 Periodic Interest Rate (i) = 6%

n F/Pi,n P/Fi,n F/Ai,n P/Ai,n A/Fi,n A/Pi,n

1 1.06000 0.94340 1.00000 0.94340 1.00000 1.06000
2 1.12360 0.89000 2.06000 1.83339 0.48544 0.54544
3 1.19102 0.83962 3.18360 2.67301 0.31411 0.37411
4 1.26248 0.79209 4.37462 3.46511 0.22859 0.28859
5 1.33823 0.74726 5.63709 4.21236 0.17740 0.23740

6 1.41852 0.70496 6.97532 4.91732 0.14336 0.20336
7 1.50363 0.66506 8.39384 5.58238 0.11914 0.17914
8 1.59385 0.62741 9.89747 6.20979 0.10104 0.16104
9 1.68948 0.59190 11.49132 6.80169 0.08702 0.14702

10 1.79085 0.55839 13.18079 7.36009 0.07587 0.13587

11 1.89830 0.52679 14.97164 7.88687 0.06679 0.12679
12 2.01220 0.49697 16.86994 8.38384 0.05928 0.11928
13 2.13293 0.46884 18.88214 8.85268 0.05296 0.11296
14 2.26090 0.44230 21.01507 9.29498 0.04758 0.10758
15 2.39656 0.41727 23.27597 9.71225 0.04296 0.10296

16 2.54035 0.39365 25.67253 10.10590 0.03895 0.09895
17 2.69277 0.37136 28.21288 10.47726 0.03544 0.09544
18 2.85434 0.35034 30.90565 10.82760 0.03236 0.09236
19 3.02560 0.33051 33.75999 11.15812 0.02962 0.08962
20 3.20714 0.31180 36.78559 11.46992 0.02718 0.08718

21 3.39956 0.29416 39.99273 11.76408 0.02500 0.08500
22 3.60354 0.27751 43.39229 12.04158 0.02305 0.08305
23 3.81975 0.26180 46.99583 12.30338 0.02128 0.08128
24 4.04893 0.24698 50.81558 12.55036 0.01968 0.07968
25 4.29187 0.23300 54.86451 12.78336 0.01823 0.07823

26 4.54938 0.21981 59.15638 13.00317 0.01690 0.07690
27 4.82235 0.20737 63.70577 13.21053 0.01570 0.07570
28 5.11169 0.19563 68.52811 13.40616 0.01459 0.07459
29 5.41839 0.18456 73.63980 13.59072 0.01358 0.07358
30 5.74349 0.17411 79.05819 13.76483 0.01265 0.07265

35 7.68609 0.13011 111.43478 14.49825 0.00897 0.06897
40 10.28572 0.09722 154.76197 15.04630 0.00646 0.06646
45 13.76461 0.07265 212.74351 15.45583 0.00470 0.06470
50 18.42015 0.05429 290.33590 15.76186 0.00344 0.06344
55 24.65032 0.04057 394.17203 15.99054 0.00254 0.06254

60 32.98769 0.03031 533.12818 16.16143 0.00188 0.06188
65 44.14497 0.02265 719.08286 16.28912 0.00139 0.06139
70 59.07593 0.01693 967.93217 16.38454 0.00103 0.06103
75 79.05692 0.01265 1300.94868 16.45585 0.00077 0.06077
80 105.79599 0.00945 1746.59989 16.50913 0.00057 0.06057

85 141.57890 0.00706 2342.98174 16.54895 0.00043 0.06043
90 189.46451 0.00528 3141.07519 16.57870 0.00032 0.06032
95 253.54625 0.00394 4209.10425 16.60093 0.00024 0.06024

100 339.30208 0.00295 5638.36806 16.61755 0.00018 0.06018
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Table 6A.8 Periodic Interest Rate (i) = 7%

n F/Pi,n P/Fi,n F/Ai,n P/Ai,n A/Fi,n A/Pi,n

1 1.07000 0.93458 1.00000 0.93458 1.00000 1.07000
2 1.14490 0.87344 2.07000 1.80802 0.48309 0.55309
3 1.22504 0.81630 3.21490 2.62432 0.31105 0.38105
4 1.31080 0.76290 4.43994 3.38721 0.22523 0.29523
5 1.40255 0.71299 5.75074 4.10020 0.17389 0.24389

6 1.50073 0.66634 7.15329 4.76654 0.13980 0.20980
7 1.60578 0.62275 8.65402 5.38929 0.11555 0.18555
8 1.71819 0.58201 10.25980 5.97130 0.09747 0.16747
9 1.83846 0.54393 11.97799 6.51523 0.08349 0.15349

10 1.96715 0.50835 13.81645 7.02358 0.07238 0.14238

11 2.10485 0.47509 15.78360 7.49867 0.06336 0.13336
12 2.25219 0.44401 17.88845 7.94269 0.05590 0.12590
13 2.40985 0.41496 20.14064 8.35765 0.04965 0.11965
14 2.57853 0.38782 22.55049 8.74547 0.04434 0.11434
15 2.75903 0.36245 25.12902 9.10791 0.03979 0.10979

16 2.95216 0.33873 27.88805 9.44665 0.03586 0.10586
17 3.15882 0.31657 30.84022 9.76322 0.03243 0.10243
18 3.37993 0.29586 33.99903 10.05909 0.02941 0.09941
19 3.61653 0.27651 37.37896 10.33560 0.02675 0.09675
20 3.86968 0.25842 40.99549 10.59401 0.02439 0.09439

21 4.14056 0.24151 44.86518 10.83553 0.02229 0.09229
22 4.43040 0.22571 49.00574 11.06124 0.02041 0.09041
23 4.74053 0.21095 53.43614 11.27219 0.01871 0.08871
24 5.07237 0.19715 58.17667 11.46933 0.01719 0.08719
25 5.42743 0.18425 63.24904 11.65358 0.01581 0.08581

26 5.80735 0.17220 68.67647 11.82578 0.01456 0.08456
27 6.21387 0.16093 74.48382 11.98671 0.01343 0.08343
28 6.64884 0.15040 80.69769 12.13711 0.01239 0.08239
29 7.11426 0.14056 87.34653 12.27767 0.01145 0.08145
30 7.61226 0.13137 94.46079 12.40904 0.01059 0.08059

35 10.67658 0.09366 138.23688 12.94767 0.00723 0.07723
40 14.97446 0.06678 199.63511 13.33171 0.00501 0.07501
45 21.00245 0.04761 285.74931 13.60552 0.00350 0.07350
50 29.45703 0.03395 406.52893 13.80075 0.00246 0.07246
55 41.31500 0.02420 575.92859 13.93994 0.00174 0.07174

60 57.94643 0.01726 813.52038 14.03918 0.00123 0.07123
65 81.27286 0.01230 1146.75516 14.10994 0.00087 0.07087
70 113.98939 0.00877 1614.13417 14.16039 0.00062 0.07062
75 159.87602 0.00625 2269.65742 14.19636 0.00044 0.07044
80 224.23439 0.00446 3189.06268 14.22201 0.00031 0.07031

85 314.50033 0.00318 4478.57612 14.24029 0.00022 0.07022
90 441.10298 0.00227 6287.18543 14.25333 0.00016 0.07016
95 618.66975 0.00162 8823.85354 14.26262 0.00011 0.07011

100 867.71633 0.00115 12 381.66179 14.26925 0.00008 0.07008

Table 6A.9 Periodic Interest Rate (i) = 8%

n F/Pi,n P/Fi,n F/Ai,n P/Ai,n A/Fi,n A/Pi,n

1 1.08000 0.92593 1.00000 0.92593 1.00000 1.08000
2 1.16640 0.85734 2.08000 1.78326 0.48077 0.56077
3 1.25971 0.79383 3.24640 2.57710 0.30803 0.38803
4 1.36049 0.73503 4.50611 3.31213 0.22192 0.30192
5 1.46933 0.68058 5.86660 3.99271 0.17046 0.25046

6 1.58687 0.63017 7.33593 4.62288 0.13632 0.21632
7 1.71382 0.58349 8.92280 5.20637 0.11207 0.19207
8 1.85093 0.54027 10.63663 5.74664 0.09401 0.17401
9 1.99900 0.50025 12.48756 6.24689 0.08008 0.16008

10 2.15892 0.46319 14.48656 6.71008 0.06903 0.14903

(continued)
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Table 6A.9 Periodic Interest Rate (i) = 8% (continued)

n F/Pi,n P/Fi,n F/Ai,n P/Ai,n A/Fi,n A/Pi,n

11 2.33164 0.42888 16.64549 7.13896 0.06008 0.14008
12 2.51817 0.39711 18.97713 7.53608 0.05270 0.13270
13 2.71962 0.36770 21.49530 7.90378 0.04652 0.12652
14 2.93719 0.34046 24.21492 8.24424 0.04130 0.12130
15 3.17217 0.31524 27.15211 8.55948 0.03683 0.11683

16 3.42594 0.29189 30.32428 8.85137 0.03298 0.11298
17 3.70002 0.27027 33.75023 9.12164 0.02963 0.10963
18 3.99602 0.25025 37.45024 9.37189 0.02670 0.10670
19 4.31570 0.23171 41.44626 9.60360 0.02413 0.10413
20 4.66096 0.21455 45.76196 9.81815 0.02185 0.10185

21 5.03383 0.19866 50.42292 10.01680 0.01983 0.09983
22 5.43654 0.18394 55.45676 10.20074 0.01803 0.09803
23 5.87146 0.17032 60.89330 10.37106 0.01642 0.09642
24 6.34118 0.15770 66.76476 10.52876 0.01498 0.09498
25 6.84848 0.14602 73.10594 10.67478 0.01368 0.09368

26 7.39635 0.13520 79.95442 10.80998 0.01251 0.09251
27 7.98806 0.12519 87.35077 10.93516 0.01145 0.09145
28 8.62711 0.11591 95.33883 11.05108 0.01049 0.09049
29 9.31727 0.10733 103.96594 11.15841 0.00962 0.08962
30 10.06266 0.09938 113.28321 11.25778 0.00883 0.08883

35 14.78534 0.06763 172.31680 11.65457 0.00580 0.08580
40 21.72452 0.04603 259.05652 11.92461 0.00386 0.08386
45 31.92045 0.03133 386.50562 12.10840 0.00259 0.08259
50 46.90161 0.02132 573.77016 12.23348 0.00174 0.08174
55 68.91386 0.01451 848.92320 12.31861 0.00118 0.08118

60 101.25706 0.00988 1253.21330 12.37655 0.00080 0.08080
65 148.77985 0.00672 1847.24808 12.41598 0.00054 0.08054
70 218.60641 0.00457 2720.08007 12.44282 0.00037 0.08037
75 321.20453 0.00311 4002.55662 12.46108 0.00025 0.08025
80 471.95483 0.00212 5886.93543 12.47351 0.00017 0.08017

85 693.45649 0.00144 8655.70611 12.48197 0.00012 0.08012
90 1018.91509 0.00098 12 723.93862 12.48773 0.00008 0.08008
95 1497.12055 0.00067 18 701.50686 12.49165 0.00005 0.08005

100 2199.76126 0.00045 27 484.51570 12.49432 0.00004 0.08004

Table 6A.10 Periodic Interest Rate (i) = 9%

n F/Pi,n P/Fi,n F/Ai,n P/Ai,n A/Fi,n A/Pi,n

1 1.09000 0.91743 1.00000 0.91743 1.00000 1.09000
2 1.18810 0.84168 2.09000 1.75911 0.47847 0.56847
3 1.29503 0.77218 3.27810 2.53129 0.30505 0.39505
4 1.41158 0.70843 4.57313 3.23972 0.21867 0.30867
5 1.53862 0.64993 5.98471 3.88965 0.16709 0.25709

6 1.67710 0.59627 7.52333 4.48592 0.13292 0.22292
7 1.82804 0.54703 9.20043 5.03295 0.10869 0.19869
8 1.99256 0.50187 11.02847 5.53482 0.09067 0.18067
9 2.17189 0.46043 13.02104 5.99525 0.07680 0.16680

10 2.36736 0.42241 15.19293 6.41766 0.06582 0.15582

11 2.58043 0.38753 17.56029 6.80519 0.05695 0.14695
12 2.81266 0.35553 20.14072 7.16073 0.04965 0.13965
13 3.06580 0.32618 22.95338 7.48690 0.04357 0.13357
14 3.34173 0.29925 26.01919 7.78615 0.03843 0.12843
15 3.64248 0.27454 29.36092 8.06069 0.03406 0.12406

16 3.97031 0.25187 33.00340 8.31256 0.03030 0.12030
17 4.32763 0.23107 36.97370 8.54363 0.02705 0.11705
18 4.71712 0.21199 41.30134 8.75563 0.02421 0.11421
19 5.14166 0.19449 46.01846 8.95011 0.02173 0.11173
20 5.60441 0.17843 51.16012 9.12855 0.01955 0.10955

(continued)
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Table 6A.10 Periodic Interest Rate (i) = 9% (continued)

n F/Pi,n P/Fi,n F/Ai,n P/Ai,n A/Fi,n A/Pi,n

21 6.10881 0.16370 56.76453 9.29224 0.01762 0.10762
22 6.65860 0.15018 62.87334 9.44243 0.01590 0.10590
23 7.25787 0.13778 69.53194 9.58021 0.01438 0.10438
24 7.91108 0.12640 76.78981 9.70661 0.01302 0.10302
25 8.62308 0.11597 84.70090 9.82258 0.01181 0.10181

26 9.39916 0.10639 93.32398 9.92897 0.01072 0.10072
27 10.24508 0.09761 102.72313 10.02658 0.00973 0.09973
28 11.16714 0.08955 112.96822 10.11613 0.00885 0.09885
29 12.17218 0.08215 124.13536 10.19828 0.00806 0.09806
30 13.26768 0.07537 136.30754 10.27365 0.00734 0.09734

35 20.41397 0.04899 215.71075 10.56682 0.00464 0.09464
40 31.40942 0.03184 337.88245 10.75736 0.00296 0.09296
45 48.32729 0.02069 525.85873 10.88120 0.00190 0.09190
50 74.35752 0.01345 815.08356 10.96168 0.00123 0.09123
55 114.40826 0.00874 1260.09180 11.01399 0.00079 0.09079

60 176.03129 0.00568 1944.79213 11.04799 0.00051 0.09051
65 270.84596 0.00369 2998.28847 11.07009 0.00033 0.09033
70 416.73009 0.00240 4619.22318 11.08445 0.00022 0.09022
75 641.19089 0.00156 7113.23215 11.09378 0.00014 0.09014
80 986.55167 0.00101 10 950.57409 11.09985 0.00009 0.09009

85 1517.93203 0.00066 16 854.80033 11.10379 0.00006 0.09006
90 2335.52658 0.00043 25 939.18425 11.10635 0.00004 0.09004
95 3593.49715 0.00028 39 916.63496 11.10802 0.00003 0.09003

100 5529.04079 0.00018 61 422.67546 11.10910 0.00002 0.09002

Table 6A.11 Periodic Interest Rate (i) = 10%

n F/Pi,n P/Fi,n F/Ai,n P/Ai,n A/Fi,n A/Pi,n

1 1.10000 0.90909 1.00000 0.90909 1.00000 1.10000
2 1.21000 0.82645 2.10000 1.73554 0.47619 0.57619
3 1.33100 0.75131 3.31000 2.48685 0.30211 0.40211
4 1.46410 0.68301 4.64100 3.16987 0.21547 0.31547
5 1.61051 0.62092 6.10510 3.79079 0.16380 0.26380

6 1.77156 0.56447 7.71561 4.35526 0.12961 0.22961
7 1.94872 0.51316 9.48717 4.86842 0.10541 0.20541
8 2.14359 0.46651 11.43589 5.33493 0.08744 0.18744
9 2.35795 0.42410 13.57948 5.75902 0.07364 0.17364

10 2.59374 0.38554 15.93742 6.14457 0.06275 0.16275

11 2.85312 0.35049 18.53117 6.49506 0.05396 0.15396
12 3.13843 0.31863 21.38428 6.81369 0.04676 0.14676
13 3.45227 0.28966 24.52271 7.10336 0.04078 0.14078
14 3.79750 0.26333 27.97498 7.36669 0.03575 0.13575
15 4.17725 0.23939 31.77248 7.60608 0.03147 0.13147

16 4.59497 0.21763 35.94973 7.82371 0.02782 0.12782
17 5.05447 0.19784 40.54470 8.02155 0.02466 0.12466
18 5.55992 0.17986 45.59917 8.20141 0.02193 0.12193
19 6.11591 0.16351 51.15909 8.36492 0.01955 0.11955
20 6.72750 0.14864 57.27500 8.51356 0.01746 0.11746

21 7.40025 0.13513 64.00250 8.64869 0.01562 0.11562
22 8.14027 0.12285 71.40275 8.77154 0.01401 0.11401
23 8.95430 0.11168 79.54302 8.88322 0.01257 0.11257
24 9.84973 0.10153 88.49733 8.98474 0.01130 0.11130
25 10.83471 0.09230 98.34706 9.07704 0.01017 0.11017

26 11.91818 0.08391 109.18177 9.16095 0.00916 0.10916
27 13.10999 0.07628 121.09994 9.23722 0.00826 0.10826
28 14.42099 0.06934 134.20994 9.30657 0.00745 0.10745
29 15.86309 0.06304 148.63093 9.36961 0.00673 0.10673
30 17.44940 0.05731 164.49402 9.42691 0.00608 0.10608

(continued)
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Table 6A.11 Periodic Interest Rate (i) = 10% (continued)

n F/Pi,n P/Fi,n F/Ai,n P/Ai,n A/Fi,n A/Pi,n

35 28.10244 0.03558 271.02437 9.64416 0.00369 0.10369
40 45.25926 0.02209 442.59256 9.77905 0.00226 0.10226
45 72.89048 0.01372 718.90484 9.86281 0.00139 0.10139
50 117.39085 0.00852 1163.90853 9.91481 0.00086 0.10086
55 189.05914 0.00529 1880.59142 9.94711 0.00053 0.10053

60 304.48164 0.00328 3034.81640 9.96716 0.00033 0.10033
65 490.37073 0.00204 4893.70725 9.97961 0.00020 0.10020
70 789.74696 0.00127 7887.46957 9.98734 0.00013 0.10013
75 1271.89537 0.00079 12 708.95371 9.99214 0.00008 0.10008
80 2048.40021 0.00049 20 474.00215 9.99512 0.00005 0.10005

85 3298.96903 0.00030 32 979.69030 9.99697 0.00003 0.10003
90 5313.02261 0.00019 53 120.22612 9.99812 0.00002 0.10002
95 8556.67605 0.00012 85 556.76047 9.99883 0.00001 0.10001

Table 6A.12 Periodic Interest Rate (i) = 11%

n F/Pi,n P/Fi,n F/Ai,n P/Ai,n A/Fi,n A/Pi,n

1 1.11000 0.90090 1.00000 0.90090 1.00000 1.11000
2 1.23210 0.81162 2.11000 1.71252 0.47393 0.58393
3 1.36763 0.73119 3.34210 2.44371 0.29921 0.40921
4 1.51807 0.65873 4.70973 3.10245 0.21233 0.32233
5 1.68506 0.59345 6.22780 3.69590 0.16057 0.27057

6 1.87041 0.53464 7.91286 4.23054 0.12638 0.23638
7 2.07616 0.48166 9.78327 4.71220 0.10222 0.21222
8 2.30454 0.43393 11.85943 5.14612 0.08432 0.19432
9 2.55804 0.39092 14.16397 5.53705 0.07060 0.18060

10 2.83942 0.35218 16.72201 5.88923 0.05980 0.16980

11 3.15176 0.31728 19.56143 6.20652 0.05112 0.16112
12 3.49845 0.28584 22.71319 6.49236 0.04403 0.15403
13 3.88328 0.25751 26.21164 6.74987 0.03815 0.14815
14 4.31044 0.23199 30.09492 6.98187 0.03323 0.14323
15 4.78459 0.20900 34.40536 7.19087 0.02907 0.13907

16 5.31089 0.18829 39.18995 7.37916 0.02552 0.13552
17 5.89509 0.16963 44.50084 7.54879 0.02247 0.13247
18 6.54355 0.15282 50.39594 7.70162 0.01984 0.12984
19 7.26334 0.13768 56.93949 7.83929 0.01756 0.12756
20 8.06231 0.12403 64.20283 7.96333 0.01558 0.12558

21 8.94917 0.11174 72.26514 8.07507 0.01384 0.12384
22 9.93357 0.10067 81.21431 8.17574 0.01231 0.12231
23 11.02627 0.09069 91.14788 8.26643 0.01097 0.12097
24 12.23916 0.08170 102.17415 8.34814 0.00979 0.11979
25 13.58546 0.07361 114.41331 8.42174 0.00874 0.11874

26 15.07986 0.06631 127.99877 8.48806 0.00781 0.11781
27 16.73865 0.05974 143.07864 8.54780 0.00699 0.11699
28 18.57990 0.05382 159.81729 8.60162 0.00626 0.11626
29 20.62369 0.04849 178.39719 8.65011 0.00561 0.11561
30 22.89230 0.04368 199.02088 8.69379 0.00502 0.11502

35 38.57485 0.02592 341.58955 8.85524 0.00293 0.11293
40 65.00087 0.01538 581.82607 8.95105 0.00172 0.11172
45 109.53024 0.00913 986.63856 9.00791 0.00101 0.11101
50 184.56483 0.00542 1668.77115 9.04165 0.00060 0.11060
55 311.00247 0.00322 2818.20424 9.06168 0.00035 0.11035

60 524.05724 0.00191 4755.06584 9.07356 0.00021 0.11021
65 883.06693 0.00113 8018.79027 9.08061 0.00012 0.11012
70 1488.01913 0.00067 13518.35574 9.08480 0.00007 0.11007
75 2507.39877 0.00040 22 785.44339 9.08728 0.00004 0.11004
80 4225.11275 0.00024 38 401.02500 9.08876 0.00003 0.11003

85 7119.56070 0.00014 64 714.18815 9.08963 0.00002 0.11002
90 11 996.87381 0.00008 109 053.39829 9.09015 0.00001 0.11001
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Table 6A.13 Periodic Interest Rate (i) = 12%

n F/Pi,n P/Fi,n F/Ai,n P/Ai,n A/Fi,n A/Pi,n

1 1.12000 0.89286 1.00000 0.89286 1.00000 1.12000
2 1.25440 0.79719 2.12000 1.69005 0.47170 0.59170
3 1.40493 0.71178 3.37440 2.40183 0.29635 0.41635
4 1.57352 0.63552 4.77933 3.03735 0.20923 0.32923
5 1.76234 0.56743 6.35285 3.60478 0.15741 0.27741

6 1.97382 0.50663 8.11519 4.11141 0.12323 0.24323
7 2.21068 0.45235 10.08901 4.56376 0.09912 0.21912
8 2.47596 0.40388 12.29969 4.96764 0.08130 0.20130
9 2.77308 0.36061 14.77566 5.32825 0.06768 0.18768

10 3.10585 0.32197 17.54874 5.65022 0.05698 0.17698

11 3.47855 0.28748 20.65458 5.93770 0.04842 0.16842
12 3.89598 0.25668 24.13313 6.19437 0.04144 0.16144
13 4.36349 0.22917 28.02911 6.42355 0.03568 0.15568
14 4.88711 0.20462 32.39260 6.62817 0.03087 0.15087
15 5.47357 0.18270 37.27971 6.81086 0.02682 0.14682

16 6.13039 0.16312 42.75328 6.97399 0.02339 0.14339
17 6.86604 0.14564 48.88367 7.11963 0.02046 0.14046
18 7.68997 0.13004 55.74971 7.24967 0.01794 0.13794
19 8.61276 0.11611 63.43968 7.36578 0.01576 0.13576
20 9.64629 0.10367 72.05244 7.46944 0.01388 0.13388

21 10.80385 0.09256 81.69874 7.56200 0.01224 0.13224
22 12.10031 0.08264 92.50258 7.64465 0.01081 0.13081
23 13.55235 0.07379 104.60289 7.71843 0.00956 0.12956
24 15.17863 0.06588 118.15524 7.78432 0.00846 0.12846
25 17.00006 0.05882 133.33387 7.84314 0.00750 0.12750

26 19.04007 0.05252 150.33393 7.89566 0.00665 0.12665
27 21.32488 0.04689 169.37401 7.94255 0.00590 0.12590
28 23.88387 0.04187 190.69889 7.98442 0.00524 0.12524
29 26.74993 0.03738 214.58275 8.02181 0.00466 0.12466
30 29.95992 0.03338 241.33268 8.05518 0.00414 0.12414

35 52.79962 0.01894 431.66350 8.17550 0.00232 0.12232
40 93.05097 0.01075 767.09142 8.24378 0.00130 0.12130
45 163.98760 0.00610 1358.23003 8.28252 0.00074 0.12074
50 289.00219 0.00346 2400.01825 8.30450 0.00042 0.12042
55 509.32061 0.00196 4236.00505 8.31697 0.00024 0.12024

60 897.59693 0.00111 7471.64111 8.32405 0.00013 0.12013
65 1581.87249 0.00063 13 173.93742 8.32807 0.00008 0.12008
70 2787.79983 0.00036 23 223.33190 8.33034 0.00004 0.12004
75 4913.05584 0.00020 40 933.79867 8.33164 0.00002 0.12002
80 8658.48310 0.00012 72 145.69250 8.33237 0.00001 0.12001

Table 6A.14 Periodic Interest Rate (i) = 13%

n F/Pi,n P/Fi,n F/Ai,n P/Ai,n A/Fi,n A/Pi,n

1 1.13000 0.88496 1.00000 0.88496 1.00000 1.13000
2 1.27690 0.78315 2.13000 1.66810 0.46948 0.59948
3 1.44290 0.69305 3.40690 2.36115 0.29352 0.42352
4 1.63047 0.61332 4.84980 2.97447 0.20619 0.33619
5 1.84244 0.54276 6.48027 3.51723 0.15431 0.28431

6 2.08195 0.48032 8.32271 3.99755 0.12015 0.25015
7 2.35261 0.42506 10.40466 4.42261 0.09611 0.22611
8 2.65844 0.37616 12.75726 4.79877 0.07839 0.20839
9 3.00404 0.33288 15.41571 5.13166 0.06487 0.19487

10 3.39457 0.29459 18.41975 5.42624 0.05429 0.18429

11 3.83586 0.26070 21.81432 5.68694 0.04584 0.17584
12 4.33452 0.23071 25.65018 5.91765 0.03899 0.16899
13 4.89801 0.20416 29.98470 6.12181 0.03335 0.16335
14 5.53475 0.18068 34.88271 6.30249 0.02867 0.15867
15 6.25427 0.15989 40.41746 6.46238 0.02474 0.15474

(continued)
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Table 6A.14 Periodic Interest Rate (i) = 13% (continued)

n F/Pi,n P/Fi,n F/Ai,n P/Ai,n A/Fi,n A/Pi,n

16 7.06733 0.14150 46.67173 6.60388 0.02143 0.15143
17 7.98608 0.12522 53.73906 6.72909 0.01861 0.14861
18 9.02427 0.11081 61.72514 6.83991 0.01620 0.14620
19 10.19742 0.09806 70.74941 6.93797 0.01413 0.14413
20 11.52309 0.08678 80.94683 7.02475 0.01235 0.14235

21 13.02109 0.07680 92.46992 7.10155 0.01081 0.14081
22 14.71383 0.06796 105.49101 7.16951 0.00948 0.13948
23 16.62663 0.06014 120.20484 7.22966 0.00832 0.13832
24 18.78809 0.05323 136.83147 7.28288 0.00731 0.13731
25 21.23054 0.04710 155.61956 7.32998 0.00643 0.13643

26 23.99051 0.04168 176.85010 7.37167 0.00565 0.13565
27 27.10928 0.03689 200.84061 7.40856 0.00498 0.13498
28 30.63349 0.03264 227.94989 7.44120 0.00439 0.13439
29 34.61584 0.02889 258.58338 7.47009 0.00387 0.13387
30 39.11590 0.02557 293.19922 7.49565 0.00341 0.13341

35 72.06851 0.01388 546.68082 7.58557 0.00183 0.13183
40 132.78155 0.00753 1013.70424 7.63438 0.00099 0.13099
45 244.64140 0.00409 1874.16463 7.66086 0.00053 0.13053
50 450.73593 0.00222 3459.50712 7.67524 0.00029 0.13029
55 830.45173 0.00120 6380.39789 7.68304 0.00016 0.13016

60 1530.05347 0.00065 11 761.94979 7.68728 0.00009 0.13009
65 2819.02434 0.00035 21 677.11035 7.68958 0.00005 0.13005
70 5193.86962 0.00019 39 945.15096 7.69083 0.00003 0.13003
75 9569.36811 0.00010 73 602.83163 7.69150 0.00001 0.13001

Table 6A.15 Periodic Interest Rate (i) = 14%

n F/Pi,n P/Fi,n F/Ai,n P/Ai,n A/Fi,n A/Pi,n

1 1.14000 0.87719 1.00000 0.87719 1.00000 1.14000
2 1.29960 0.76947 2.14000 1.64666 0.46729 0.60729
3 1.48154 0.67497 3.43960 2.32163 0.29073 0.43073
4 1.68896 0.59208 4.92114 2.91371 0.20320 0.34320
5 1.92541 0.51937 6.61010 3.43308 0.15128 0.29128

6 2.19497 0.45559 8.53552 3.88867 0.11716 0.25716
7 2.50227 0.39964 10.73049 4.28830 0.09319 0.23319
8 2.85259 0.35056 13.23276 4.63886 0.07557 0.21557
9 3.25195 0.30751 16.08535 4.94637 0.06217 0.20217

10 3.70722 0.26974 19.33730 5.21612 0.05171 0.19171

11 4.22623 0.23662 23.04452 5.45273 0.04339 0.18339
12 4.81790 0.20756 27.27075 5.66029 0.03667 0.17667
13 5.49241 0.18207 32.08865 5.84236 0.03116 0.17116
14 6.26135 0.15971 37.58107 6.00207 0.02661 0.16661
15 7.13794 0.14010 43.84241 6.14217 0.02281 0.16281

16 8.13725 0.12289 50.98035 6.26506 0.01962 0.15962
17 9.27646 0.10780 59.11760 6.37286 0.01692 0.15692
18 10.57517 0.09456 68.39407 6.46742 0.01462 0.15462
19 12.05569 0.08295 78.96923 6.55037 0.01266 0.15266
20 13.74349 0.07276 91.02493 6.62313 0.01099 0.15099

21 15.66758 0.06383 104.76842 6.68696 0.00954 0.14954
22 17.86104 0.05599 120.43600 6.74294 0.00830 0.14830
23 20.36158 0.04911 138.29704 6.79206 0.00723 0.14723
24 23.21221 0.04308 158.65862 6.83514 0.00630 0.14630
25 26.46192 0.03779 181.87083 6.87293 0.00550 0.14550

26 30.16658 0.03315 208.33274 6.90608 0.00480 0.14480
27 34.38991 0.02908 238.49933 6.93515 0.00419 0.14419
28 39.20449 0.02551 272.88923 6.96066 0.00366 0.14366
29 44.69312 0.02237 312.09373 6.98304 0.00320 0.14320
30 50.95016 0.01963 356.78685 7.00266 0.00280 0.14280
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Table 6A.15 Periodic Interest Rate (i) = 14% (continued)

n F/Pi,n P/Fi,n F/Ai,n P/Ai,n A/Fi,n A/Pi,n

35 98.10018 0.01019 693.57270 7.07005 0.00144 0.14144
40 188.88351 0.00529 1342.02510 7.10504 0.00075 0.14075
45 363.67907 0.00275 2590.56480 7.12322 0.00039 0.14039
50 700.23299 0.00143 4994.52135 7.13266 0.00020 0.14020
55 1348.23881 0.00074 9623.13434 7.13756 0.00010 0.14010

60 2595.91866 0.00039 18 535.13328 7.14011 0.00005 0.14005
65 4998.21964 0.00020 35 694.42601 7.14143 0.00003 0.14003
70 9623.64498 0.00010 68 733.17846 7.14211 0.00001 0.14001

Table 6A.16 Periodic Interest Rate (i) = 15%

n F/Pi,n P/Fi,n F/Ai,n P/Ai,n A/Fi,n A/Pi,n

1 1.15000 0.86957 1.00000 0.86957 1.00000 1.15000
2 1.32250 0.75614 2.15000 1.62571 0.46512 0.61512
3 1.52088 0.65752 3.47250 2.28323 0.28798 0.43798
4 1.74901 0.57175 4.99338 2.85498 0.20027 0.35027
5 2.01136 0.49718 6.74238 3.35216 0.14832 0.29832

6 2.31306 0.43233 8.75374 3.78448 0.11424 0.26424
7 2.66002 0.37594 11.06680 4.16042 0.09036 0.24036
8 3.05902 0.32690 13.72682 4.48732 0.07285 0.22285
9 3.51788 0.28426 16.78584 4.77158 0.05957 0.20957

10 4.04556 0.24718 20.30372 5.01877 0.04925 0.19925

11 4.65239 0.21494 24.34928 5.23371 0.04107 0.19107
12 5.35025 0.18691 29.00167 5.42062 0.03448 0.18448
13 6.15279 0.16253 34.35192 5.58315 0.02911 0.17911
14 7.07571 0.14133 40.50471 5.72448 0.02469 0.17469
15 8.13706 0.12289 47.58041 5.84737 0.02102 0.17102

16 9.35762 0.10686 55.71747 5.95423 0.01795 0.16795
17 10.76126 0.09293 65.07509 6.04716 0.01537 0.16537
18 12.37545 0.08081 75.83636 6.12797 0.01319 0.16319
19 14.23177 0.07027 88.21181 6.19823 0.01134 0.16134
20 16.36654 0.06110 102.44358 6.25933 0.00976 0.15976

21 18.82152 0.05313 118.81012 6.31246 0.00842 0.15842
22 21.64475 0.04620 137.63164 6.35866 0.00727 0.15727
23 24.89146 0.04017 159.27638 6.39884 0.00628 0.15628
24 28.62518 0.03493 184.16784 6.43377 0.00543 0.15543
25 32.91895 0.03038 212.79302 6.46415 0.00470 0.15470

26 37.85680 0.02642 245.71197 6.49056 0.00407 0.15407
27 43.53531 0.02297 283.56877 6.51353 0.00353 0.15353
28 50.06561 0.01997 327.10408 6.53351 0.00306 0.15306
29 57.57545 0.01737 377.16969 6.55088 0.00265 0.15265
30 66.21177 0.01510 434.74515 6.56598 0.00230 0.15230

35 133.17552 0.00751 881.17016 6.61661 0.00113 0.15113
40 267.86355 0.00373 1779.09031 6.64178 0.00056 0.15056
45 538.76927 0.00186 3585.12846 6.65429 0.00028 0.15028
50 1083.65744 0.00092 7217.71628 6.66051 0.00014 0.15014
55 2179.62218 0.00046 14 524.14789 6.66361 0.00007 0.15007

60 4383.99875 0.00023 29 219.99164 6.66515 0.00003 0.15003
65 8817.78739 0.00011 58 778.58258 6.66591 0.00002 0.15002
70 17 735.72004 0.00006 118 231.46693 6.66629 0.00001 0.15001

Table 6A.17 Periodic Interest Rate (i) = 20%

n F/Pi,n P/Fi,n F/Ai,n P/Ai,n A/Fi,n A/Pi,n

1 1.20000 0.83333 1.00000 0.83333 1.00000 1.20000
2 1.44000 0.69444 2.20000 1.52778 0.45455 0.65455
3 1.72800 0.57870 3.64000 2.10648 0.27473 0.47473
4 2.07360 0.48225 5.36800 2.58873 0.18629 0.38629
5 2.48832 0.40188 7.44160 2.99061 0.13438 0.33438
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Table 6A.17 Periodic Interest Rate (i) = 20% (continued)

n F/Pi,n P/Fi,n F/Ai,n P/Ai,n A/Fi,n A/Pi,n

6 2.98598 0.33490 9.92992 3.32551 0.10071 0.30071
7 3.58318 0.27908 12.91590 3.60459 0.07742 0.27742
8 4.29982 0.23257 16.49908 3.83716 0.06061 0.26061
9 5.15978 0.19381 20.79890 4.03097 0.04808 0.24808

10 6.19174 0.16151 25.95868 4.19247 0.03852 0.23852

11 7.43008 0.13459 32.15042 4.32706 0.03110 0.23110
12 8.91610 0.11216 39.58050 4.43922 0.02526 0.22526
13 10.69932 0.09346 48.49660 4.53268 0.02062 0.22062
14 12.83918 0.07789 59.19592 4.61057 0.01689 0.21689
15 15.40702 0.06491 72.03511 4.67547 0.01388 0.21388

16 18.48843 0.05409 87.44213 4.72956 0.01144 0.21144
17 22.18611 0.04507 105.93056 4.77463 0.00944 0.20944
18 26.62333 0.03756 128.11667 4.81219 0.00781 0.20781
19 31.94800 0.03130 154.74000 4.84350 0.00646 0.20646
20 38.33760 0.02608 186.68800 4.86958 0.00536 0.20536

21 46.00512 0.02174 225.02560 4.89132 0.00444 0.20444
22 55.20614 0.01811 271.03072 4.90943 0.00369 0.20369
23 66.24737 0.01509 326.23686 4.92453 0.00307 0.20307
24 79.49685 0.01258 392.48424 4.93710 0.00255 0.20255
25 95.39622 0.01048 471.98108 4.94759 0.00212 0.20212

26 114.47546 0.00874 567.37730 4.95632 0.00176 0.20176
27 137.37055 0.00728 681.85276 4.96360 0.00147 0.20147
28 164.84466 0.00607 819.22331 4.96967 0.00122 0.20122
29 197.81359 0.00506 984.06797 4.97472 0.00102 0.20102
30 237.37631 0.00421 1181.88157 4.97894 0.00085 0.20085

35 590.66823 0.00169 2948.34115 4.99154 0.00034 0.20034
40 1469.77157 0.00068 7343.85784 4.99660 0.00014 0.20014
45 3657.26199 0.00027 18 281.30994 4.99863 0.00005 0.20005
50 9100.43815 0.00011 45 497.19075 4.99945 0.00002 0.20002
55 22 644.80226 0.00004 113 219.01129 4.99978 0.00001 0.20001

Table 6A.18 Periodic Interest Rate (i) = 25%

n F/Pi,n P/Fi,n F/Ai,n P/Ai,n A/Fi,n A/Pi,n

1 1.25000 0.80000 1.00000 0.80000 1.00000 1.25000
2 1.56250 0.64000 2.25000 1.44000 0.44444 0.69444
3 1.95313 0.51200 3.81250 1.95200 0.26230 0.51230
4 2.44141 0.40960 5.76563 2.36160 0.17344 0.42344
5 3.05176 0.32768 8.20703 2.68928 0.12185 0.37185

6 3.81470 0.26214 11.25879 2.95142 0.08882 0.33882
7 4.76837 0.20972 15.07349 3.16114 0.06634 0.31634
8 5.96046 0.16777 19.84186 3.32891 0.05040 0.30040
9 7.45058 0.13422 25.80232 3.46313 0.03876 0.28876

10 9.31323 0.10737 33.25290 3.57050 0.03007 0.28007

11 11.64153 0.08590 42.56613 3.65640 0.02349 0.27349
12 14.55192 0.06872 54.20766 3.72512 0.01845 0.26845
13 18.18989 0.05498 68.75958 3.78010 0.01454 0.26454
14 22.73737 0.04398 86.94947 3.82408 0.01150 0.26150
15 28.42171 0.03518 109.68684 3.85926 0.00912 0.25912

16 35.52714 0.02815 138.10855 3.88741 0.00724 0.25724
17 44.40892 0.02252 173.63568 3.90993 0.00576 0.25576
18 55.51115 0.01801 218.04460 3.92794 0.00459 0.25459
19 69.38894 0.01441 273.55576 3.94235 0.00366 0.25366
20 86.73617 0.01153 342.94470 3.95388 0.00292 0.25292

21 108.42022 0.00922 429.68087 3.96311 0.00233 0.25233
22 135.52527 0.00738 538.10109 3.97049 0.00186 0.25186
23 169.40659 0.00590 673.62636 3.97639 0.00148 0.25148
24 211.75824 0.00472 843.03295 3.98111 0.00119 0.25119
25 264.69780 0.00378 1054.79118 3.98489 0.00095 0.25095
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Table 6A.18 Periodic Interest Rate (i) = 25% (continued)

n F/Pi,n P/Fi,n F/Ai,n P/Ai,n A/Fi,n A/Pi,n

26 330.87225 0.00302 1319.48898 3.98791 0.00076 0.25076
27 413.59031 0.00242 1650.36123 3.99033 0.00061 0.25061
28 516.98788 0.00193 2063.95153 3.99226 0.00048 0.25048
29 646.23485 0.00155 2580.93941 3.99381 0.00039 0.25039
30 807.79357 0.00124 3227.17427 3.99505 0.00031 0.25031

35 2465.19033 0.00041 9856.76132 3.99838 0.00010 0.25010
40 7523.16385 0.00013 30 088.65538 3.99947 0.00003 0.25003
45 22 958.87404 0.00004 91 831.49616 3.99983 0.00001 0.25001

Table 6A.19 Periodic Interest Rate (i) = 30%

n F/Pi,n P/Fi,n F/Ai,n P/Ai,n A/Fi,n A/Pi,n

1 1.30000 0.76923 1.00000 0.76923 1.00000 1.30000
2 1.69000 0.59172 2.30000 1.36095 0.43478 0.73478
3 2.19700 0.45517 3.99000 1.81611 0.25063 0.55063
4 2.85610 0.35013 6.18700 2.16624 0.16163 0.46163
5 3.71293 0.26933 9.04310 2.43557 0.11058 0.41058

6 4.82681 0.20718 12.75603 2.64275 0.07839 0.37839
7 6.27485 0.15937 17.58284 2.80211 0.05687 0.35687
8 8.15731 0.12259 23.85769 2.92470 0.04192 0.34192
9 10.60450 0.09430 32.01500 3.01900 0.03124 0.33124

10 13.78585 0.07254 42.61950 3.09154 0.02346 0.32346

11 17.92160 0.05580 56.40535 3.14734 0.01773 0.31773
12 23.29809 0.04292 74.32695 3.19026 0.01345 0.31345
13 30.28751 0.03302 97.62504 3.22328 0.01024 0.31024
14 39.37376 0.02540 127.91255 3.24867 0.00782 0.30782
15 51.18589 0.01954 167.28631 3.26821 0.00598 0.30598

16 66.54166 0.01503 218.47220 3.28324 0.00458 0.30458
17 86.50416 0.01156 285.01386 3.29480 0.00351 0.30351
18 112.45541 0.00889 371.51802 3.30369 0.00269 0.30269
19 146.19203 0.00684 483.97343 3.31053 0.00207 0.30207
20 190.04964 0.00526 630.16546 3.31579 0.00159 0.30159

21 247.06453 0.00405 820.21510 3.31984 0.00122 0.30122
22 321.18389 0.00311 1067.27963 3.32296 0.00094 0.30094
23 417.53905 0.00239 1388.46351 3.32535 0.00072 0.30072
24 542.80077 0.00184 1806.00257 3.32719 0.00055 0.30055
25 705.64100 0.00142 2348.80334 3.32861 0.00043 0.30043

26 917.33330 0.00109 3054.44434 3.32970 0.00033 0.30033
27 1192.53329 0.00084 3971.77764 3.33054 0.00025 0.30025
28 1550.29328 0.00065 5164.31093 3.33118 0.00019 0.30019
29 2015.38126 0.00050 6714.60421 3.33168 0.00015 0.30015
30 2619.99564 0.00038 8729.98548 3.33206 0.00011 0.30011

35 9727.86043 0.00010 32 422.86808 3.33299 0.00003 0.30003
40 36 118.86481 0.00003 120 392.88269 3.33324 0.00001 0.30001

Table 6A.20 Periodic Interest Rate (i) = 40%

n F/Pi,n P/Fi,n F/Ai,n P/Ai,n A/Fi,n A/Pi,n

1 1.40000 0.71429 1.00000 0.71429 1.00000 1.40000
2 1.96000 0.51020 2.40000 1.22449 0.41667 0.81667
3 2.74400 0.36443 4.36000 1.58892 0.22936 0.62936
4 3.84160 0.26031 7.10400 1.84923 0.14077 0.54077
5 5.37824 0.18593 10.94560 2.03516 0.09136 0.49136

6 7.52954 0.13281 16.32384 2.16797 0.06126 0.46126
7 10.54135 0.09486 23.85338 2.26284 0.04192 0.44192
8 14.75789 0.06776 34.39473 2.33060 0.02907 0.42907
9 20.66105 0.04840 49.15262 2.37900 0.02034 0.42034

10 28.92547 0.03457 69.81366 2.41357 0.01432 0.41432
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Table 6A.20 Periodic Interest Rate (i) = 40% (continued)

n F/Pi,n P/Fi,n F/Ai,n P/Ai,n A/Fi,n A/Pi,n

11 40.49565 0.02469 98.73913 2.43826 0.01013 0.41013
12 56.69391 0.01764 139.23478 2.45590 0.00718 0.40718
13 79.37148 0.01260 195.92869 2.46850 0.00510 0.40510
14 111.12007 0.00900 275.30017 2.47750 0.00363 0.40363
15 155.56810 0.00643 386.42024 2.48393 0.00259 0.40259

16 217.79533 0.00459 541.98833 2.48852 0.00185 0.40185
17 304.91347 0.00328 759.78367 2.49180 0.00132 0.40132
18 426.87885 0.00234 1064.69714 2.49414 0.00094 0.40094
19 597.63040 0.00167 1491.57599 2.49582 0.00067 0.40067
20 836.68255 0.00120 2089.20639 2.49701 0.00048 0.40048

21 1171.35558 0.00085 2925.88894 2.49787 0.00034 0.40034
22 1639.89781 0.00061 4097.24452 2.49848 0.00024 0.40024
23 2295.85693 0.00044 5737.14232 2.49891 0.00017 0.40017
24 3214.19970 0.00031 8032.99925 2.49922 0.00012 0.40012
25 4499.87958 0.00022 11 247.19895 2.49944 0.00009 0.40009

26 6299.83141 0.00016 15 747.07853 2.49960 0.00006 0.40006
27 8819.76398 0.00011 22 046.90994 2.49972 0.00005 0.40005
28 12 347.66957 0.00008 30 866.67392 2.49980 0.00003 0.40003
29 17 286.73740 0.00006 43 214.34349 2.49986 0.00002 0.40002

Table 6A.21 Periodic Interest Rate (i) = 50%

n F/Pi,n P/Fi,n F/Ai,n P/Ai,n A/Fi,n A/Pi,n

1 1.50000 0.66667 1.00000 0.66667 1.00000 1.50000
2 2.25000 0.44444 2.50000 1.11111 0.40000 0.90000
3 3.37500 0.29630 4.75000 1.40741 0.21053 0.71053
4 5.06250 0.19753 8.12500 1.60494 0.12308 0.62308
5 7.59375 0.13169 13.18750 1.73663 0.07583 0.57583

6 11.39063 0.08779 20.78125 1.82442 0.04812 0.54812
7 17.08594 0.05853 32.17188 1.88294 0.03108 0.53108
8 25.62891 0.03902 49.25781 1.92196 0.02030 0.52030
9 38.44336 0.02601 74.88672 1.94798 0.01335 0.51335

10 57.66504 0.01734 113.33008 1.96532 0.00882 0.50882

11 86.49756 0.01156 170.99512 1.97688 0.00585 0.50585
12 129.74634 0.00771 257.49268 1.98459 0.00388 0.50388
13 194.61951 0.00514 387.23901 1.98972 0.00258 0.50258
14 291.92926 0.00343 581.85852 1.99315 0.00172 0.50172
15 437.89389 0.00228 873.78778 1.99543 0.00114 0.50114

16 656.84084 0.00152 1311.68167 1.99696 0.00076 0.50076
17 985.26125 0.00101 1968.52251 1.99797 0.00051 0.50051
18 1477.89188 0.00068 2953.78376 1.99865 0.00034 0.50034
19 2216.83782 0.00045 4431.67564 1.99910 0.00023 0.50023
20 3325.25673 0.00030 6648.51346 1.99940 0.00015 0.50015

21 4987.88510 0.00020 9973.77019 1.99960 0.00010 0.50010
22 7481.82764 0.00013 14 961.65529 1.99973 0.00007 0.50007
23 11 222.74146 0.00009 22 443.48293 1.99982 0.00004 0.50004
24 16 834.11220 0.00006 33 666.22439 1.99988 0.00003 0.50003
25 25 251.16829 0.00004 50 500.33659 1.99992 0.00002 0.50002

Table 6A.22 Periodic Interest Rate (i) = 70%

n F/Pi,n P/Fi,n F/Ai,n P/Ai,n A/Fi,n A/Pi,n

1 1.70000 0.58824 1.00000 0.58824 1.00000 1.70000
2 2.89000 0.34602 2.70000 0.93426 0.37037 1.07037
3 4.91300 0.20354 5.59000 1.13780 0.17889 0.87889
4 8.35210 0.11973 10.50300 1.25753 0.09521 0.79521
5 14.19857 0.07043 18.85510 1.32796 0.05304 0.75304
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Table 6A.22 Periodic Interest Rate (i) = 70% (continued)

n F/Pi,n P/Fi,n F/Ai,n P/Ai,n A/Fi,n A/Pi,n

6 24.13757 0.04143 33.05367 1.36939 0.03025 0.73025
7 41.03387 0.02437 57.19124 1.39376 0.01749 0.71749
8 69.75757 0.01434 98.22511 1.40809 0.01018 0.71018
9 118.58788 0.00843 167.98268 1.41652 0.00595 0.70595

10 201.59939 0.00496 286.57056 1.42149 0.00349 0.70349

11 342.71896 0.00292 488.16995 1.42440 0.00205 0.70205
12 582.62224 0.00172 830.88891 1.42612 0.00120 0.70120
13 990.45780 0.00101 1413.51115 1.42713 0.00071 0.70071
14 1683.77827 0.00059 2403.96895 1.42772 0.00042 0.70042
15 2862.42305 0.00035 4087.74722 1.42807 0.00024 0.70024

16 4866.11919 0.00021 6950.17027 1.42828 0.00014 0.70014
17 8272.40262 0.00012 11 816.28946 1.42840 0.00008 0.70008
18 14 063.08445 0.00007 20 088.69207 1.42847 0.00005 0.70005
19 23 907.24357 0.00004 34 151.77653 1.42851 0.00003 0.70003
20 40 642.31407 0.00002 58 059.02009 1.42854 0.00002 0.70002

Table 6A.23 Periodic Interest Rate (i) = 90%

n F/Pi,n P/Fi,n F/Ai,n P/Ai,n A/Fi,n A/Pi,n

1 1.90000 0.52632 1.00000 0.52632 1.00000 1.90000
2 3.61000 0.27701 2.90000 0.80332 0.34483 1.24483
3 6.85900 0.14579 6.51000 0.94912 0.15361 1.05361
4 13.03210 0.07673 13.36900 1.02585 0.07480 0.97480
5 24.76099 0.04039 26.40110 1.06624 0.03788 0.93788

6 47.04588 0.02126 51.16209 1.08749 0.01955 0.91955
7 89.38717 0.01119 98.20797 1.09868 0.01018 0.91018
8 169.83563 0.00589 187.59514 1.10457 0.00533 0.90533
9 322.68770 0.00310 357.43078 1.10767 0.00280 0.90280

10 613.10663 0.00163 680.11847 1.10930 0.00147 0.90147

11 1164.90259 0.00086 1293.22510 1.11016 0.00077 0.90077
12 2213.31492 0.00045 2458.12769 1.11061 0.00041 0.90041
13 4205.29835 0.00024 4671.44261 1.11085 0.00021 0.90021
14 7990.06686 0.00013 8876.74095 1.11097 0.00011 0.90011
15 15 181.12703 0.00007 16 866.80781 1.11104 0.00006 0.90006

Table 6A.24 Periodic Interest Rate (i) = 110%

n F/Pi,n P/Fi,n F/Ai,n P/Ai,n A/Fi,n A/Pi,n

1 2.10000 0.47619 1.00000 0.47619 1.00000 2.10000
2 4.41000 0.22676 3.10000 0.70295 0.32258 1.42258
3 9.26100 0.10798 7.51000 0.81093 0.13316 1.23316
4 19.44810 0.05142 16.77100 0.86235 0.05963 1.15963
5 40.84101 0.02449 36.21910 0.88683 0.02761 1.12761

6 85.76612 0.01166 77.06011 0.89849 0.01298 1.11298
7 180.10885 0.00555 162.82623 0.90404 0.00614 1.10614
8 378.22859 0.00264 342.93509 0.90669 0.00292 1.10292
9 794.28005 0.00126 721.16368 0.90795 0.00139 1.10139

10 1667.98810 0.00060 1515.44373 0.90855 0.00066 1.10066

11 3502.77501 0.00029 3183.43182 0.90883 0.00031 1.10031
12 7355.82751 0.00014 6686.20683 0.90897 0.00015 1.10015
13 15 447.23777 0.00006 14 042.03434 0.90903 0.00007 1.10007
14 32 439.19933 0.00003 29 489.27211 0.90906 0.00003 1.10003
15 68 122.31858 0.00001 61 928.47144 0.90908 0.00002 1.10002
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Table 6A.25 Periodic Interest Rate (i) = 130%

n F/Pi,n P/Fi,n F/Ai,n P/Ai,n A/Fi,n A/Pi,n

1 2.30000 0.43478 1.00000 0.43478 1.00000 2.30000
2 5.29000 0.18904 3.30000 0.62382 0.30303 1.60303
3 12.16700 0.08219 8.59000 0.70601 0.11641 1.41641
4 27.98410 0.03573 20.75700 0.74174 0.04818 1.34818
5 64.36343 0.01554 48.74110 0.75728 0.02052 1.32052

6 148.03589 0.00676 113.10453 0.76403 0.00884 1.30884
7 340.48254 0.00294 261.14042 0.76697 0.00383 1.30383
8 783.10985 0.00128 601.62296 0.76825 0.00166 1.30166
9 1801.15266 0.00056 1384.73282 0.76880 0.00072 1.30072

10 4142.65112 0.00024 3185.88548 0.76905 0.00031 1.30031

11 9528.09758 0.00010 7328.53660 0.76915 0.00014 1.30014
12 21 914.62443 0.00005 16 856.63418 0.76920 0.00006 1.30006
13 50 403.63619 0.00002 38 771.25861 0.76922 0.00003 1.30003
14 115 928.36325 0.00001 89 174.89480 0.76922 0.00001 1.30001
15 266 635.23546 0.00000 205 103.25805 0.76923 0.00000 1.30000

Table 6A.26 Periodic Interest Rate (i) = 150%

n F/Pi,n P/Fi,n F/Ai,n P/Ai,n A/Fi,n A/Pi,n

1 2.50000 0.40000 1.00000 0.40000 1.00000 2.50000
2 6.25000 0.16000 3.50000 0.56000 0.28571 1.78571
3 15.62500 0.06400 9.75000 0.62400 0.10256 1.60256
4 39.06250 0.02560 25.37500 0.64960 0.03941 1.53941
5 97.65625 0.01024 64.43750 0.65984 0.01552 1.51552

6 244.14063 0.00410 162.09375 0.66394 0.00617 1.50617
7 610.35156 0.00164 406.23438 0.66557 0.00246 1.50246
8 1525.87891 0.00066 1016.58594 0.66623 0.00098 1.50098
9 3814.69727 0.00026 2542.46484 0.66649 0.00039 1.50039

10 9536.74316 0.00010 6357.16211 0.66660 0.00016 1.50016

11 23 841.85791 0.00004 15 893.90527 0.66664 0.00006 1.50006
12 59 604.64478 0.00002 39 735.76318 0.66666 0.00003 1.50003
13 149 011.61194 0.00001 99 340.40796 0.66666 0.00001 1.50001

Table 6A.27 Periodic Interest Rate (i) = 200%

n F/Pi,n P/Fi,n F/Ai,n P/Ai,n A/Fi,n A/Pi,n

1 3.00000 0.33333 1.00000 0.33333 1.00000 3.00000
2 9.00000 0.11111 4.00000 0.44444 0.25000 2.25000
3 27.00000 0.03704 13.00000 0.48148 0.07692 2.07692
4 81.00000 0.01235 40.00000 0.49383 0.02500 2.02500
5 243.00000 0.00412 121.00000 0.49794 0.00826 2.00826

6 729.00000 0.00137 364.00000 0.49931 0.00275 2.00275
7 2187.00000 0.00046 1093.00000 0.49977 0.00091 2.00091
8 6561.00000 0.00015 3280.00000 0.49992 0.00030 2.00030
9 19 683.00000 0.00005 9841.00000 0.49997 0.00010 2.00010

10 59 049.00000 0.00002 29 524.00000 0.49999 0.00003 2.00003

11 177 147.00000 0.00001 88 573.00000 0.50000 0.00001 2.00001
12 531 441.00000 0.00000 265 720.00000 0.50000 0.00000 2.00000
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Problems

1. Suppose $1000 is deposited into a savings account paying
6% APR. Assuming the interest is compounded monthly,
how much money will be in the account after six years if
$200 is withdrawn at the end of the second year?

2. Suppose 10 shares of common stock are purchased
for $50 per share and the share price increases 5%
compounded annually for two years, decreases 2% com-
pounded annually for one half year, and increases 11%
compounded annually for two and only half years, calcu-
late the following assuming no commissions apply to the
purchase or sale of the stock.
a. The value of the shares after two years;
b. The value of the shares after two and one half years;
c. The value of the shares after five years;
d. The nominal interest rate for the five year invest-

ment.
3. How much money must be deposited into a savings plan

every month for ten years if interest compounds annu-
ally at 7% and the goal is to have $50 000 after the final
payment?

4. Suppose $100 is invested every month into a company
]savings plan and the company dollar-for-dollar contri-
bution for this amount vests immediately. If the savings
plan pays 4% compounded annually for two years and 6%
compounded annually for three years, what is the value
of the plan after 5 years?

5. Suppose a home buyer purchases a home for $150 000
and makes a 10% down payment. If a financial institu-
tion advertises a 15 year loan for 6% APR, what will
the monthly payments be to pay off the principal and
interest? Assume monthly compounding.

6. Suppose an investor believes money is worth 11% com-
pounded annually and has the option to invest in one
of two investment opportunities. The first investment
(Option A) is to pay $5000 to receive a uniform series
of equal annual payments of $1318.99 for five years.
The second investment (Option B) is to pay the same
amount of money to receive a uniform series of equal

annual payments of $1318.99 for three years and a sin-
gle lump sum of $3370.12 after five years. How much
more is the better of the two investment opportunities
worth?

7. What APR is being paid on a $20 000 loan if the lender
requires it to be repaid with 60 monthly payments of
$386.66 assuming monthly compounding?

8. Suppose an investor estimates a working interest in a
gas well will generate the following annual cash flows.
If the time value of money is 10% compounded annually,
what is the working interest worth?

Year Cash Flow

1 $4685
2 $3820
3 $3085
4 $2740
5 $1955
6 −$9000

9. Suppose an investor purchased the gas well working
interest in problem 8 for $5000. What is the DCFROR?

10. Suppose a $20 000 asset has a five year useful life, calcu-
late the amortization schedules assuming the straight-
line amortization method, the double declining balance
amortization method, and the sum-of-the-year’s digits
amortization method.

11. Assuming total capitalized costs at the end of the period
are equal to $2 000 000, accumulated amortization taken
in prior periods is equal to $800 000, estimated remain-
ing recoverable reserves at the end of the prior period
are 480 000 BOE, production during the period is equal
to 70 000 BOE, and reserves were revised down 28 800
BOE during the current period, calculate the amortiza-
tion for the period using the unit-of-production method.
What would the amortization for the period have been
had the reserve write-down not occurred?
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Abnormally Pressured Gas
Reservoirs, 3/212, 216

Fetkovich et al. Plot for Abnormal
Pressure Gas Reservoirs, 3/215

Hammerlindl Method for Abnormal
Pressure Gas Reservoirs, 3/216

Modified Roach Plot for Pot Aquifer
Gas Reservoirs, 3/215

Paston et al. Plot for Abnormal
Pressure Gas Reservoirs, 3/216

Roach Plot for Abnormally
Pressured Gas Reservoirs,
3/213

Rock Collapse Theory, 3/212
Shale Water Influx Theory, 3/213

Absolute Open Flow Potential
Gas, 3/188
Oil, 5/343

Accounting Principles, 6/375
Amortization Schedules, 6/376

Double Declining Balance (DDB)
Method, 6/376

Straight-Line (SL) Method, 6/376
Sum-of-the-Year’s Digits (SYD),

6/376
Unit-of-Production Method, 6/377

Depreciation, Depletion, and
Amortization (DD&A), 6/375

Actual Velocity, 1/7
Anash et al. Type Curves, 3/262
Anisotropic Reservoirs, 1/120
AOF, 3/188; 5/343
Apparent Gas-in-Place, 3/212
Apparent Sorption Compressibility,

3/222
Apparent Skin Factor, 1/52
Apparent Velocity, 1/7
Aquifers, 2/150

Classification, 2/150
Average Pressure, 1/31, 62, 63

Reservoir, 4/307, 322

Back-Pressure
Equation, 3/191
Test, 3/193

Basic Assumptions in the MBE, 4/299
Basic Transient Flow Equation, 1/17
Bilinear Flow, 1/95
Block-Shape Parameter, 1/82
Borisov Method, 5/358
Bottom-Water Drive, 2/166
Boundary Dominated Flow, 1/36
Bourdet and Gringarten, 1/84
Bourdet’s Pressure Derivative, 1/73
Bubble Radius,

Gas, 4/313
Oil, 4/313

Carter and Tracy Water Influx Model,
2/180

Carter Type Curve, 3/256
Classification of Aquifers, 2/150
Classifications and Definitions of

Reserves, 6/372
Coalbed Methane “CBM”, 3/217

Deliverability and Drainage
Efficiency, 3/225

Density of the Coal, 3/224

Flow of Desorbed Gas in Cleats and
Fractures, 3/232

Gas Content, 3/218
Material Balance Equation for

Coalbed Methane, 3/226
Permeability and Porosity, 3/226
Prediction of CBM Reservoir

Performance, 3/231
Cole Plot, 3/211
Combination Drive Mechanism, 4/298
Combination Drive Reservoirs, 4/321
Compartmental Reservoir Approach,

3/234
Hagoort and Hoogstra Method,

3/236
Payne Method, 3/234

Compressible Fluids (Gases), 1/12, 36
Constant Temperature, 4/299
Constant-Terminal-Pressure Solution,

1/19
Constant-Terminal-Rate Solution, 1/20
Counter Flow, 5/331
Cullender and Smith, 3/199
Cumulative GOR, 5/329

Darcy’s Law, 1/5
Datum Level, 1/7
Decline Curve Analysis, 3/237

Combined Decline Curve and Type
Curve Analysis Approach, 3/237

For Fractured Wells, 3/266
Definitions and Classifications of

Reserves, 6/372
Degree of Pressure Maintenance,

2/150
Depletion Drive Mechanism, 4/292
Desorption Pressure, 3/219
Dietz Method, 1/63
Differential Depletion, 3/254
Dimensionless, 1/19, 23, 24, 27, 35

Pressure, 1/23, 27, 35
Pressure Drop, 1/19, 23
Radius, 1/24

Diffusivity Constant, 1/19
Double �p rule, 1/99
Double-Porosity Reservoirs, 1/82
Drainage Area,

Horizontal Well, 3/200; 5/357
Horner Plot, 1/56
Radius, 3/204
Vertical Well, 1/30

Drawdown Test, 1/44
Gringarten Type Curve, 1/67
Radius of Investigation, 1/51

Drive Indices
Gas Reservoirs, 3/211
Oil Reservoirs, 4/304

Duration of Infinite-Acting, 1/50
Apparent Skin Factor, 1/52

Duration of Wellbore Storage Effect,
1/49

Early-Time Test Data, 1/81
Economic Equivalence and Evaluation

Methods, 6/366
Edge-Water Drive, 2/156
Effect of Gas Production Rate on

Ultimate Recovery, 3/217

Effective Compressibility, 5/334
Effective Permeability, 1/47
Ei-Function Solution, 1/19, 20
Energy Plot, 3/208
Equivalent Time, 1/69
Equivalent Value Formulas, 6/367

Discounting, 6/370
Future Worth, 6/367
Future Worth of a Uniform Series,

6/368
Nominal and Effective Interest

Rates, 6/370
Present Worth, 6/367
Present Worth of a Uniform Series,

6/368
Rate of Return Analysis, 6/371
Time Value of Money - Effect on

Investment Decision Analysis,
6/371

Uniform Series for a Future Worth,
6/369

Uniform Series for a Present Worth,
6/369

Euler’s Constant, 1/27
Exact Solution of Radial Flow of

Compressible Fluids, 1/27
Exponential Integral, 1/20
Extended Material Balance, 3/287

False Pressure, 1/56
Faults, 1/113
Fetkovich et al. Plot for Abnormal

Pressure Gas Reservoirs, 3/215
Fetkovich IPR Method, 2/182; 5/345
Fetkovich Type Curve, 3/250
Field Average p/Z, 3/205
Finite Conductivity Fractures, 1/93
Finite-Radial Reservoir, 1/24
First Type Curve Set, 1/87
Fluids, 1/5–7, 25

Compressible, 1/25
Flow Equations, 1/5
Incompressible, 1/6
Number of Flowing Fluids in the

Reservoir, 1/5
Potential, 1/7
Withdrawal, 1/32; 4/307

Flow,
Basic Transient Flow Equation,

1/17
Bilinear, 1/95
Boundary Dominated, 1/36
Coefficient, 1/45
Desorbed Gas in Cleats and

Fractures, 3/232
Formation Linear, 1/97
Fracture Linear, 1/94
Geometries, 2/151
Hemispherical, 1/5
Horizontal Multiple-Phase, 1/15
Infinite-acting Pseudoradial Flow,

1/98
Linear, 1/4, 6
Material Balance, 3/261
Multiple-phase, 1/15
Pseudosteady-State, 1/30
Radial, 1/4, 12, 25, 36
Regimes, 1/2; 2/150
Semisteady state, 1/39
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Spherical, 1/5
Steady-State, 1/6, 38, 39
Superposition, 1/40–42, 44
Turbulent, 1/38
Unsteady-State, 1/38, 39
Variable Flow Rates, 1/41

Fluid Flow Equations, 1/5
Flux Fractures, 1/93
Formation Linear Flow, 1/97
Fracture Bilinear Flow, 1/95

Cinco and Samaniego, 1/95
Fracture Conductivity, 1/93, 94
Fracture Length, 1/103
Fracture Linear Flow, 1/94
Fractured Reservoirs, 1/82
Friction Factor, 3/199
Fundamentals of Economic

Equivalence and Evaluation
Methods, 6/366

Future Inflow Performance
Relationships, 3/198

LIT Methods, 3/198
Pressure-Approximation Method,

1/29, 36

Gas Bubble Radius, 4/313
Gas Compressibility, 1/27
Gas Density, 1/27
Gas Cap

Drive, 4/293, 315
Expansion, 5/332
Shrinkage, 5/333

Gas Expansion Factor, 3/201, 202
Gas Flow Under Laminar (Viscous)

Flowing Conditions, 3/188
Gas Flow Under Turbulent Flow

Conditions, 3/190
Gas Formation Volume Factor, 1/15;

3/189, 201
Gas Cap Drive, 4/293
Gas Hydrates, 3/271
Gas-Oil Ratio, 1/15; 4/296–298, 312

Cumulative, 5/329
Instantaneous, 5/328

Gas Productivity Index, 3/188
Gas Recovery Factor, 3/206
Gas Viscosity, 1/9
Generalized MBE, 3/208; 4/299
Geometry, Reservoir, 1/4
Giger, Reiss, and Jourdan Method,

5/358
Gravity Drainage

Drive, 4/296
Rate, 5/331

Gringarten Type Curve, 1/67

Hagoort and Hoogstra Method, 3/236
Hammerlindl Method for Abnormal

Pressure Gas Reservoirs, 3/216
Harmonic Decline, 3/242
Havlena and Odeh, 4/307
Hemispherical Flow, 1/5
High-Pressure Region, 3/189
Homogeneous Anisotropic

Reservoirs, 1/130
Homogeneous-Isotropic Reservoirs,

1/123
Horizontal Well

Gas, 3/200
Multiple-Phase Flow, 1/15
Oil, 5/356
Productivity under Semisteady-State

Flow, 5/361
Productivity under Steady-State

Flow, 5/358
Borisov Method, 5/358
Giger, Reiss, and Jourdan Method,

5/358
Joshi Method, 5/359
Renard and Dupuy Method, 5/359

Horner Plot, 1/53
Hurst Modified Steady-State Equation,

2/154
Hydrates, 3/272, 281

Dissociation Pressure, 3/274
Phase Diagrams, 3/272
Subsurface, 3/281

Hyperbolic Decline, 3/243
Hydraulically Fractured Reservoirs,

1/93

Incompressible Fluids, 1/6, 9
Linear Flow, 1/6
Radial Flow, 1/9

Index, 6/403
Inertial Flow Factor, 1/39
Infinite Acting, 1/16, 24, 98

Pseudo-Radial Flow, 1/98
Reservoir, 1/24
Time, 1/50

Infinite Conductivity Vertical
Fractures, 1/93

Inflow Performance Relationship
(IPR), 3/188; 5/343

Fetkovich Method, 5/350
Klins and Clark Method, 5/356
Standing Method, 5/349
Vogel Method, 5/345
Wiggins Method, 5/348

Injection Well Testing, 1/133
Injectivity Test Analysis, 1/134
Inner Boundaries, 1/80
Instantaneous GOR, 5/328
Interference and Pulse Tests, 1/114

Homogeneous Anisotropic
Reservoirs, 1/130

Homogeneous-Isotropic Reservoirs,
1/123

Intermediate-Pressure Region, 3/189
Interporosity Flow, 1/87

Coefficient, 1/82
Introduction to Oil Field Economics,

6/365
Accounting Principles, 6/375
Fundamentals of Economic

Equivalence and Evaluation
Methods, 6/366

Reserves Definitions and
Classifications, 6/372

Isotropic Reservoirs, 1/116

Joshi Method, 5/359

Klins and Clark IPR Method, 5/356

Laminar-Inertial-Turbulent (LIT)
Approach, 3/192

Langmuir Equation, 3/220
Laplace’s Equation, 1/19
Layered Reservoirs, 1/92
Limits of Exponent b and Decline

Analysis of Stratified
No-Crossflow Reservoirs, 3/254

Linear
Aquifer, 3/204
Flow, 1/4, 94
Water Drive, 2/180

LIT Methods, 3/191, 198
Log-Log Unit Slope, 1/49
Lost Oil, 5/333
Low-Pressure Region,

3/189

Matchpoint, 1/65
Material Balance Equation, 4/298

Basic Assumptions, 4/299
Coalbed Methane, 3/226
Constant Reservoir Volume, 4/299
Constant Temperature, 4/299
Conventional and Unconventional

Gas Reservoirs, 3/201
Developing the MBE
Fluid Recovery, 4/299
Generalized, 4/299
Material Balance Method, 3/203
Pressure Equilibrium, 4/299
Reliable Production Data, 4/299
Reservoir Characteristics, 4/299
Straight Line, 4/307
Tracy’s Form, 4/322
Volumetric Method, 3/201

Material Balance Pseudo-Time,
3/259

MDH Plot, 1/56, 58
MBH (Matthew-Brons-Hazebroek)

Method, 1/59
Method of Images, 1/42
Middle-Time Test Data, 1/82
Miller-Dyes-Hutchinson Method,

1/58
Model Identification, 1/80
Modified Cole Plot, 3/212
Modified Roach Plot for Pot Aquifer

Gas Reservoirs, 3/215
Moisture Content, 3/224
Multi-layered Reservoirs, 1/82
Multiple-Phase Flow (Horizontal),
Multiple Well Superposition,

1/40
Muskat Method, 5/337

Natural Water Influx, 2/151
Naturally-Fractured Reservoirs,

1/82
Negative Skin Factor, 1/37
Non-Darcy Flow, 1/38; 3/191
Normalized Pseudopressure, 1/52;

3/259
Normalized Pseudotime, 1/52

Oil Bubble Radius, 4/313
Oil Field Economics,

6/366
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Oil Recovery Prediction
Below the Bubble Point Pressure,

5/341
From Initial Pressure to the Bubble

Point Pressure, 5/341
Oil Saturation Adjustment

Combination Drive, 5/332
Gas Cap Expansion, 5/332
Gravity Drainage Reservoirs,

5/331
Shrinking Gas Cap, 5/332
Water Influx Adjustment, 5/332

Oil Well Performance, 5/342
Oil Field Evaluation Methods, 6/372

Present Worth Method, 6/372
Rate of Return Method, 6/372

Outer Boundaries, 1/81
Outer Boundary Conditions,

2/150, 157

Palacio-Blasingame Type Curves,
3/258

Partial Penetration, 1/81
Paston et al. Plot for Abnormal

Pressure Gas Reservoirs, 3/216
Payne Method, 3/234
Performance of Oil Reservoirs, 4/291;

5/327, 342
Phase Diagrams for Hydrates, 3/272
Phase Separation in Tubing, 1/81
Pore Volume Compressibility, 3/213

Instantaneous, 3/213
Total, 3/213

Positive Skin Factor, 1/37
Pot Aquifer Model, 2/152
Predicting Oil Reservoir

Performance, 5/327, 328
Pressure-Approximation Method,

1/29, 36; 3/189, 191
Pressure Behavior

During Falloff Tests, 1/143
During Injectivity Tests, 1/142

Pressure, 1/30, 44, 45, 52, 72
Average Pressure, 1/31, 62, 63
Back-Pressure Test, 3/193
Buildup Test, 1/52
Change-Effects, 1/44
Decline Rate, 1/30, 45
Derivative Method, 1/72

Pressure Falloff Test, 1/136
Analysis in Non-Unit-Mobility Ratio

Systems, 1/138
Pressure Loss, 3/199
Pressure-Squared Method, 1/28, 36
Primary Recovery Mechanisms, 4/292

Combination Drive Mechanism,
4/298

Depletion Drive Mechanism, 4/292
Gas Cap Drive, 4/293
Gravity Drainage Drive, 4/296
Increasing Primary Recovery, 4/303
Rock and Liquid Expansion, 4/292
Water Drive Mechanism, 4/294

Primary Reservoir Characteristics,
1/2

Productivity Index,
Gas, 3/188
Oil, 5/342
Specific, 5/343

Pseudo drop due to skin, 1/37
Pseudo-Critical Pressure, 1/9
Pseudo-Critical Temperature, 1/9
Pseudo-Reduced Pressure, 1/9
Pseudo-Reduced Temperature, 1/9
Pseudopressure, Normalized, 1/52
Pseudosteady-State Flow, 1/30
Pseudosteady-State Interporosity

Flow, 1/87
Pseudosteady-State Time, 3/194
Pseudotime, Normalized, 1/52
Pulse Tests, 1/114

Design Procedure, 1/130
Homogeneous Anisotropic

Reservoirs, 1/120, 130
Homogeneous-Isotropic Reservoirs,

1/116
p/Z plot, 3/203

Qualitative Interpretation of Buildup
Curves, 1/114

Radial Diffusivity Equation, 1/27
Radial Flow, 1/4

Compressible Fluids, 1/12, 18, 25, 36
Slightly Compressible Fluids, 1/11

Radius
Apparent Wellbore, 1/38
Effective Wellbore, 1/38
Gas Bubble, 4/313
Oil Bubble, 4/313

Radius of Investigation, 1/51
Ramey-Cobb Method, 1/63
Rank of the Coal, 3/224
Rate Dependent Skin Factor, 1/39, 52;

3/191
Real-Gas Pseudo Potential, 1/13
Recognition off Natural Water Influx,

2/151
References, 6/397
Reinitialization of Data, 3/248
Relative Permeability Ratio, 4/312;

5/342
Correlation, 5/342
Segregated, 4/312

Renard and Dupuy Method, 5/359
Reserves Definitions and

Classifications, 6/372
Possible Reserves (WPD/SPE),

6/374
Probable Reserves (WPD/SPE),

6/374
Proved Reserves (WPD/SPE),

6/373
Reserve Status categories

(WPD/SPE), 6/374
Undeveloped Reserves, 6/374
Unproved Reserves (WPD/SPE),

6/374
World Petroleum Congress/Society

of Petroleum Engineers, 6/373
Reservoir, 1/4, 42, 81

Behavior, 1/81
Boundary, 1/42
Characteristics, 4/299
Driving Indices, 4/304
Geometry, 1/4
Pressure, 4/295, 296, 298

Relating Reservoir Performance to
Time, 5/361

Reservoirs, 1/24, 92
Anisotropic Reservoirs, 1/120
Combination Drive, 4/321
Conventional and Unconventional

Gas, 3/201
Double-Porosity, 1/82
Hydraulically Fractured, 1/93
Performance Prediction Methods,

5/328
Saturated Oil, 5/334
Saturation Equations and their

Adjustments, 5/330
Shallow Gas, 3/286
Tight Gas, 3/233

Compartmental Reservoir
Approach, 3/234

Hagoort and Hoogstra Method,
3/236

Payne Method, 3/234
Decline Curve Analysis, 3/237

Combined Decline Curve and
Type Curve Analysis
Approach, 3/237

For Fractured Wells, 3/266
Undersaturated Oil, 5/333
Rock and Liquid Expansion, 4/292
Roach Plot, 3/213
Volumetric Gas Reservoirs, 3/203
Water Drive Reservoirs, 3/207; 4/318

Cole Plot, 3/211
Drive Indices for Gas Reservoirs,

3/211
Effect of Gas Production Rate on

Ultimate Recovery, 3/217
Generalized MBE as a Straight

Line, 3/208
Modified Cole Plot, 3/212

Saturated Oil Reservoirs, 5/334
Saturation

Adjustments, 5/330–332
Equations, 5/330

Schilthuis Steady-State Model, 2/153
Second Type Curve Set, 1/88
Secondary Gas Cap, 4/297
Securities and Exchange Commission

(SEC), 6/374
Proved Developed Reserves (SEC),

6/375
Proved Undeveloped Reserves

(SEC), 6/375
Proved Reserves (SEC), 6/374

Segregated Relative Permeability
Ratio, 4/312

Semisteady-State Flow, 1/39
Shale Water Influx Theory, 3/213
Shallow Gas Reservoirs, 3/286
Shape Factor, 1/33, 47
Simplified Treatment Approach, 3/191
Skin Factor, 1/36, 37
Skin Pressure Drop, 1/45
Slightly Compressible Linear

Flow, 1/8
Slightly Compressible Radial

Flow, 1/30
Sorption Isotherm, 3/220
Spherical Flow, 1/5
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Standing IPR Method, 5/349
Steady-State Flow, 1/6, 38, 39
Step Rate Test, 1/143
Storage (Wellbore), 1/48
Straight Line MBE, 4/307
Successful Efforts and

Full Cost Accounting, 6/377
Cost Centers, 6/377
Exploration Costs, 6/377
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